Archives of Toxicology

, Volume 91, Issue 11, pp 3469–3475 | Cite as

Obesogenic endocrine disruptors and obesity: myths and truths

  • Giovanna Muscogiuri
  • Luigi Barrea
  • Daniela Laudisio
  • Silvia Savastano
  • Annamaria Colao
Review Article


Obesogenic endocrine disruptors, also known as obesogens, are chemicals potentially involved in weight gain by altering lipid homeostasis and promoting adipogenesis and lipid accumulation. They included compounds to which human population is exposed over daily life such as pesticides/herbicides, industrial and household products, plastics, detergents and personal care products. The window of life during which the exposure happens could lead to different effects. A critical window is during utero and/or neonatal period in which the obesogens could cause subtle changes in gene expression and tissue organization or blunt other levels of biological organization leading to increased susceptibility to diseases in the adulthood. Some of the reasons for this increased sensitivity include the lack of the protective mechanisms that are available in adult such as DNA repair mechanisms, a competent immune system, detoxifying enzymes, liver metabolism and the blood/brain barrier still not fully functional in the fetus or newborn. The mechanisms of action of obesogens lay on their ability to increase the number and/or the size of the adipocytes and to alter appetite, satiety and food preferences. The ability of obesogens to increase fat deposition results in an increased capacity for their own retention due to their lipophilic properties; thus prolonging the exposure and increasing the detrimental metabolic consequences.


Obesity Phthalates Bisphenol A Diethylstilbestrol Polycyclic aromatic hydrocarbons Organic pollutants Environment Tributyltin 


Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest, neither any grants nor other financial supports regarding the publication of this article.


  1. Ansari GAS, Bhupendra S, Kaphalia M et al (1995) Fatty acid conjugates of xenobiotics. Toxicol Lett 75:1–17. doi: 10.1016/0378-4274(94)03171-3 CrossRefPubMedGoogle Scholar
  2. Ariemma F, D’Esposito V, Liguoro D, Oriente F, Cabaro S, Liotti A et al (2016) Low-dose bisphenol-A impairs adipogenesis and generates dysfunctional 3T3-L1 adipocytes. PLoS One 11:e0150762. doi: 10.1371/journal.pone.0150762 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baudrand R, Goodarzi MO, Vaidya A, Underwood PC, Williams JS, Jeunemaitre X et al (2015) A prevalent caveolin-1 gene variant is associated with the metabolic syndrome in Caucasians and Hispanics. Metabolism 64(12):1674–1681CrossRefPubMedPubMedCentralGoogle Scholar
  4. Behl M, Rao D, Aagaard K, Davidson TL, Levin ED, Slotkin TA et al (2013) Evaluation of the association between maternal smoking, childhood obesity, and metabolic disorders: a national toxicology program workshop review. Environ Health Perspect 121:170–180. doi: 10.1289/ehp.1205404 PubMedGoogle Scholar
  5. Bhandari R, Xiao J, Shankar A (2013) Urinary bisphenol A and obesity in U.S. children. Am J Epidemiol 177:1263–1270. doi: 10.1093/aje/kws391 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bolton JL, Auten RL, Bilbo SD (2014) Prenatal air pollution exposure induces sexually dimorphic fetal programming of metabolic and neuroinflammatory outcomes in adult offspring. Brain Behav Immun 37:30–44. doi: 10.1016/j.bbi.2013.10.029 CrossRefPubMedGoogle Scholar
  7. Bushnik T, Haines D, Levallois P, Levesque J, Van Oostdam J, Viau C (2010) Lead and bisphenol A concentrations in the Canadian population. Health Rep 21:7–18PubMedGoogle Scholar
  8. Carwile JL, Michels KB (2011) Urinary bisphenol A and obesity: nHANES 2003–2006. Environ Res 111:825–830. doi: 10.1016/j.envres.2011.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30(4):293–342CrossRefPubMedPubMedCentralGoogle Scholar
  10. Li DK, Miao M, Zhou Z, Wu C, Shi H, Liu X et al (2013) Urine bisphenol-A level in relation to obesity and overweight in school-age children. PLoS One 8:e65399. doi: 10.1371/journal.pone.0065399s CrossRefGoogle Scholar
  11. Eng DS, Lee JM, Gebremariam A, Meeker JD, Peterson K, Padmanabhan V (2013) Bisphenol A and chronic disease risk factors in US children. Pediatrics 132:e637–e645. doi: 10.1542/peds.2013-0106 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Feige JN, Gelman L, Rossi D, Zoete V, Métivier R, Tudor C, Anghel SI, Grosdidier A, Lathion C, Engelborghs Y, Michielin O, Wahli W, Desvergne B (2007) The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis. J Biol Chem 282:19152–19166CrossRefPubMedGoogle Scholar
  13. Ghosh S, Murinova L, Trnovec T, Loffredo CA, Washington K, Mitra PS et al (2014) Biomarkers linking PCB exposure and obesity. Curr Pharm Biotechnol 15:1058–1068CrossRefPubMedPubMedCentralGoogle Scholar
  14. Grün F, Blumberg B (2006) Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 147:S50–S55. doi: 10.1210/en.2005-1129 CrossRefPubMedGoogle Scholar
  15. Grün F, Watanabe H, Zamanian Z, Maeda L, Arima K, Cubacha R et al (2006) Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol 20:2141–2155. doi: 10.1210/me.2005-0367 CrossRefPubMedGoogle Scholar
  16. Haluzik M, Colombo C, Gavrilova O, Chua S, Wolf N, Chen M et al (2004) Genetic background (C57BL/6J versus FVB/N) strongly influences the severity of diabetes and insulin resistance in ob/ob mice. Endocrinology 145:3258–3264. doi: 10.1210/en.2004-0219 CrossRefPubMedGoogle Scholar
  17. Hao C, Cheng X, Xia H, Ma X (2012) The endocrine disruptor mono-(2-ethylhexyl)phthalate promotes adipocyte differentiation and induces obesity in mice. Biosci Rep 32:619–629. doi: 10.1042/BSR20120042 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hao C, Cheng X, Guo J, Xia H, Ma X (2013) Perinatal exposure to diethyl-hexyl-phthalate induces obesity in mice. Front Biosci (Elite Ed) 5:725–733CrossRefGoogle Scholar
  19. Hatch EE, Nelson JW, Qureshi MM, Weinberg J, Moore LL et al (2008) Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002. Environ Health 7:27. doi: 10.1186/1476-069X-7-27 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Heindel JJ, Newbold R, Schug TT (2015) Endocrine disruptors and obesity. Nat Rev Endocrinol 11:653–661. doi: 10.1038/nrendo.2015.163 CrossRefPubMedGoogle Scholar
  21. Hu P, Chen X, Whitener RJ, Boder ET, Jones JO, Porollo A et al (2013) Effects of parabens on adipocyte differentiation. Toxicol Sci 131:56–70. doi: 10.1093/toxsci/kfs262 CrossRefPubMedGoogle Scholar
  22. Hu P, Kennedy RC, Chen X, Zhang J, Shen CL, Chen J, Zhao L (2016) Differential effects on adiposity and serum marker of bone formation by post-weaning exposure to methylparaben and butylparaben. Environ Sci Pollut Res Int 23:21957–21968CrossRefPubMedGoogle Scholar
  23. Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N (2008) Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect 116:1642–1647. doi: 10.1289/ehp.1153749 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Janesick A, Blumberg B (2011) Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. Birth Defects Res C Embryo Today 93:34–50. doi: 10.1002/bdrc.20197 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kanayama T, Kobayashi N, Mamiya S, Nakanishi T, Nishikawa J (2005) Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor gamma/retinoid X receptor pathway. Mol Pharmacol 67:766–774. doi: 10.1124/mol.104.008409 CrossRefPubMedGoogle Scholar
  26. Kirchner S, Kieu T, Chow C, Casey S, Blumberg B (2010) Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol Endocrinol 24:526–539. doi: 10.1210/me.2009-0261 CrossRefPubMedPubMedCentralGoogle Scholar
  27. La Merrill M, Karey E, Moshier E, Lindtner C, La Frano MR, Newman JW et al (2014) Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring. PLoS One 9:e103337. doi: 10.1371/journal.pone.0103337 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lagisz M, Blair H, Kenyon P, Uller T, Raubenheimer D, Nakagawa S (2015) Littleappetite for obesity: meta-analysis of the effects of maternal obesogenic diets on offspring food intake and body mass in rodents. Int J Obes (Lond) 39:1669–1678. doi: 10.1038/ijo.2015.160 CrossRefGoogle Scholar
  29. Lind PM, Roos V, Rönn M, Johansson L, Ahlström H, Kullberg J et al (2012) Serum concentrations of phthalate metabolites are related to abdominal fat distribution two years later in elderly women. Environ Health 11:21. doi: 10.1186/1476-069X-11-21 CrossRefPubMedPubMedCentralGoogle Scholar
  30. MacKay H, Patterson ZR, Abizaid A (2017) Perinatal exposure to low-dose bisphenol-A disrupts the structural and functional development of the hypothalamic feeding circuitry. Endocrinology 158:768–777. doi: 10.1210/en.2016-1718 CrossRefPubMedGoogle Scholar
  31. Masuno H, Kidani T, Sekiya K, Sakayama K, Shiosaka T, Yamamoto H et al (2002) Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1fibroblasts to adipocytes. J Lipid Res 43:676–684PubMedGoogle Scholar
  32. McLaughlin T, Allison G, Abbasi F, Lamendola C, Reaven G (2004) Prevalence of insulin resistance and associated cardiovascular disease risk factors among normal weight, overweight, and obese individuals. Metabolism 53(4):495–499CrossRefPubMedGoogle Scholar
  33. Newbold RR, Padilla-Banks E, Snyder RJ, Jefferson WN (2005) Developmental exposure to estrogenic compounds and obesity. Birth Defects Res A Clin Mol Teratol 73:478–480. doi: 10.1002/bdra.20147 CrossRefPubMedGoogle Scholar
  34. Newbold RR, Padilla-Banks E, Jefferson WN (2009) Environmental estrogens andobesity. Mol Cell Endocrinol 304:84–89. doi: 10.1016/j.mce.2009.02.024 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nguyen QC, Meng H, Li D, Kath S, McCullough M, Paul D et al (2017) Social media indicators of the food environment and state health outcomes. Public Health 148:120–128. doi: 10.1016/j.puhe.2017.03.013 CrossRefPubMedGoogle Scholar
  36. Ortiz L, Nakamura B, Li X, Blumberg B, Luderer U (2013) In utero exposure to benzo[a]pyrene increases adiposity and causes hepatic steatosis in female mice, and glutathione deficiency is protective. Toxicol Lett 223:260–267. doi: 10.1016/j.toxlet.2013.09.017 CrossRefPubMedGoogle Scholar
  37. Pugazhendhi D, Watson KA, Mills S, BottingN Pope GS, Darbre PD (2008) Effect of sulphation on the oestrogen agonist activity of the phytoestrogens genistein and daidzein in MCF-7 human breast cancer cells. J Endocrinol 197:503–515. doi: 10.1677/JOE-07-0384 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rantakokko M, Iwarsson S, Portegijs E, Viljanen A, Rantanen T (2015) Associationsbetween environmental characteristics and life-space mobility in community-dwelling older people. J Aging Health 27:606–621. doi: 10.1177/0898264314555328 CrossRefPubMedGoogle Scholar
  39. Rönn M, Lind L, Örberg J, Kullberg J, Söderberg S, Larsson A et al (2014) Bisphenol A is related to circulating levels of adiponectin, leptin and ghrelin, but not to fat mass or fat distribution in humans. Chemosphere 112:42–48. doi: 10.1016/j.chemosphere.2014.03.042 CrossRefPubMedGoogle Scholar
  40. Ropero AB, Alonso-Magdalena P, García-García E, Ripoll C, Fuentes E, Nadal A (2008) Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis. Int J Androl 31:194–200CrossRefPubMedGoogle Scholar
  41. Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 127:27–34. doi: 10.1016/j.jsbmb.2011.05.002 CrossRefPubMedGoogle Scholar
  42. Rundle A, Hoepner L, Hassoun A, Oberfield S, Freyer G, Holmes D et al (2012) Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy. Am J Epidemiol 175:1163–1172. doi: 10.1093/aje/kwr455 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Shankar A, Teppala S (2011) Relationship between urinary bisphenol A levels and diabetes mellitus. J Clin Endocrinol Metab 96:3822–3826. doi: 10.1210/jc.2011-1682 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Shankar A, Teppala S (2012) Urinary bisphenol A and hypertension in a multiethnic sample of US adults. J Environ Public Health 2012:481641. doi: 10.1155/2012/481641 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Shankar A, Teppala S, Sabanayagam C (2012a) Bisphenol a and peripheral arterial disease: results from the NHANES. Environ Health Perspect 120:1297–1300. doi: 10.1289/ehp.1104114 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shankar A, Teppala S, Sabanayagam C (2012b) Urinary bisphenol a levels and measures of obesity: results from the national health and nutrition examination survey 2003–2008. ISRN Endocrinol 2012:965243. doi: 10.5402/2012/965243 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Silver MK, O’Neill MS, Sowers MR, Park SK (2011) Urinary bisphenol A and type-2 diabetes in U.S. adults: data from NHANES 2003-2008. PLoS One 6:e26868. doi: 10.1371/journal.pone.002686851 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Smink A, Ribas-Fito N, Garcia R, Torrent M, Mendez MA, Grimalt JO et al (2008) Exposure to hexachlorobenzene during pregnancy increases the risk of overweight in children aged 6 years. Acta Paediatr 97:1465–1469. doi: 10.1111/j.1651-2227.2008.00937.x CrossRefPubMedGoogle Scholar
  49. Snedeker SM, Hay AG (2012) Do interactions between gut ecology and environmental chemicals contribute to obesity and diabetes? Environ Health Perspect 120:332–339. doi: 10.1289/ehp.1104204 CrossRefPubMedGoogle Scholar
  50. Somm E, Schwitzgebel VM, Toulotte A, Cederroth CR, Combescure C, Nef S et al (2009) Perinatal exposure to bisphenol a alters early adipogenesis in the rat. Environ Health Perspect 117:1549–1555. doi: 10.1289/ehp.11342 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Stahlhut RW, Van Wijngaarden E, Dye TD, Cook S, Swan SH (2007) Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ Health Perspect 115:876–882. doi: 10.1289/ehp.9882 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Strakovsky RS, Lezmi S, Shkoda I, Flaws JA, Helferich WG, Pan YX (2015) In utero growth restriction and catch-up adipogenesis after developmental di(2-ethylhexyl) phthalate exposure cause glucose intolerance in adult male rats following a high-fat dietary challenge. J Nutr Biochem 26:1208–1220. doi: 10.1016/j.jnutbio.2015.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Thayer KA, Heindel JJ, Bucher JR, Gallo MA (2012) Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect 120:779–789. doi: 10.1289/ehp.1104597 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Trasande L, Attina TM, Blustein J (2012) Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. JAMA 308:1113–1121. doi: 10.1001/2012.jama.11461 CrossRefPubMedGoogle Scholar
  55. Trasande L, Attina TM, Sathyanarayana S, Spanier AJ, Blustein J (2013a) Race/ethnicity-specific associations of urinary phthalates with childhood body mass in a nationally representative sample. Environ Health Perspect 121:501–506. doi: 10.1289/ehp.1205526 PubMedPubMedCentralGoogle Scholar
  56. Trasande L, Sathyanarayana S, Spanier AJ, Trachtman H, AttinaTM Urbina EM (2013b) Urinary phthalates are associated with higher blood pressure in childhood. J Pediatr 163(747–53):e1. doi: 10.1016/j.jpeds.2013.03.072 Google Scholar
  57. Valvi D, Mendez MA, Garcia-Esteban R, Ballester F, Ibarluzea J, Goñi F et al (2014) Prenatalexposure to persistent organic pollutants and rapid weight gain and overweight ininfancy. Obesity (Silver Spring) 22:488–496. doi: 10.1002/oby.20603 CrossRefGoogle Scholar
  58. Waalen J (2014) The genetics of human obesity. Transl Res 164:293–301. doi: 10.1016/j.trsl.2014.05.010 CrossRefPubMedGoogle Scholar
  59. Wams TJ (1987) Diethylhexylphthalate as an environmental contaminant—a review. Sci Total Environ 66:1–16CrossRefPubMedGoogle Scholar
  60. Wang HX, ZhouY Tang CX, Wu JG, Chen Y, Jiang QW (2012) Association between bisphenol A exposure and body mass index in Chinese school children: a cross-sectional study. Environ Health 11:79. doi: 10.1186/1476-069X-11-79 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wolff MS, Teitelbaum SL, WindhamG Pinney SM, Britton JA, Chelimo C et al (2007) Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ Health Perspect 115:116–121CrossRefPubMedGoogle Scholar
  62. Xue J, Wu Q, Sakthivel S, Pavithran PV, Vasukutty JR, Kannan K (2015) Urinary levels of endocrine-disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens, and triclosan in obese and non-obese Indian children. Environ Res 137:120–128. doi: 10.1016/j.envres.2014.12.007 CrossRefPubMedGoogle Scholar
  63. Yan Z, Zhang H, Maher C, Arteaga-Solis E, Champagne FA, Wu L et al (2014) Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (PPAR) γ methylation in offspring, grand-offspring mice. PLoS One 9:e110706. doi: 10.1371/journal.pone.0110706 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yang M, Chen M, Wang J, Xu M, Sun J, Ding L et al (2016) Bisphenol A promotes adiposity and inflammation in a nonmonotonic dose-response way in 5-week-old male and female C57BL/6J mice fed a low-calorie diet. Endocrinology 157:2333–2345. doi: 10.1210/en.2015-1926 CrossRefPubMedGoogle Scholar
  65. Yin L, Yu KS, Lu K, Yu X (2016) Benzyl butyl phthalate promotes adipogenesis in3T3-L1 preadipocytes: a high content cellomics and metabolomic analysis. Toxicol In Vitro 32:297–309. doi: 10.1016/j.tiv.2016.01.010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Giovanna Muscogiuri
    • 1
  • Luigi Barrea
    • 1
  • Daniela Laudisio
    • 1
  • Silvia Savastano
    • 2
  • Annamaria Colao
    • 2
  1. 1.Ios and Coleman Medicina Futura Medical CenterAcerraItaly
  2. 2.Department of Clinical Medicine and SurgeryUniversity “Federico II” - NaplesNaplesItaly

Personalised recommendations