Archives of Toxicology

, Volume 92, Issue 2, pp 571–586 | Cite as

Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons

  • Mitra C. Geier
  • Anna C. Chlebowski
  • Lisa Truong
  • Staci L. Massey Simonich
  • Kim A. Anderson
  • Robert L. Tanguay
Regulatory Toxicology


Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that occur in complex mixtures. Several PAHs are known or suspected mutagens and/or carcinogens, but developmental toxicity data is lacking for PAHs, particularly their oxygenated and nitrated derivatives. Such data are necessary to understand and predict the toxicity of environmental mixtures. 123 PAHs were assessed for morphological and neurobehavioral effects for a range of concentrations between 0.1 and 50 µM, using a high throughput early-life stage zebrafish assay, including 33 parent, 22 nitrated, 17 oxygenated, 19 hydroxylated, 14 methylated, 16 heterocyclic, and 2 aminated PAHs. Additionally, each PAH was evaluated for AHR activation, by assessing CYP1A protein expression using whole animal immunohistochemistry (IHC). Responses to PAHs varied in a structurally dependent manner. High-molecular weight PAHs were significantly more developmentally toxic than the low-molecular weight PAHs, and CYP1A expression was detected in five distinct tissues, including vasculature, liver, skin, neuromasts and yolk.


Zebrafish PAH CYP1A Developmental toxicity AHR 

Supplementary material

204_2017_2068_MOESM1_ESM.pdf (566 kb)
Supplementary material 1 (PDF 566 kb)


  1. Andersson JT, Achten C (2015) Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycycl Aromat Compd 35(2–4):330–354. doi: 10.1080/10406638.2014.991042 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andreasen EA (2002) Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae: effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure. Toxicol Sci 68(2):403–419. doi: 10.1093/toxsci/68.2.403 CrossRefPubMedGoogle Scholar
  3. Bansal V, Kim KH (2015) Review of PAH contamination in food products and their health hazards. Environ Int 84:26–38. doi: 10.1016/j.envint.2015.06.016 CrossRefPubMedGoogle Scholar
  4. Billiard SM, Meyer JN, Wassenberg DM, Hodson PV, Di Giulio RT (2008) Nonadditive effects of PAHs on early vertebrate development: mechanisms and implications for risk assessment. Toxicol Sci 105(1):5–23. doi: 10.1093/toxsci/kfm303 CrossRefPubMedGoogle Scholar
  5. Boese BL, Ozretich RJ, Lamberson JO et al (1999) Toxicity and Phototoxicity of mixtures of highly lipophilic PAH compounds in marine sediment: can the PAH model be extrapolated? Arch Environ Contam Toxicol 36:270–280CrossRefPubMedGoogle Scholar
  6. Boyd WA, Smith MV, Co CA et al (2016) Developmental effects of the ToxCast phase I and phase II chemicals in caenorhabditis elegans and corresponding responses in zebrafish, rats, and rabbits. Environ Health Perspect 124(5):586–593. doi: 10.1289/ehp.1409645 PubMedGoogle Scholar
  7. Burczynski M, Lin H, Penning T (1999) Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Can Res 59(3):8Google Scholar
  8. Chen C, Tang Y, Jiang X et al (2012) Early postnatal benzo(a)pyrene exposure in Sprague-Dawley rats causes persistent neurobehavioral impairments that emerge postnatally and continue into adolescence and adulthood. Toxicol Sci 125(1):248–261. doi: 10.1093/toxsci/kfr265 CrossRefPubMedGoogle Scholar
  9. Chlebowski AC, Tanguay RL, Simonich SL (2016) Quantitation and prediction of sorptive losses during toxicity testing of polycyclic aromatic hydrocarbon (PAH) and nitrated PAH (NPAH) using polystyrene 96-well plates. Neurotoxicol Teratol 57:30–38. doi: 10.1016/ CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chlebowski AC, Garcia GR, La Du JK et al (2017) Mechanistic investigations into the developmental toxicity of nitrated and heterocyclic PAHs. Toxicol Sci. doi: 10.1093/toxsci/kfx035 PubMedPubMedCentralGoogle Scholar
  11. Cochran RE, Jeong H, Haddadi S et al (2016) Identification of products formed during the heterogeneous nitration and ozonation of polycyclic aromatic hydrocarbons. Atmos Environ 128:92–103. doi: 10.1016/j.atmosenv.2015.12.036 CrossRefGoogle Scholar
  12. Crepeaux G, Bouillaud-Kremarik P, Sikhayeva N, Rychen G, Soulimani R, Schroeder H (2012) Late effects of a perinatal exposure to a 16 PAH mixture: increase of anxiety-related behaviours and decrease of regional brain metabolism in adult male rats. Toxicol Lett 211(2):105–113. doi: 10.1016/j.toxlet.2012.03.005 CrossRefPubMedGoogle Scholar
  13. Crepeaux G, Bouillaud-Kremarik P, Sikhayeva N, Rychen G, Soulimani R, Schroeder H (2013) Exclusive prenatal exposure to a 16 PAH mixture does not impact anxiety-related behaviours and regional brain metabolism in adult male rats: a role for the period of exposure in the modulation of PAH neurotoxicity. Toxicol Lett 221(1):40–46. doi: 10.1016/j.toxlet.2013.05.014 CrossRefPubMedGoogle Scholar
  14. de Esch C, Slieker R, Wolterbeek A, Woutersen R, de Groot D (2012) Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotoxicol Teratol 34(6):545–553. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  15. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC et al (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30(4):293–342. doi: 10.1210/er.2009-0002 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dooley K, Zon LI (2000) Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 10(3):252–256CrossRefPubMedGoogle Scholar
  17. Elie MR, Choi J, Nkrumah-Elie YM, Gonnerman GD, Stevens JF, Tanguay RL (2015) Metabolomic analysis to define and compare the effects of PAHs and oxygenated PAHs in developing zebrafish. Environ Res 140:502–510. doi: 10.1016/j.envres.2015.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Goldman R, Enewold L, Pellizzari E et al (2001) Smoking increases carcinogenic polycyclic aromatic hydrocarbons in human lung tissue. Can Res 61(17):6367–6371Google Scholar
  19. Goldstone J, McArthur A, Kubota A et al (2010) Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC Genomics 11(1):643CrossRefPubMedPubMedCentralGoogle Scholar
  20. Goodale BC, La Du JK, Bisson WH, Janszen DB, Waters KM, Tanguay RL (2012) AHR2 mutant reveals functional diversity of aryl hydrocarbon receptors in zebrafish. PLoS One 7(1):e29346. doi: 10.1371/journal.pone.0029346 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Goodale BC, La Du J, Tilton SC et al (2015) Ligand-specific transcriptional mechanisms underlie aryl hydrocarbon receptor-mediated developmental toxicity of oxygenated PAHs. Toxicol Sci 147(2):397–411. doi: 10.1093/toxsci/kfv139 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hsu H-J, Hsiao P, Kuo M-W, B-c Chung (2002) Expression of zebrafish cyp11a1 as a maternal transcript and in yolk syncytial layer. Gene Expr Patterns 2(3–4):219–222. doi: 10.1016/s1567-133x(02)00059-5 CrossRefPubMedGoogle Scholar
  23. Incardona JP, Collier TK, Scholz NL (2004) Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 196(2):191–205CrossRefPubMedGoogle Scholar
  24. Incardona JP, Carls MG, Teraoka H, Sloan CA, Collier TK, Scholz NL (2005) Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. Environ Health Perspect 113(12):1755–1762CrossRefPubMedPubMedCentralGoogle Scholar
  25. Incardona JP, Day HL, Collier TK, Scholz NL (2006) Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. Toxicol Appl Pharmacol 217(3):308–321CrossRefPubMedGoogle Scholar
  26. Incardona JP, Linbo TL, Scholz NL (2011) Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. Toxicol Appl Pharmacol 257(2):242–249. doi: 10.1016/j.taap.2011.09.010 CrossRefPubMedGoogle Scholar
  27. Jariyasopit N, McIntosh M, Zimmermann K et al (2014a) Novel nitro-PAH formation from heterogeneous reactions of PAHs with NO2, NO3/N2O5, and OH radicals: prediction, laboratory studies, and mutagenicity. Environ Sci Technol 48(1):412–419. doi: 10.1021/es4043808 CrossRefPubMedGoogle Scholar
  28. Jariyasopit N, Zimmermann K, Schrlau J et al (2014b) Heterogeneous reactions of particulate matter-bound PAHs and NPAHs with NO3/N2O5, OH radicals, and O3 under simulated long-range atmospheric transport conditions: reactivity and mutagenicity. Environ Sci Technol 48(17):10155–10164. doi: 10.1021/es5015407 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kim KH, Park HJ, Kim JH et al (2013) Cyp1a reporter zebrafish reveals target tissues for dioxin. Aquat Toxicol 134–135:57–65. doi: 10.1016/j.aquatox.2013.03.010 CrossRefPubMedGoogle Scholar
  30. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310. doi: 10.1002/aja.1002030302 CrossRefPubMedGoogle Scholar
  31. Knecht AL, Goodale BC, Truong L et al (2013) Comparative developmental toxicity of environmentally relevant oxygenated PAHs. Toxicol Appl Pharmacol 271(2):266–275. doi: 10.1016/j.taap.2013.05.006 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Knecht AL, Truong L, Simonich MT, Tanguay RL (2017) Developmental benzo[a]pyrene (B[a]P) exposure impacts larval behavior and impairs adult learning in zebrafish. Neurotoxicol Teratol 59:27–34. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  33. Kurogi K, Liu TA, Sakakibara Y, Suiko M, Liu MC (2013) The use of zebrafish as a model system for investigating the role of the SULTs in the metabolism of endogenous compounds and xenobiotics. Drug Metab Rev 45(4):431–440. doi: 10.3109/03602532.2013.835629 CrossRefPubMedGoogle Scholar
  34. Larsson M, Orbe D, Engwall M (2012) Exposure time-dependent effects on the relative potencies and additivity of PAHs in the Ah receptor-based H4IIE-luc bioassay. Environ Toxicol Chem 31(5):1149–1157. doi: 10.1002/etc.1776 CrossRefPubMedGoogle Scholar
  35. Larsson M, Hagberg J, Giesy JP, Engwall M (2014) Time-dependent relative potency factors for polycyclic aromatic hydrocarbons and their derivatives in the H4IIE-luc bioassay. Environ Toxicol Chem 33(4):943–953. doi: 10.1002/etc.2517 CrossRefPubMedGoogle Scholar
  36. Le Fol V, Brion F, Hillenweck A et al (2017) Comparison of the in vivo biotransformation of two emerging estrogenic contaminants, BP2 and BPS, in zebrafish embryos and adults. Int J Mol Sci 18(4):704. doi: 10.3390/ijms18040704 CrossRefPubMedCentralGoogle Scholar
  37. Li C-T, Lin Y-C, Lee W-J, Tsai P-J (2002) Emission of polycyclic aromatic hydrocarbons and their carcinogenic potencies from cooking sources to the urban atmosphere. Environ Health Perspect 111(4):483–487. doi: 10.1289/ehp.5518 CrossRefGoogle Scholar
  38. Liu H, Weisman D, Y-b Ye et al (2009) An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Sci 176(3):375–382. doi: 10.1016/j.plantsci.2008.12.002 CrossRefGoogle Scholar
  39. Luderer U, Christensen F, Johnson WO et al (2017) Associations between urinary biomarkers of polycyclic aromatic hydrocarbon exposure and reproductive function during menstrual cycles in women. Environ Int 100:110–120. doi: 10.1016/j.envint.2016.12.021 CrossRefPubMedGoogle Scholar
  40. Lundstedt S, White PA, Lemieux CL et al (2007) Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. AMBIO J Hum Environ 36(6):475–485. doi:10.1579/0044-7447(2007)36[475:SFATHO]2.0.CO;2Google Scholar
  41. Mandrell D, Truong L, Jephson C et al (2012) Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom 17(1):66–74. doi: 10.1177/2211068211432197 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mathew LK, Andreasen EA, Tanguay RL (2006) Aryl hydrocarbon receptor activation inhibits regenerative growth. Mol Pharmacol 69(1):257–265. doi: 10.1124/mol.105.018044 PubMedGoogle Scholar
  43. Mathew R, McGrath JA, Di Toro DM (2008) Modeling polycyclic aromatic hydrocarbon bioaccumulation and metabolism in time-variable early life-stage exposures. Environ Toxicol Chem 27(7):1515–1525CrossRefPubMedGoogle Scholar
  44. Noyes PD, Haggard DE, Gonnerman GD, Tanguay RL (2015) Advanced morphological-behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants. Toxicol Sci 145(1):177–195. doi: 10.1093/toxsci/kfv064 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ostrowski SR, Wilbur S, Chou CH et al (1999) Agency for toxic substances and disease registry’s 1997 priority list of hazardous substances. Latent effects–carcinogenesis, neurotoxicology, and developmental deficits in humans and animals. Toxicol Ind Health 15(7):602–644CrossRefPubMedGoogle Scholar
  46. Peal DS, Peterson RT, Milan D (2010) Small molecule screening in zebrafish. J Cardiovasc Transl Res 3(5):454–460. doi: 10.1007/s12265-010-9212-8 CrossRefPubMedGoogle Scholar
  47. Perera FP, Whyatt RM, Jedrychowski W et al (1998) Recent developments in molecular epidemiology: a study of the effects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland. Am J Epidemiol 147(3):309–314. doi: 10.1093/oxfordjournals.aje.a009451 CrossRefPubMedGoogle Scholar
  48. Perera FP, Tang D, Tu Y-H et al (2004) biomarkers in maternal and newborn blood indicate heightened fetal susceptibility to procarcinogenic DNA damage. Environ Health Perspect 112(10):1133–1136. doi: 10.1289/ehp.6833 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Perera FP, Rauh V, Whyatt RM et al (2006) Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among Inner-City children. Environ Health Perspect 114(8):1287–1292. doi: 10.1289/ehp.9084 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Perera FP, Li Z, Whyatt R et al (2009) Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 124(2):e195–e202. doi: 10.1542/peds.2008-3506 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Perera FP, Chang HW, Tang D et al (2014) Early-life exposure to polycyclic aromatic hydrocarbons and ADHD behavior problems. PLoS One 9(11):e111670. doi: 10.1371/journal.pone.0111670 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Perrichon P, Le Menach K, Akcha F, Cachot J, Budzinski H, Bustamante P (2016) Toxicity assessment of water-accommodated fractions from two different oils using a zebrafish (Danio rerio) embryo-larval bioassay with a multilevel approach. Sci Total Environ 568:952–966. doi: 10.1016/j.scitotenv.2016.04.186 CrossRefPubMedGoogle Scholar
  53. Pulster EL, Main K, Wetzel D, Murawski S (2017) Species-specific metabolism of naphthalene and phenanthrene in three species of marine teleosts exposed to deepwater horizon crude oil. Environ Toxicol Chem. doi: 10.1002/etc.3898 PubMedGoogle Scholar
  54. Ramos KS, Moorthy B (2005) Bioactivation of polycyclic aromatic hydrocarbon carcinogens within the vascular wall: implications for human atherogenesis. Drug Metab Rev 37(4):595–610. doi: 10.1080/03602530500251253 CrossRefPubMedGoogle Scholar
  55. Ravindra K, Sokhi R, Vangrieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42(13):2895–2921. doi: 10.1016/j.atmosenv.2007.12.010 CrossRefGoogle Scholar
  56. Reif DM, Truong L, Mandrell D, Marvel S, Zhang G, Tanguay RL (2016) High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch Toxicol 90(6):1459–1470. doi: 10.1007/s00204-015-1554-1 CrossRefPubMedGoogle Scholar
  57. Rodgman A, Smith CJ, Perfetti TA (2000) The composition of cigarette smoke: a retrospective, with emphasis on polycyclic components. Hum Exp Toxicol 19(10):573–595. doi: 10.1191/096032700701546514 CrossRefPubMedGoogle Scholar
  58. Rundle A, Hoepner L, Hassoun A et al (2012) Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy. Am J Epidemiol 175(11):1163–1172. doi: 10.1093/aje/kwr455 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sabljic A (2001) QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk. Chemosphere 43:363–375CrossRefPubMedGoogle Scholar
  60. Scott JA, Incardona JP, Pelkki K, Shepardson S, Hodson PV (2011) AhR2-mediated, CYP1A-independent cardiovascular toxicity in zebrafish (Danio rerio) embryos exposed to retene. Aquat Toxicol 101(1):165–174. doi: 10.1016/j.aquatox.2010.09.016 CrossRefPubMedGoogle Scholar
  61. Shailaja MS, Rajamanickam R, Wahidulla S (2006) Formation of genotoxic nitro-PAH compounds in fish exposed to ambient nitrite and PAH. Toxicol Sci 91(2):440–447. doi: 10.1093/toxsci/kfj151 CrossRefPubMedGoogle Scholar
  62. Simoneit BR, Bi X, Oros DR, Medeiros PM, Sheng G, Fu J (2007) Phenols and hydroxy-PAHs (arylphenols) as tracers for coal smoke particulate matter: source tests and ambient aerosol assessments. Environ Sci Technol 41(21):7294–7302CrossRefPubMedGoogle Scholar
  63. Team RC (2015) R: a language and environment for statistical computing. In: Team RC (ed) R foundation for statistical computing. Austria, ViennaGoogle Scholar
  64. Ton C, Parng C (2005) The use of zebrafish for assessing ototoxic and otoprotective agents. Hear Res 208(1–2):79–88. doi: 10.1016/j.heares.2005.05.005 CrossRefPubMedGoogle Scholar
  65. Truong L, Bugel SM, Chlebowski A et al (2016) Optimizing multi-dimensional high throughput screening using zebrafish. Reprod Toxicol 65:139–147. doi: 10.1016/j.reprotox.2016.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  66. USEPA (2010) Development of a relative potency factor (RPF) approach for polycyclic aromatic hydrocarbon (PAH) mixtures. In: (IRIS) IRIS (ed). Washington, DCGoogle Scholar
  67. van Grevenynghe J, Sparfel L, Le Vee M et al (2004) Cytochrome P450-dependent toxicity of environmental polycyclic aromatic hydrocarbons towards human macrophages. Biochem Biophys Res Commun 317(3):708–716. doi: 10.1016/j.bbrc.2004.03.104 CrossRefPubMedGoogle Scholar
  68. Vignet C, Devier MH, Le Menach K et al (2014a) Long-term disruption of growth, reproduction, and behavior after embryonic exposure of zebrafish to PAH-spiked sediment. Environ Sci Pollut Res Int 21(24):13877–13887. doi: 10.1007/s11356-014-2585-5 CrossRefPubMedGoogle Scholar
  69. Vignet C, Le Menach K, Lyphout L et al (2014b) Chronic dietary exposure to pyrolytic and petrogenic mixtures of PAHs causes physiological disruption in zebrafish—part II: behavior. Environ Sci Pollut Res Int 21(24):13818–13832. doi: 10.1007/s11356-014-2762-6 CrossRefPubMedGoogle Scholar
  70. Volz DC, Hipszer RA, Leet JK, Raftery TD (2015) Leveraging embryonic zebrafish to prioritize toxcast testing. Environ Sci Technol Lett 2(7):171–176. doi: 10.1021/acs.estlett.5b00123 CrossRefGoogle Scholar
  71. Wang Y, Meng L, Pittman EN et al (2017) Quantification of urinary mono-hydroxylated metabolites of polycyclic aromatic hydrocarbons by on-line solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 409(4):931–937. doi: 10.1007/s00216-016-9933-x CrossRefPubMedGoogle Scholar
  72. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  73. Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206(1):73–93. doi: 10.1016/j.taap.2004.11.006 CrossRefPubMedGoogle Scholar
  74. Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43(4):812–819. doi: 10.1016/j.atmosenv.2008.10.050 CrossRefGoogle Scholar
  75. Zhang X, Li X, Jing Y et al (2017) Transplacental transfer of polycyclic aromatic hydrocarbons in paired samples of maternal serum, umbilical cord serum, and placenta in Shanghai, China. Environ Pollut 222:267–275. doi: 10.1016/j.envpol.2016.12.046 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Environmental and Molecular ToxicologyOregon State UniversityCorvallisUSA

Personalised recommendations