Advertisement

Archives of Toxicology

, Volume 92, Issue 1, pp 455–468 | Cite as

Bisphenol A exposure perturbs visual function of adult cats by remodeling the neuronal activity in the primary visual pathway

  • Guangwei Xu
  • Fan HuEmail author
  • Xuan Wang
  • Bing Zhang
  • Yifeng ZhouEmail author
Organ Toxicity and Mechanisms

Abstract

Bisphenol A (BPA), a common environmental xenoestrogen, has been implicated in physiological and behavioral impairment, but the neuronal basis remains elusive. Although various synaptic mechanisms have been shown to mediate BPA-induced brain deficits, there are almost no reports addressing its underlying physiological mechanisms at the individual neuron level, particularly in the primary visual system. In the present study, using multiple-channel recording technique, we recorded the responses of single neurons in the primary visual system of cats to various direction stimuli both before and after BPA exposure. The results showed that the orientation selectivity of neurons in the primary visual cortex (area 17, A17) was obviously decreased after 2 h of intravenous BPA administration (0.2 mg/kg). Moreover, there were worse performances of information transmission of A17 neurons, presenting markedly decreased signal-to-noise ratio (SNR). To some extent, these functional decreases were attributable to the altered information inputs from lateral geniculate nucleus (LGN), which showed an increased spontaneous activity. Additionally, local injection of BPA (3.3 μg/ml) in A17 resulted in an obvious increase in orientation selectivity and a decrease in neuronal activity, involving enhanced activity of fast-spiking inhibitory interneurons. In conclusion, our results first demonstrate that acute BPA exposure can restrict the visual perception of cats, mainly depending on the alteration of the LGN projection, not the intercortical interaction. Importantly, BPA-induced-brain deficits might not only be confined to the cortical level but also occur as early as at the subcortical level.

Keywords

Bisphenol A Primary visual system Orientation selectivity Area 17 Lateral geniculate nucleus 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC21307024 to F.H., and NSFC31230032, 31571074 to Y.Z.), and the Fundamental Research Funds for the Central Universities (JZ2017HGTB0200).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

204_2017_2047_MOESM1_ESM.pdf (425 kb)
Supplementary material 1 (PDF 425 kb)

References

  1. Aggleton JP, Vann SD, Oswald CJP, Good M (2000) Identifying cortical inputs to the rat hippocampus that subserve allocentric spatial processes: a simple problem with a complex answer. Hippocampus 10(4):466–474CrossRefPubMedGoogle Scholar
  2. Andersen GJ (2012) Aging and vision: changes in function and performance from optics to perception. Wiley Interdiscip Rev Cogn Sci 3(3):403–410. doi: 10.1002/wcs.1167 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Atallah BV, Bruns W, Carandini M, Scanziani M (2012) Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73(1):159–170. doi: 10.1016/j.neuron.2011.12.013 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blurton-Jones M, Tuszynski MH (2002) Estrogen receptor-beta colocalizes extensively with parvalbumin-labeled inhibitory neurons in the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized adult rats. J Comp Neurol 452(3):276–287. doi: 10.1002/cne.10393 CrossRefPubMedGoogle Scholar
  5. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10(4):433–436CrossRefPubMedGoogle Scholar
  6. Davidson RJ (2002) Synaptic self—how our brains become who we are. Science 296(5566):268. doi: 10.1126/science.1067997 CrossRefGoogle Scholar
  7. Eilam-Stock T, Serrano P, Frankfurt M, Luine V (2012) Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. Behav Neurosci 126(1):175–185. doi: 10.1037/a0025959 CrossRefPubMedGoogle Scholar
  8. Elsworth JD, Jentsch JD, Groman SM, Roth RH, Redmond ED Jr, Leranth C (2015) Low circulating levels of bisphenol-A induce cognitive deficits and loss of asymmetric spine synapses in dorsolateral prefrontal cortex and hippocampus of adult male monkeys. J Comp Neurol 523(8):1248–1257. doi: 10.1002/cne.23735 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gupta PD, Johar K Sr, Nagpal K, Vasavada AR (2005) Sex hormone receptors in the human eye. Surv Ophthalmol 50(3):274–284. doi: 10.1016/j.survophthal.2005.02.005 CrossRefPubMedGoogle Scholar
  10. Handa RJ, McGivern RF (2015) Steroid hormones, receptors, and perceptual and cognitive sex differences in the visual system. Curr Eye Res 40(2):110–127. doi: 10.3109/02713683.2014.952826 CrossRefPubMedGoogle Scholar
  11. Hu F, Li T, Gong H, Chen Z, Xu G, Wang M (2017) Bisphenol A impairs synaptic plasticity by both pre- and postsynaptic mechanisms. Adv Sci 1600493:1. doi: 10.1002/advs.201600493 Google Scholar
  12. Hua T, Li X, He L, Zhou Y, Wang Y, Leventhal AG (2006) Functional degradation of visual cortical cells in old cats. Neurobiol Aging 27(1):155–162. doi: 10.1016/j.neurobiolaging.2004.11.012 CrossRefPubMedGoogle Scholar
  13. Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148:574–591CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154CrossRefPubMedPubMedCentralGoogle Scholar
  15. Iwakura T, Iwafuchi M, Muraoka D et al (2010) In vitro effects of bisphenol A on developing hypothalamic neurons. Toxicology 272(1–3):52–58. doi: 10.1016/j.tox.2010.04.005 CrossRefPubMedGoogle Scholar
  16. Jeong JK, Tremere LA, Burrows K, Majewska AK, Pinaud R (2011) The mouse primary visual cortex is a site of production and sensitivity to estrogens. PloS One. doi: 10.1371/journal.pone.0020400 Google Scholar
  17. Ji DY, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10(1):100–107. doi: 10.1038/nn1825 CrossRefPubMedGoogle Scholar
  18. Jovanovic JN, Czernik AJ, Fienberg AA, Greengard P, Sihra TS (2000) Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat Neurosci 3(4):323–329CrossRefPubMedGoogle Scholar
  19. Kang K, Shapley RM, Sompolinsky H (2004) Information tuning of populations of neurons in primary visual cortex. J Neurosci 24(15):3726–3735. doi: 10.1523/JNEUROSCI.4272-03.2004 CrossRefPubMedGoogle Scholar
  20. Kasai T, Morita H, Kumada T (2007) Attribute-invariant orientation discrimination at an early stage of processing in the human visual system. Vis Res 47(2):203–209. doi: 10.1016/j.visres.2006.09.023 CrossRefPubMedGoogle Scholar
  21. Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7(6):476–486. doi: 10.1093/cercor/7.6.476 CrossRefPubMedGoogle Scholar
  22. Kelly EA, Opanashuk LA, Majewska AK (2014) The effects of postnatal exposure to low-dose bisphenol-A on activity-dependent plasticity in the mouse sensory cortex. Front Neuroanat 8:117. doi: 10.3389/fnana.2014.00117 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kimura E, Matsuyoshi C, Miyazaki W et al (2016) Prenatal exposure to bisphenol A impacts neuronal morphology in the hippocampal CA1 region in developing and aged mice. Arch Toxicol 90(3):691–700. doi: 10.1007/s00204-015-1485-x CrossRefPubMedGoogle Scholar
  24. Kundakovic M, Gudsnuk K, Franks B et al (2013) Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci USA 110(24):9956–9961. doi: 10.1073/pnas.1214056110 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lee SH, Kwan AC, Zhang S et al (2012) Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488(7411):379–383. doi: 10.1038/nature11312 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Leranth C, Hajszan T, Szigeti-Buck K, Bober J, MacLusky NJ (2008) Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci USA 105(37):14187–14191. doi: 10.1073/pnas.0806139105 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300(5620):812–815. doi: 10.1126/science.1082874 CrossRefPubMedGoogle Scholar
  28. Li G, Yang Y, Liang Z, Xia J, Yang Y, Zhou Y (2008) GABA-mediated inhibition correlates with orientation selectivity in primary visual cortex of cat. Neuroscience 155(3):914–922. doi: 10.1016/j.neuroscience.2008.06.032 CrossRefPubMedGoogle Scholar
  29. Liu ZH, Ding JJ, Yang QQ et al (2016) Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats. Sci Rep 6:32492. doi: 10.1038/srep32492 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Luine VN, Frankfurt M (2012) Estrogens facilitate memory processing through membrane mediated mechanisms and alterations in spine density. Front Neuroendocrinol 33(4):388–402. doi: 10.1016/j.yfrne.2012.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  31. MacLusky NJ, Hajszan T, Leranth C (2005) The environmental estrogen bisphenol a inhibits estradiol-induced hippocampal synaptogenesis. Environ Health Perspect 113(6):675–679CrossRefPubMedPubMedCentralGoogle Scholar
  32. Manger P, Masiello I, Innocenti G (2002) Areal organization of the posterior parietal cortex of the ferret (Mustela putorius). Cereb Cortex 12:1280–1297. doi: 10.1093/cercor/12.12.1280 CrossRefPubMedGoogle Scholar
  33. Mangiamele LA, Gomez JR, Curtis NJ, Thompson RR (2017) GPER/GPR30, a membrane estrogen receptor, is expressed in the brain and retina of a social fish (Carassius auratus) and colocalizes with isotocin. J Comparat Neurol 525(2):252–270. doi: 10.1002/cne.24056 CrossRefGoogle Scholar
  34. Maunsell JH, Cook EP (2002) The role of attention in visual processing. Philos Trans R Soc Lond B Biol Sci 357(1424):1063–1072. doi: 10.1098/rstb.2002.1107 CrossRefPubMedPubMedCentralGoogle Scholar
  35. McAdams CJ, Maunsell JH (1999) Effects of attention on the reliability of individual neurons in monkey visual cortex. Neuron 23(4):765–773CrossRefPubMedGoogle Scholar
  36. Montijn JS, Vinck M, Pennartz CM (2014) Population coding in mouse visual cortex: response reliability and dissociability of stimulus tuning and noise correlation. Front Comput Neurosci 8:58. doi: 10.3389/fncom.2014.00058 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Murphy DD, Cole NB, Greenberger V, Segal M (1998) Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J Neurosci 18(7):2550–2559PubMedGoogle Scholar
  38. Priebe NJ, Ferster D (2012) Mechanisms of neuronal computation in mammalian visual cortex. Neuron 75(2):194–208. doi: 10.1016/j.neuron.2012.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ringach DL, Shapley RM, Hawken MJ (2002) Orientation selectivity in macaque V1: diversity and laminar dependence. J Neurosci 22(13):5639–5651PubMedGoogle Scholar
  40. Rogers JA, Metz L, Yong VW (2013) Review: endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms. Mol Immunol 53(4):421–430. doi: 10.1016/j.molimm.2012.09.013 CrossRefPubMedGoogle Scholar
  41. Sato H, Katsuyama N, Tamura H, Hata Y, Tsumoto T (1996) Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. J Physiol 494(Pt 3):757–771CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schoups A, Vogels R, Qian N, Orban G (2001) Practising orientation identification improves orientation coding in V1 neurons. Nature 412(6846):549–553. doi: 10.1038/35087601 CrossRefPubMedGoogle Scholar
  43. Seabrook TA, Krahe TE, Govindaiah G, Guido W (2013) Interneurons in the mouse visual thalamus maintain a high degree of retinal convergence throughout postnatal development. Neural Dev 8:24. doi: 10.1186/1749-8104-8-24 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Srivastava DP, Waters EM, Mermelstein PG, Kramar EA, Shors TJ, Liu F (2011) Rapid estrogen signaling in the brain: implications for the fine-tuning of neuronal circuitry. J Neurosci 31(45):16056–16063. doi: 10.1523/JNEUROSCI.4097-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Stahlhut RW, Welshons WV, Swan SH (2009) Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Persp 117(5):784–789. doi: 10.1289/ehp.0800376 CrossRefGoogle Scholar
  46. Swadlow HA (2003) Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. Cereb Cortex 13(1):25–32CrossRefPubMedGoogle Scholar
  47. Tolhurst DJ, Movshon JA, Dean AF (1983) The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis Res 23(8):775–785CrossRefPubMedGoogle Scholar
  48. Tuscher JJ, Luine V, Frankfurt M, Frick KM (2016) Estradiol-mediated spine changes in the dorsal hippocampus and medial prefrontal cortex of ovariectomized female mice depend on ERK and mTOR activation in the dorsal hippocampus. J Neurosci 36(5):1483–1489. doi: 10.1523/JNEUROSCI.3135-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Vanbrederode JFM, Mulligan KA, Hendrickson AE (1990) Calcium-Binding Proteins as Markers for Subpopulations of Gabaergic Neurons in Monkey Striate Cortex. J Comparat Neurol 298(1):1–22. doi: 10.1002/cne.902980102 CrossRefGoogle Scholar
  50. Vara H, Onofri F, Benfenati F, Sassoe-Pognetto M, Giustetto M (2009) ERK activation in axonal varicosities modulates presynaptic plasticity in the CA3 region of the hippocampus through synapsin I. Proc Natl Acad Sci USA 106(24):9872–9877. doi: 10.1073/pnas.0900077106 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Vierk R, Bayer J, Freitag S et al (2015) Structure–function–behavior relationship in estrogen-induced synaptic plasticity. Horm Behav 74:139–148. doi: 10.1016/j.yhbeh.2015.05.008 CrossRefPubMedGoogle Scholar
  52. Volkel W, Bittner N, Dekant W (2005) Quantitation of bisphenol A and bisphenol A glucuronide in biological samples by high performance liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 33(11):1748–1757. doi: 10.1124/dmd.105.005454 CrossRefPubMedGoogle Scholar
  53. Wang YZ, Hess RF (2005) Contributions of local orientation and position features to shape integration. Vision Res 45(11):1375–1383. doi: 10.1016/j.visres.2004.12.003 CrossRefPubMedGoogle Scholar
  54. Wang C, Li Z, Han H et al (2016) Impairment of object recognition memory by maternal bisphenol A exposure is associated with inhibition of Akt and ERK/CREB/BDNF pathway in the male offspring hippocampus. Toxicology 341–343:56–64. doi: 10.1016/j.tox.2016.01.010 CrossRefPubMedGoogle Scholar
  55. Welshons WV, Nagel SC, vom Saal FS (2006) Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147(6 Suppl):56–69. doi: 10.1210/en.2005-1159 CrossRefGoogle Scholar
  56. Yizhar O, Fenno LE, Prigge M et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477(7363):171–178. doi: 10.1038/nature10360 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.CAS Key Laboratory of Brain Function and Diseases, School of Life SciencesUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.School of Food Science and EngineeringHefei University of TechnologyHefeiPeople’s Republic of China
  3. 3.State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of ScienceBeijingPeople’s Republic of China

Personalised recommendations