Advertisement

Archives of Toxicology

, Volume 91, Issue 12, pp 3787–3797 | Cite as

Metal chelators and neurotoxicity: lead, mercury, and arsenic

  • Geir BjørklundEmail author
  • Joachim Mutter
  • Jan Aaseth
Review Article

Abstract

This article reviews the clinical use of the metal chelators sodium 2,3-dimercapto-1-propanesulfonate (DMPS), meso-2,3-dimercaptosuccinic acid (DMSA), and calcium disodium edetate (CaEDTA, calcium EDTA) in overexposure and poisonings with salts of lead (Pb), mercury (Hg), and arsenic (As). DMSA has considerably lower toxicity than the classic heavy metal antagonist BAL (2,3-dimercaptopropanol) and is also less toxic than DMPS. Because of its adverse effects, CaEDTA should be replaced by DMSA as the antidote of choice in treating moderate Pb poisoning. Combination therapy with BAL and CaEDTA was previously recommended in cases of severe acute Pb poisoning with encephalopathy. We suggest that BAL in such cases acted as a shuttling Pb transporter from the intra- to the extracellular space. The present paper discusses if a combination of the extracellularly distributed DMSA with the ionophore, Monensin may provide a less toxic combination for Pb mobilization by increasing both the efflux of intracellularly deposited Pb and the urinary Pb excretion. Anyhow, oral therapy with DMSA should be continued with several intermittent courses. DMPS and DMSA are also promising antidotes in Hg poisoning, whereas DMPS seems to be a more efficient agent against As poisoning. However, new insight indicates that a combination of low-dosed BAL plus DMPS could be a preferred antidotal therapy to obtain mobilization of the intracerebral deposits into the circulation for subsequent rapid urinary excretion.

Keywords

Metal chelators DMPS DMSA EDTA Metals 

References

  1. Aaseth J (1983) Recent advance in the therapy of metal poisonings with chelating agents. Human Toxicol 2(2):257–272CrossRefGoogle Scholar
  2. Aaseth J, Friedheim EAH (1978) Treatment of methyl mercury-poisoning in mice with 2,3-dimercaptosuccinic acid and other complexing thiols. Acta Pharmacol Tox 42(4):248–252CrossRefGoogle Scholar
  3. Aaseth J, Alexander J, Raknerud N (1982) Treatment of mercuric chloride poisoning with dimercaptosuccinic acid and diuretics: preliminary studies. J Toxicol Clin Toxicol 19(2):173–186PubMedCrossRefGoogle Scholar
  4. Aaseth J, Skaug V, Alexander J (1984) Haemolytic activity of copper as influenced by chelating agents, albumine and chromium. Acta Pharmacol Toxicol (Copenh) 54(4):304–310CrossRefGoogle Scholar
  5. Aaseth J, Jacobsen D, Andersen O, Wickstrom E (1995) Treatment of mercury and lead poisonings with dimercaptosuccinic acid and sodium dimercaptopropanesulfonate. A review. Analyst 120(3):853–854PubMedCrossRefGoogle Scholar
  6. Aaseth J, Skaug MA, Cao Y, Andersen O (2015) Chelation in metal intoxication—principles and paradigms. J Trace Elem Med Biol 31:260–266PubMedCrossRefGoogle Scholar
  7. Aaseth J, Crisponi G, Andersen O (eds) (2016) Chelation therapy in the treatment of metal intoxication. Academic Press, LondonGoogle Scholar
  8. Alehagen U, Aaseth J, Johansson P (2015) Less increase of copeptin and MR-proADM due to intervention with selenium and coenzyme Q10 combined: results from a 4-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. BioFactors 41(6):443–452PubMedCrossRefGoogle Scholar
  9. Alexander J, Aaseth J, Raknerud N (1982) Treatment of mercuric chloride poisoning with dimercaptosuccinic acid and diuretics: preliminary studies. J Toxicol Clin Toxicol 19(2):173–186PubMedCrossRefGoogle Scholar
  10. American Academy of Pediatrics Committee on Drugs (1995) Treatment guidelines for lead exposure in children. Pediatrics 96:155–160Google Scholar
  11. Andersen O (1999) Principles and recent developments in chelation treatment of metal intoxication. Chem Rev 99(9):2683–2710PubMedCrossRefGoogle Scholar
  12. Aposhian HV (1983) DMSA and DMPS—water soluble antidotes for heavy metal poisoning. Ann Rev Pharmacol Toxicol 23:193–215CrossRefGoogle Scholar
  13. Aposhian HV, Maiorino RM, Dart RC, Perry DF (1989) Urinary excretion of meso-2,3-dimercaptosuccinic acid in human subjects. Clin Pharmacol Ther 45(5):520–526PubMedCrossRefGoogle Scholar
  14. Aposhian HV, Maiorino RM, Gonzalez-Ramirez D, Zuniga-Charles M, Xu Z, Hurlbut KM, Junco-Munoz P, Dart RC, Aposhian MM (1995) Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 97(1–3):23–38PubMedCrossRefGoogle Scholar
  15. Aposhian HV, Arroyo A, Cebrian ME, de Razo LM, Hurlbut KM, Dart RC, Gonzalez-Ramirez D, Kreppel H, Speisky H, Smith A, Gonsebatt ME, Ostrosky-Wegman P, Aposhian MM (1997) DMPS-arsenic challenge test. I: increased urinary excretion of monomethylarsonic acid in humans given dimercaptopropane sulfonate. J Pharmacol Exp Ther 282(1):192–200PubMedGoogle Scholar
  16. Aposhian HV, Morgan DL, Queen HL, Maiorino RM, Aposhian MM (2003) Vitamin C, glutathione, or lipoic acid did not decrease brain or kidney mercury in rats exposed to mercury vapor. J Toxicol Clin Toxicol 41(4):339–347PubMedCrossRefGoogle Scholar
  17. Arnold J, Morgan B (2015) Management of lead encephalopathy with DMSA after exposure to lead-contaminated moonshine. J Med Toxicol 11(4):464–467. doi: 10.1007/s13181-015-0493-9 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Aschner M, Kaur P, Syversen T (2006) Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. Neurotoxicology 27(2006):492–500PubMedGoogle Scholar
  19. Ballatori N, Lieberman MW, Wang W (1998) N-Acetylcysteine as an antidote in methylmercury poisoning. Environ Health Perspect 106(5):267–271PubMedPubMedCentralCrossRefGoogle Scholar
  20. Basinger MA, Jones MM (1981) Structural requirements for chelate antidotal efficacy in acute antimony (III) intoxication. Res Comm Chem Pathol Pharmacol 32(2):355–363Google Scholar
  21. Berlin M, Zalups RK, Fowler BA (2015) Mercury. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the toxicology of metals, vol II, 4th edn. Specific metals. Academic Press, Amsterdam, pp 1013–1075CrossRefGoogle Scholar
  22. Besunder JB, Super DM, Anderson RL (1997) Comparison of dimercaptosuccinic acid and calcium disodium ethylenediaminetetraacetic acid versus dimercaptopropanol and ethylenediaminetetraacetic acid in children with lead poisoning. J Pediatr 130(6):966–971PubMedCrossRefGoogle Scholar
  23. Bjørklund G (2015) Clinical use of the metal chelators calcium disodium edetate, DMPS, and DMSA. Saudi J Kidney Dis Transpl 26(3):611–612CrossRefGoogle Scholar
  24. Blaurock-Busch E, Friedle A, Godfrey M, Schulte-Uebbing CE (2010) Metal exposure in the physically and mentally challenged children of Punjab, India. Maedica (Buchar) 5(2):102–110Google Scholar
  25. Boscolo M, Antonucci S, Volpe AR, Carmignani M, Di Gioacchino M (2009) Acute mercury intoxication and use of chelating agents. J Biol Regul Homeost Agents 23(4):217–223PubMedGoogle Scholar
  26. Böse-O’Reilly S, Drasch G, Beinhoff C, Maydl S, Vosko MR, Roider G, Dzaja D (2003) The Mt. Diwata study on the Philippines 2000-treatment of mercury intoxicated inhabitants of a gold mining area with DMPS (2,3-dimercapto-1-propane-sulfonic acid, Dimaval). Sci Total Environ 307(1–3):71–82PubMedCrossRefGoogle Scholar
  27. Bradberry S, Vale A (2009) Dimercaptosuccinic acid (succimer; DMSA) in inorganic lead poisoning. Clin Toxicol (Phila) 47(7):617–631CrossRefGoogle Scholar
  28. Bradberry S, Sheehan T, Vale A (2009a) Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. QJM 102(10):721–732. doi: 10.1093/qjmed/hcp114 PubMedCrossRefGoogle Scholar
  29. Bradberry SM, Sheehan TM, Barraclough CR, Vale JA (2009b) DMPS can reverse the features of severe mercury vapor-induced neurological damage. Clin Toxicol (Phila) 47(9):894–898. doi: 10.3109/15563650903333812 CrossRefGoogle Scholar
  30. Bridges CC, Joshee L, Zalups RK (2008) MRP2 and the DMPS- and DMSA-mediated elimination of mercury in TR(−) and control rats exposed to thiol S-conjugates of inorganic mercury. Toxicol Sci 105(1):211–220. doi: 10.1093/toxsci/kfn107 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bridges CC, Joshee L, Zalups RK (2011) MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury. Toxicol Appl Pharmacol 251(1):50–58PubMedCrossRefGoogle Scholar
  32. Brown MJ, Willis T, Omalu B, Leiker R (2006) Deaths resulting from hypocalcemia after administration of edetate disodium: 2003–2005. Pediatrics 118(2):e534–e536. doi: 10.1542/peds.2006-0858 PubMedCrossRefGoogle Scholar
  33. Buchet JP, Lauwerys RR (1989) Influence of 2,3-dimercaptopropane-1-sulfonate and dimercaptosuccinic acid on the mobilization of mercury from tissues of rats pretreated with mercuric chloride, phenylmercury acetate or mercury vapors. Toxicology 54(3):323–333PubMedCrossRefGoogle Scholar
  34. Cao Y, Chen A, Jones RL, Radcliffe J, Dietrich KN, Caldwell KL, Peddada S, Rogan WJ (2011) Efficacy of succimer chelation of mercury at background exposures in toddlers: a randomized trial. J Pediatr 158(3):480–485. doi: 10.1016/j.jpeds.2010.08.036 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Cao Y, Skaug MA, Andersen O, Aaseth J (2015) Chelation therapy in intoxications with mercury, lead and copper. J Trace Elem Med Biol 31:188–192. doi: 10.1016/j.jtemb.2014.04.010 PubMedCrossRefGoogle Scholar
  36. Chang LW, Magos L, Suzuki T (1996) Toxicology of metals. CRC Press, Boca RatonGoogle Scholar
  37. Chen P, Miah MR, Aschner M (2016) Metals and neurodegeneration. F1000Res 5. doi:10.12688/f1000research.7431.1Google Scholar
  38. Chisolm JJ (1968) The use of chelating agents in the treatment of acute and chronic lead intoxication in childhood. J Pediatr 73(1):1–38PubMedCrossRefGoogle Scholar
  39. Clarke NE, Clarke CN, Mosher RE (1955) The in vivo dissolution of metastatic calcium; an approach to atherosclerosis. Am J Med Sci 229(2):142–149PubMedCrossRefGoogle Scholar
  40. Clarke NE, Clarke CN, Mosher RE (1956) Treatment of angina pectoris with disodium ethylene diamine tetraacetic acid. Am J Med Sci 232(6):654–666PubMedCrossRefGoogle Scholar
  41. Cory-Slechta DA (1988) Mobilization of lead over the course of DMSA chelation therapy and long-term efficacy. J Pharmacol Exp Ther 246(1):84–91PubMedGoogle Scholar
  42. Crinnion WJ (2011) EDTA redistribution of lead and cadmium into the soft tissues in a human with a high lead burden—should DMSA always be used to follow EDTA in such cases? Altern Med Rev 16(2):109–112PubMedGoogle Scholar
  43. Dargan PI, Giles LJ, Wallace CI, House IM, Thomson AH, Beale RJ, Jones AL (2003) Case report: severe mercuric sulphate poisoning treated with 2,3-dimercaptopropane-1-sulphonate and haemodiafiltration. Crit Care 7(3):R1–R6. doi: 10.1186/cc1887 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dart RC, Hurlbut KM, Maiorino RM, Mayersohn M, Aposhian HV, Hassen LV (1994) Pharmacokinetics of meso-2,3-dimercaptosuccinic acid in patients with lead poisoning and in healthy adults. J Pediatr 125(2):309–316PubMedCrossRefGoogle Scholar
  45. Dennie CC, McBride WL (1924) Treatment of arsphenamin dermatitis, mercurial poisoning and lead intoxication: further observations. JAMA 83(26):2082–2085CrossRefGoogle Scholar
  46. Dietrich KN, Ware JH, Salganik M, Radcliffe J, Rogan WJ, Rhoads GG, Fay ME, Davoli CT, Denckla MB, Bornschein RL, Schwarz D, Dockery DW, Adubato S, Jones RL (2004) Effect of chelation therapy on the neuropsychological and behavioral development of lead-exposed children after school entry. Pediatrics 114(1):19–26PubMedCrossRefGoogle Scholar
  47. Ding GS, Liang YY (1991) Antidotal effect of dimercaptosuccinic acid. J Appl Toxicol 11(1):7–14PubMedCrossRefGoogle Scholar
  48. Domingo JL (1995) Prevention by chelating agents of metal-induced developmental toxicity. Reprod Toxicol 9(2):105–113PubMedCrossRefGoogle Scholar
  49. Eagle H, Magnuson HJ, Fleischman R (1946) 2,3 Dithiolpropanol (“BAL”) as a specific detoxifying agent for arsenic. Fed Proc 5(1 Pt 2):175PubMedGoogle Scholar
  50. Ernst E (2000) Chelation therapy for coronary heart disease: an overview of all clinical investigations. Am Heart J 140(1):139–141PubMedCrossRefGoogle Scholar
  51. Ernst E (2009) Deaths associated with EDTA chelation therapy—a systematic review. Perfusion 22(1):9–11Google Scholar
  52. Escolar E, Lamas GA, Mark DB, Boineau R, Goertz C, Rosenberg Y, Nahin RL, Ouyang P, Rozema T, Magaziner A, Nahas R, Lewis EF, Lindblad L, Lee KL (2014) The effect of an EDTA-based chelation regimen on patients with diabetes mellitus and prior myocardial infarction in the Trial to Assess Chelation Therapy (TACT). Circ Cardiovasc Qual Outcomes 7(1):15–24PubMedCrossRefGoogle Scholar
  53. Flora SJ, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7(7):2745–2788PubMedPubMedCentralCrossRefGoogle Scholar
  54. Flora GJ, Seth PK, Prakash AO, Mathur R (1995) Therapeutic efficacy of combined meso 2,3-dimercaptosuccinic acid and calcium disodium edetate treatment during acute lead intoxication in rats. Hum Exp Toxicol 14(5):410–413PubMedCrossRefGoogle Scholar
  55. FDA - Food and Drug Administration (1991) Succimer approved for severe lead poisoning. FDA Med Bull 21:5Google Scholar
  56. Fournier L, Thomas G, Garnier R, Buisine A, Houze P, Pradier F, Dally S (1988) 2,3-Dimercaptosuccinic acid treatment of heavy metal poisoning in humans. Med Toxicol Adverse Drug Exp 3(6):499–504PubMedGoogle Scholar
  57. Friedheim E, Graziano JH, Popovac D, Dragovic D, Kaul B (1978) Treatment of lead poisoning by 2,3-dimercaptosuccinic acid. Lancet 2(8102):1234–1236PubMedCrossRefGoogle Scholar
  58. Friedman EAH, da Silva JR, Martins AV (1954) Treatment of Schistosomiasis Mansoni with Antimony-a, a′-Dimercapto-Potassium Succinate (TWSb). Am J Trop Med Hyg 3(4):714–727. doi: 10.4269/ajtmh.1954.3.714 CrossRefGoogle Scholar
  59. Frumkin H, Manning CC, Williams PL, Sanders A, Taylor BB, Pierce M, Elon L, Hertzberg VS (2001) Diagnostic chelation challenge with DMSA: a biomarker of long-term mercury exposure? Environ Health Perspect 109(2):167–171PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gabard B (1978) Distribution and excretion of the mercury chelating agent sodium 2,3-dimercaptopropane-1-sulfonate in the rat. J Toxicol 39(4):289–298Google Scholar
  61. George GN, Prince RC, Gailer J, Buttigieg GA, Denton MB, Harris HH, Pickering IJ (2004) Mercury binding to the chelation therapy agents DMSA and DMPS and the rational design of custom chelators for mercury. Chem Res Toxicol 17(8):999–1006PubMedCrossRefGoogle Scholar
  62. Gerhardsson L, Aaseth J (2016) Guidance for clinical treatment of metal poisonings—use and misuse of chelating agents. In: Aaseth J, Crisponi G, Andersen O (eds) Chelation therapy in the treatment of metal intoxication. Academic Press, London, pp 313–341CrossRefGoogle Scholar
  63. Gersl V, Hrdina R, Vávrová J, Holecková M, Palicka V, Voglová J, Mazurová Y, Bajgar J (1997) Effects of repeated administration of dithiol chelating agent—sodium 2,3-dimercapto-1-propanesulphonate (DMPS)—on biochemical and haematological parameters in rabbits. Acta Medica (Hradec Kralove) 40(1):3–8Google Scholar
  64. Gonzalez-Ramirez D, Zuniga-Charles M, Narro-Juarez A, Molina-Recio Y, Hurlbut KM, Dart RC, Aposhian HV (1998) DMPS (2,3-dimercaptopropane-1-sulfonate, dimaval) decreases the body burden of mercury in humans exposed to mercurous chloride. J Pharmacol Exp Ther 287(1):8–12PubMedGoogle Scholar
  65. Gould E (2009) Childhood lead poisoning: conservative estimates of the social and economic benefits of lead hazard control. Environ Health Perspect 117(7):1162–1167PubMedPubMedCentralCrossRefGoogle Scholar
  66. Grandjean P, Jacobsen IA, Jørgensen PJ (1991) Chronic lead poisoning treated with dimercaptosuccinic acid. Pharmacol Toxicol 68(4):266–269PubMedCrossRefGoogle Scholar
  67. Grandjean P, Guldager B, Larsen IB, Jørgensen PJ, Holmstrup P (1997) Placebo response in environmental disease. Chelation therapy of patients with symptoms attributed to amalgam fillings. J Occup Environ Med 39(8):707–714PubMedCrossRefGoogle Scholar
  68. Gray BH, Porvaznik M, Lee LH, Flemming C (1986) Inhibition of tributyltin mediated hemolysis by mercapto compounds. J Appl Toxicol 6(5):363–370PubMedCrossRefGoogle Scholar
  69. Gray BH, Porvaznik M, Flemming C, Lee LH (1987) tri-n-Butyltin: a membrane toxicant. Toxicology 47(1–2):35–54PubMedCrossRefGoogle Scholar
  70. Graziano JH (1986) Role of 2,3-dimercaptosuccinic acid in the treatment of heavy metal poisoning. Med Tox 1(3):155–162CrossRefGoogle Scholar
  71. Graziano JH, Lolacono NJ, Moulton T, Mitchell ME, Slavkovich V, Zarate C (1992) Controlled study of meso-2,3-dimercaptosuccinic acid for the management of childhood lead intoxication. J Pediatr 120(1):133–139PubMedCrossRefGoogle Scholar
  72. Guha Mazumder DN, Ghoshal UC, Saha J, Santra A, De BK, Chatterjee A, Dutta S, Angle CR, Centeno JA (1998) Randomized placebo-controlled trial of 2,3-dimercaptosuccinic acid in therapy of chronic arsenicosis due to drinking arsenic-contaminated subsoil water. J Toxicol Clin Toxicol 36(7):683–690PubMedCrossRefGoogle Scholar
  73. Guha Mazumder DN, De BK, Santra A, Ghosh N, Das S, Lahiri S et al (2001) Randomized placebo-controlled trial of 2, 3-dimercapto-1-propanesulfonate (DMPS) in therapy of chronic arsenicosis due to drinking arsenic-contaminated water. J Toxicol Clin Toxicol 39(7):665–674PubMedCrossRefGoogle Scholar
  74. Guinee VF (1972) Lead poisoning. Am J Med 52(3):283–288PubMedCrossRefGoogle Scholar
  75. Gustavsson P, Gerhardsson L (2005) Intoxication from an accidentally ingested lead shot retained in the gastrointestinal tract. Environ Health Perspect 113(4):491–493PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hamidinia SA, Erdahl WL, Chapman CJ, Steinbaugh GE, Taylor RW, Pfeiffer DR (2006) Monensin improves the effectiveness of meso-dimercaptosuccinate when used to treat lead intoxication in rats. Environ Health Perspect 114(4):484–493PubMedCrossRefGoogle Scholar
  77. Hargreaves KM, Cohen S (2011) Cohen’s pathways of the pulp. Mosby, St. LouisGoogle Scholar
  78. He FS, Zhow XR, Lin BX, Xiung YP, Chen SY, Zhang SL, Ru JY, Deng MH (1984) Prognosis of mercury poisoning in mercury refinery workers. Ann Acad Med Singapore 12(Suppl 2):389–393Google Scholar
  79. Hennighausen G, Merkord J, Kröning G (1988) Interactions of DMSA with dialykyltin compounds. Plzen Lek Sb 56(Suppl):89–90Google Scholar
  80. Hruby K, Donner A (1987) 2,3-Dimercapto-1-propanesulphonate in heavy metal poisoning. Med Toxicol Adverse Drug Exp 2(5):317–323PubMedGoogle Scholar
  81. Hurlbut KM, Maiorino RM, Mayersohn M, Dart RC, Bruce DC, Aposhian HV (1994) Determination and metabolism of dithiol chelating agents. XVI: pharmacokinetics of 2,3-dimercapto-1-propanesulfonate after intravenous administration to human volunteers. J Pharmacol Exp Ther 268(2):662–668PubMedGoogle Scholar
  82. Iffland R, Bösche G (1987) Therapy and clinicotoxicologic follow-up of tartar emetic poisoning caused by an ant insecticide in a small child (in German). Monatschr Kinderheilk 135(4):227–230Google Scholar
  83. Jekat FW, Kemper FH (1990) The oral application of DMPS in metal intoxication: case reports. Plzen Lek Sb 62(Suppl):47–48Google Scholar
  84. Jones MM, Weaver AD, Basinger MA (1981) Characteristics of chelate antidotes for acute Cu(II) intoxication. J Inorg Nucl Chem 43(9):2175–2181CrossRefGoogle Scholar
  85. Joshi DN, Patel JS, Flora SJ, Kalia K (2008) Arsenic accumulation by pseudomonas stutzeri and its response to some thiol chelators. Environ Health Prev Med 13(5):257–263PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kaji T (2004) Cell biology of heavy metal toxicity in vascular tissue (in Japanese). Yakugaku Zasshi 124(3):113–120PubMedCrossRefGoogle Scholar
  87. Kalender S, Uzun FG, Demir F, Uzunhisarcıklı M, Aslanturk A (2013) Mercuric chloride-induced testicular toxicity in rats and the protective role of sodium selenite and vitamin E. Food Chem Toxicol 55:456–462. doi: 10.1016/j.fct.2013.01.024 PubMedCrossRefGoogle Scholar
  88. Kannan GM, Flora SJS (2006) Combined administration of N-acetylcysteine and monoisoamyl DMSA on tissue oxidative stress during arsenic chelation therapy. Biol Trace Elem Res 110(1):43–59PubMedCrossRefGoogle Scholar
  89. Kazantzis G (2007) Diagnosis and treatment of metal poisoning—general aspects. In: Nordberg GF, Fowler BA, Nordberg M, Friberg LT (eds) Handbook on the toxicology of metals, 3rd edn. Elsevier, Amsterdam, pp 303–317CrossRefGoogle Scholar
  90. Kety SS, Letonoff TV (1941) Treatment of lead poisoning with sodium citrate. Proc Soc Exp Biol Med 46(3):476–477CrossRefGoogle Scholar
  91. Kilburn K (1997) Neurobehavioral impairment from long-term residential arsenic exposure. In: Abernathy C, Calderon R, Chappell W (eds) Arsenic: Exposure and health effects. Chapman & Hall, New York, pp 158–175Google Scholar
  92. Klimova LK (1958) Pharmacology of the new antidote Unithiol (in Russian). Farmakol Toksikol (Moscow) 21:53–59Google Scholar
  93. Kosnett MJ (2010) Chelation for heavy metals (arsenic, lead, and mercury): protective or perilous? Clin Pharmacol Ther 88(3):412–415PubMedCrossRefGoogle Scholar
  94. Kuklinski B, Weissenbacher E, Fähnrich A (1994) Coenzyme Q10 and antioxidants in acute myocardial infarction. Mol Aspects Med 15(Suppl):s143–s147PubMedCrossRefGoogle Scholar
  95. Lamas GA, Goertz C, Boineau R, Mark DB, Rozema T, Nahin RL, Drisko JA, Lee KL (2012) Design of the trial to assess chelation therapy (TACT). Am Heart J 163(1):7–12PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lee BK, Schwartz BS, Stewart W, Ahn KD (1995) Provocative chelation with DMSA and EDTA: evidence for differential access to lead storage sites. Occup Environ Med 52(1):13–19PubMedPubMedCentralCrossRefGoogle Scholar
  97. Liang YI, Chu CC, Tsen YL, Ting KS (1957) Studies on antibilharzial drugs. VI. The antidotal effects of sodium dimercaptosuccinate and BAL-glucoside against tartar emetic (in Chinese). Acta Physiol Sin 21(1):24–32Google Scholar
  98. Liebelt EL, Shannon M, Graef JW (1994) Efficacy of oral meso-2,3-dimercaptosuccinic acid therapy for low-level childhood plumbism. J Pediatr 124(2):313–317PubMedCrossRefGoogle Scholar
  99. Maiorino RM, Akins JM, Blaha K, Carter DE, Aposhian HV (1990) Determination and metabolism of dithiol chelating agents: X. In humans, meso-2.3-dimercaptosuccinic acid is bound to plasma proteins via mixed disulfide formation. J Pharmacol Exp Ther 254(2):570–577PubMedGoogle Scholar
  100. Maiorino RM, Hurlbut KM, Mayersohn M, Dart RC, Bruce DC, Aposhian HV (1994) Determination and metabolism of dithiol chelating agents XVI: pharmacokinetics of 2,3-dimercapto-1-propanesulfonate after intravenous administration to human volunteers. J Pharmacol Exp Ther 268(2):662–668PubMedGoogle Scholar
  101. Maizlish NA, Parra G, Feo O (1995) Neurobehavioural evaluation of Venezuelan workers exposed to inorganic lead. Occup Environ Med 52(6):408–414PubMedPubMedCentralCrossRefGoogle Scholar
  102. Merkord J, Weber H, Kröning G, Hennighausen G (2000) Antidotal effects of 2,3-dimercaptopropane-1-sulfonic acid (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) on the organotoxicity of dibutyltin dichloride (DBTC) in rats. Hum Exp Toxicol 19(2):132–137PubMedCrossRefGoogle Scholar
  103. Miller AL (1998) Dimercaptosuccinic acid (DMSA), a non-toxic, water-soluble treatment for heavy metal toxicity. Altern Med Rev 3(3):199–207PubMedGoogle Scholar
  104. Morgan GT, Drew HD (1920) CLXII—researches on residual affinity and co-ordination. Part II. Acetylacetones of selenium and tellurium. J Chem Soc Trans 117:1456–1465. doi: 10.1039/CT9201701456 CrossRefGoogle Scholar
  105. Moulton T, Asledu P, Blum CB, Roldan E, Lolacono NJ, Graziano JH (1995) Metabolism of meso-2,3-dimercaptosuccinic acid in lead-poisoned children and normal adults. Environ Health Perspect 103(7–8):734–739PubMedPubMedCentralGoogle Scholar
  106. Mráz L, Sýkora J, Eybl V (1985) Palladium and chelating agents. Plzen Lek Sb 49(Suppl):142–145Google Scholar
  107. Needleman HL, Schell A, Bellinger D, Leviton A, Allred EN (1990) The long-term effects of exposure to low-doses of lead in childhood—an 11-year follow-up report. New Engl J Med 322(2):83–88PubMedCrossRefGoogle Scholar
  108. Nielsen JB, Andersen O (1991) Effect of four thiol-containing chelators on disposition of orally administered mercuric-chloride. Hum Exp Toxicol 10(6):423–430PubMedCrossRefGoogle Scholar
  109. Nissen SE (2013) Concerns about reliability in the Trial to Assess Chelation Therapy (TACT). JAMA 309(12):1293–1294PubMedCrossRefGoogle Scholar
  110. Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2007) Handbook on the toxicology of metals, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  111. Owen LN, Sultanbawa MUS (1949) Olefinic acids. Part VII. The addition of thiols to propiolic and acetylenedicarboxylic acid. J Chem Soc 43:3109–3113. doi: 10.1039/JR9490003109 CrossRefGoogle Scholar
  112. Pande M, Flora SJ (2002) Lead induced oxidative damage and its response to combined administration of alpha-lipoic acid and succimers in rats. Toxicology 177(2–3):187–196PubMedCrossRefGoogle Scholar
  113. Peters RA, Stocken LA, Thompson RH (1945) British anti-lewisite (BAL). Nature 156:616–619PubMedCrossRefGoogle Scholar
  114. Pethran A, Szinicz L, Forth W (1990) Effect of various dithiols on acute toxicity of different metals in mice. Plzen Lek Sb 62(Suppl):69–70Google Scholar
  115. Petrunkin VE (1956) Synthesis and properties of dimercapto derivatives of alkylsulfonic acids. I: synthesis of sodium 2,3-dimercaptopropylsulfonate (unithiol) and sodium 2-mercaptoethylsulfonate (in Russian). Ukr Khim Zh 22:603–607Google Scholar
  116. Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ Jr, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC et al (1992) Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the Survival and Ventricular Enlargement Trial. N Engl J Med 327(10):669–677PubMedCrossRefGoogle Scholar
  117. Planas-Bohne F (1981) The effect of 2,3-dimercaptopropane-1-sulfonate and dimercaptosuccinic acid on the distribution and excretion of mercuric chloride in rats. Toxicology 19(3):275–278PubMedCrossRefGoogle Scholar
  118. Rafati-Rahimzadeh M, Rafati-Rahimzadeh M, Kazemi S, Moghadamnia AA (2014) Current approaches of the management of mercury poisoning: need of the hour. DARU 22:46. doi: 10.1186/2008-2231-22-46 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Ramsey DT, Casteel SW, Faggella AM, Chastain CB, Nunn JW, Schaeffer DJ (1996) Use of orally administered succimer (meso-2,3-dimercaptosuccinic acid) for treatment of lead poisoning in dogs. J Am Vet Med Assoc 208(3):371–375PubMedGoogle Scholar
  120. Roels HA, Boeckx M, Ceulemans E, Lauwerys RR (1991) Urinary excretion of mercury after occupational exposure to mercury vapour and influence of the chelating agent meso-2,3-dimercaptosuccinic acid (DMSA). Br J Ind Med 48(4):247–253PubMedPubMedCentralGoogle Scholar
  121. Rogan WJ, Dietrich KN, Ware JH, Dockery DW, Salganik M, Radcliffe J, Jones RL, Ragan NB, Chisolm JJ Jr, Rhoads GG (2001) The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. N Engl J Med 344(19):1421–1426PubMedCrossRefGoogle Scholar
  122. Romanov SS (1967) Unithiol as an antidote in pulmonary oedema secondary to intravenous injection of silver nitrate (in Russian). Farmakol Toksikol 30:237–238Google Scholar
  123. Rooney JP (2007) The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234(3):145–156PubMedCrossRefGoogle Scholar
  124. Rosenthal SM, Voegtlin C (1930) Biological and chemical studies of the relationship between arsenic and crystalline glutathione. J Pharmacol Exp Ther 39(3):347–367Google Scholar
  125. Ruprecht J (2008) Dimaval®: Scientific product monograph, 7th edn. HEYL Chem Pharm, FabrikGoogle Scholar
  126. Sánchez-Fructuoso AI, Cano M, Arroyo M, Fernández C, Prats D, Barrientos A (2002) Lead mobilization during calcium disodium ethylenediaminetetraacetate chelation therapy in treatment of chronic lead poisoning. Am J Kidney Dis 40(1):51–58PubMedCrossRefGoogle Scholar
  127. Sears ME (2013) Chelation: harnessing and enhancing heavy metal detoxification—a review. SciWorld J 2013:219840. doi: 10.1155/2013/219840 Google Scholar
  128. Stenehjem AE, Vahter M, Nermell B, Aasen J, Lierhagen S, Mørland J, Jacobsen D (2007) Slow recovery from severe inorganic arsenic poisoning despite treatment with DMSA (2.3-dimercaptosuccinic acid). Clin Toxicol 45(4):424–428CrossRefGoogle Scholar
  129. Stocken LA (1947) British anti-lewisite as an antidote for acute mercury poisoning. Biochem J 41(3):358PubMedPubMedCentralCrossRefGoogle Scholar
  130. Toet AE, van Dijk A, Savelkoul TJ, Meulenbelt J (1994) Mercury kinetics in a case of severe mercuric chloride poisoning treated with dimercapto-1-propane sulphonate (DMPS). Hum Exp Toxicol 13(1):11–16PubMedCrossRefGoogle Scholar
  131. Torres-Alanís O, Garza-Ocañas L, Bernal MA, Piñeyro-López A (2000) Urinary excretion of trace elements in humans after sodium 2,3-dimercaptopropane-1-sulfonate challenge test. J Toxicol Clin Toxicol 38(7):697–700PubMedCrossRefGoogle Scholar
  132. Tsopelas C (2013) Understanding the radiolabelling mechanism of 99mTc-antimony sulphide colloid. Appl Radiat Isot 59(5–6):321–328Google Scholar
  133. Walshe JM (1984) Copper: its role in the pathogenesis of liver disease. Semin Liver Dis 4(3):252–263PubMedCrossRefGoogle Scholar
  134. Walshe JM (1985) Unithiol in Wilson’s disease. Br Med J (Clin Res Ed) 290(6469):673–674CrossRefGoogle Scholar
  135. Wang SC, Ting KS, Wu CC (1965) Chelation therapy with NaDMS in occupational lead and mercury intoxication. Chin Med J 84(7):437–439PubMedGoogle Scholar
  136. Yang RM, Bao YC, Yang XT, Lou ZP, Cai YL (1987) Comparative cupruretic study of five agents in Wilson’s disease (in Chinese). Chin J New Drugs Clin Rem 6(6):341–343Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Council for Nutritional and Environmental MedicineMo i RanaNorway
  2. 2.Paracelsus Clinica al RoncCastanedaSwitzerland
  3. 3.Faculty of Public HealthInland Norway University of Applied SciencesElverumNorway
  4. 4.Department of ResearchInnlandet Hospital TrustBrumunddalNorway

Personalised recommendations