Archives of Toxicology

, Volume 91, Issue 9, pp 3011–3037 | Cite as

Toxic effects and biodistribution of ultrasmall gold nanoparticles

  • Günter SchmidEmail author
  • Wolfgang G. Kreyling
  • Ulrich Simon
Review Article


Gold nanoparticles (AuNPs) have been extensively explored in biomedical applications, for example as drug carriers, contrast agents, or therapeutics. However, AuNP can exhibit cytotoxic profile, when the size is below 2 nm (ultrasmall AuNP; usAuNP) and when the stabilizing ligands allow for access to the gold surface either for the direct interaction with biomolecules or for catalytic activity of the unshielded gold surface. Furthermore, usAuNP exhibits significantly different biodistribution and enhanced circulation times compared to larger AuNP. This review gives an overview about the synthesis and the physico-chemical properties of usAuNP and, thereby, focusses on 1.4 nm sized AuNP, which are derived from the compound Au55(PPh3)12Cl6 and which are the most intensively studied usAuNP in the field. This part is followed by a summary of the toxic properties of usAuNP, which include in vitro cytotoxicity tests on different cell lines, electrophysiological tests following FDA guidelines as well as studies on antibacterial effects. Finally, the biodistribution and pharmacokinetics of ultrasmall AuNP are discussed and compared to the properties of more biocompatible, larger AuNP.


Gold nanoparticle Cytotoxicity Biodistribution Pharamcokinetics 


  1. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333. doi: 10.1007/s11051-010-9911-8 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci 101(35):12792–12797. doi: 10.1073/pnas.0403929101 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balasubramanian SK, Poh KW, Ong CN, Kreyling WG, Ong WY, Yu LE (2013) The effect of primary particle size on biodistribution of inhaled gold nano-agglomerates. Biomaterials 34:5439–5452. doi: 10.1016/j.biomaterials.2013.03.080 CrossRefPubMedGoogle Scholar
  4. Bezryadin A, Dekker C, Schmid G (1997) Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl Phys Lett 71(9):1273–1275. doi: 10.1063/1.119871 CrossRefGoogle Scholar
  5. Boda SK, Broda J, Schiefer F, Weber-Heynemann J, Hoss M, Simon U, Basu B, Jahnen-Dechent W (2015) Cytotoxicity of ultrasmall gold nanoparticles on planktonic and biofilm encapsulated Gram-positive Staphylococci. Small 11:3183–3193. doi: 10.1002/smll.201403014 CrossRefPubMedGoogle Scholar
  6. Bogart LK, Pourroy G, Murphy CJ, Puntes V, Pellegrino T, Rosenblum D, Peer D, Lévy R (2014) Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano 8(4):3107–3122. doi: 10.1021/nn500962q CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boyen HG, Kästle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz JP, Riethmüller S, Hartmann C, Möller M, Schmid G, Garnier MG, Oelhafen P (2002) Oxidation-resistant gold-55 clusters. Science 297(5586):1533–1536. doi: 10.1126/science.1076248 CrossRefPubMedGoogle Scholar
  8. Broda J, Schmid G, Simon U (2014) Size- and ligand-specific bioresponse of gold clusters and nanoparticles: challenges and perspectives. In: Mingos DMP (ed) Gold clusters, colloids and nanoparticles I. Springer International Publishing Switzerland, Switzerland, pp 189–241Google Scholar
  9. Broda J, Küster A, Westhues S, Fahrenkamp D, Vogg ATJ, Steitz J, Mottaghy FM, Müller-Newen G, Simon U (2016a) Assessing the intracellular integrity of phosphine-stabilized ultrasmall cytotoxic gold nanoparticles enabled by fluorescence labeling. Adv Healthc Mater 5:3118–3128. doi: 10.1002/adhm.201600892 CrossRefPubMedGoogle Scholar
  10. Broda J, Setzler J, Leifert A, Steitz J, Benz R, Simon U, Wenzel W (2016b) Ligand-lipid and ligand-core affinity control the interaction of gold nanoparticles with artificial lipid bilayers and cell membranes. Nanomedicine 12(5):1409–1419. doi: 10.1016/j.nano.2015.12.384 CrossRefPubMedGoogle Scholar
  11. Chi L, Hartig M, Drechsler T, Schwaack T, Seidel C, Fuchs H, Schmid G (1998) Single-electron tunneling in Au55 cluster monolayers. Appl Phys A 66(Suppl 1):S187–S190. doi: 10.1007/s003390051127 CrossRefGoogle Scholar
  12. Chowdhury MH, Aslan K, Malyn SN, lakowicz JR, Geddes CD (2006) Metal-enhanced chemiluminescence: radiating plasmons generated from chemically induced electronic excited states. Appl Phys Lett 88:173104. doi: 10.1063/1.2195776 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cluskey PD, Newport RJ, Benfield RE, Gurman SJ, Schmid G (1993) An EXAFS study of some gold and palladium cluster compounds. Z Phys D At Mol Clust 26(Suppl 1):8. doi: 10.1007/BF01425601 CrossRefGoogle Scholar
  14. Corain B, Schmid G, Toshima N (2008) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier Science, AmsterdamGoogle Scholar
  15. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34(3):181–190. doi: 10.1021/ar000110a CrossRefPubMedGoogle Scholar
  16. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi: 10.1021/cr030698+ CrossRefPubMedGoogle Scholar
  17. Demann ET, Stein PS, Haubenreich JE (2005) Gold as an implant in medicine and dentistry. J Long Term Eff Med Implants 15(6):687–698. doi: 10.1615/JLongTermEffMedImplants.v15.i6.100 CrossRefPubMedGoogle Scholar
  18. Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer SK, Stauber RH (2015) The nanoparticle biomolecule corona: lessons learned—challenge accepted? Chem Soc Rev 44:6094–6121. doi: 10.1039/c5cs00217f CrossRefPubMedGoogle Scholar
  19. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779. doi: 10.1039/C1CS15237H CrossRefPubMedGoogle Scholar
  20. EFSA Panel on Food Additives and Nutrient Sources added to Food (2016) Scientific Opinion on the re-evaluation of gold (E175) as a food additive. EFSA J 14(1):4362. doi: 10.2903/j.efsa.2016.436 CrossRefGoogle Scholar
  21. El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366. doi: 10.1146/annurev.physchem.54.011002.103759 CrossRefPubMedGoogle Scholar
  22. Esumi K, Tano T, Meguro K (1989) Preparation of organo palladium particles from thermal decomposition of its organic complex in organic solvents. Langmuir 5(1):268–270. doi: 10.1021/la00085a051 CrossRefGoogle Scholar
  23. Esumi K, Tano T, Torigoe K, Meguro K (1990) Preparation and characterization of bimetallic palladium–copper colloids by thermal decomposition of their acetate compounds in organic solvents. Chem Mater 2:564–567. doi: 10.1021/cm00011a019 CrossRefGoogle Scholar
  24. Esumi K, Zuzuki M, Tano T, Torigoe K, Meguro K (1991) Dispersion of uniformly sized palladium particles in organic solvents. Colloids Surf 55:9–14. doi: 10.1016/0166-6622(91)80078-3 CrossRefGoogle Scholar
  25. Esumi K, Sadakane O, Torigoe K, Meguro K (1992a) Preparation of platinum particles by thermal decomposition of platinum complex in organic solvent. Colloids Surf 62(3):255–257. doi: 10.1016/0166-6622(92)80008-P CrossRefGoogle Scholar
  26. Esumi K, Sato N, Torigoe K, Meguro K (1992b) Size control of gold particles using surfactants. J Colloid Interface Sci 149(1):295–298. doi: 10.1016/0021-9797(92)90417-K CrossRefGoogle Scholar
  27. FDA (2005) ICH S7B Guideline of FDA (Food and Drug Administration, Rockville, MD). Accessed 02 Sept 2013
  28. Fu X, Wang Y, Wu N, Gui L (2002) Shape-selective preparation and properties of oxalate-stabilized pt colloid. Langmuir 18(12):4619–4624. doi: 10.1021/la020087x CrossRefGoogle Scholar
  29. Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7:2. doi: 10.1186/1743-8977-7-2 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanparticle synthesis. Chem Soc Rev 37:1783–1791. doi: 10.1039/b711490g CrossRefPubMedGoogle Scholar
  31. Gutrath BS, Merkens C, Schiefer F, Englert U, Schmid G, Simon U (2013) Isolation, optical properties and core structure of a water-soluble, phosphine-stabilized [Au9]3+ cluster. Z Naturforsch 68b:569–574. doi: 10.5560/ZNB.2013-3075 Google Scholar
  32. Häkkinen H (2008) Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem Soc Rev 37:1847–1859. doi: 10.1039/b717686b CrossRefPubMedGoogle Scholar
  33. Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals? Nature 376(6537):238–240. doi: 10.1038/376238a0 CrossRefGoogle Scholar
  34. He W, Kivork C, Machinani S, Morphew MK, Gail AM, Tesar DB, Tiangco NE, McIntosh JR, Bjorkman PJ (2007) A freeze substitution fixation-based gold enlarging technique for EM studies of endocytosed nanogold-labeled molecules. J Struct Biol 160(1):103–113. doi: 10.1016/j.jsb.2007.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Henglein A (2000) Preparation and optical aborption spectra of AucorePtshell and PtcoreAushell colloidal nanoparticles in aqueous solution. J Phys Chem B 104:2201–2203. doi: 10.1021/jp994300i CrossRefGoogle Scholar
  36. Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schaffler M, Takenaka S, Moller W, Schmid G, Simon U, Kreyling WG (2011) Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 77:407–416. doi: 10.1016/j.ejpb.2010.12.029 CrossRefPubMedGoogle Scholar
  37. Homberger M, Simon U (2010) On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philos Trans R Soc A 368:1405–1453. doi: 10.1098/rsta.2009.0275 CrossRefGoogle Scholar
  38. Jia Y-P, Ma B-Y, Wie X-W, Qian Z-Y (2017) The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett. doi: 10.1016/j.cclet.2017.01.021 Google Scholar
  39. Ke X, Wang D, Chen C, Yang A, Han Y, Ren L, Li D, Wang H (2014) Co-enhancement of fluorescence and singlet oxygen generation by silica-coated gold nanorods core-shell nanoparticle. Nanoscale Res Lett 9:666. doi: 10.1186/1556-276X-9-666 CrossRefPubMedCentralGoogle Scholar
  40. Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671. doi: 10.1039/C0CS00018C CrossRefPubMedGoogle Scholar
  41. Kosmehl T, Otte JC, Yang L, Legradi J, Bluhm K, Zinsmeister C, Keiter SH, Reifferscheid G, Manze W, Braunbeck T, Strähle U, Hollert H (2012) A combined DNA-microarray and mechanism-specific toxicity approach with zebrafish embryos to investigate the pollution of river sediments. Reprod Toxicol 33:245–253. doi: 10.1016/j.reprotox.2012.01.005 CrossRefPubMedGoogle Scholar
  42. Kreyling WG, Semmler-Behnke M, Takenaka S, Moller W (2013) Differences in the biokinetics of inhaled nano-versus micrometer-sized particles. Acc Chem Res 46:714–722. doi: 10.1021/ar300043r CrossRefPubMedGoogle Scholar
  43. Kreyling WG, Hirn S, Möller W, Schleh C, Wenk A, Celik G, Lipka J, Schäffler M, Haberl N, Johnston BD, Sperling R, Schmid G, Simon U, Parak WJ, Semmler-Behnke M (2014) Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano 8:222–223. doi: 10.1021/nn403256v CrossRefPubMedGoogle Scholar
  44. Kreyling WG, Abdelmonem AM, Ali Z, Alves F, Geiser M, Haberl N, Hartmann R, Hirn S, de Aberasturi DJ, Kantner K, Khadem-Saba G, Montenegro JM, Rejman J, Rojo T, de Larramendi IR, Ufartes R, Wenk A, Parak WJ (2015) In vivo integrity of polymer-coated gold nanoparticles. Nat Nanotechnol 10:619–623. doi: 10.1038/nnano.2015.111 CrossRefPubMedGoogle Scholar
  45. Leifert A, Pan Y, Kinkeldey A, Schiefer F, Setzler J, Scheel O, Lichtenbeld H, Schmid G, Wenzel W, Jahnen-Dechent W, Simon U (2013a) Differential hERG ion channel activity of ultrasmall gold nanoparticles. Proc Natl Acad Sci 110(20):8004–8009. doi: 10.1073/pnas.1220143110 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Leifert A, Pan-Bartne Y, Simon U, Jahnen-Dechent W (2013b) Molecularly stabilised ultrasmall gold nanoparticles: synthesis, characterization and bioactivity. Nanoscale 5:6224–6242. doi: 10.1039/C3NR00916E CrossRefPubMedGoogle Scholar
  47. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49. doi: 10.1002/smll.200700595 CrossRefPubMedGoogle Scholar
  48. Li W, Chen X (2015) Gold nanoparticles for photoacoustic imaging. Nanomedicine 10(2):299–320. doi: 10.2217/nnm.14.169 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Li Y, Petroski J, El-Sayed MA (2000) Activation energy of the reaction between hexacyanoferrate(III) and thiosulfate ions catalyzed by platinum nanoparticles. J Phys Chem B 104:1095. doi: 10.1021/jp002569s CrossRefGoogle Scholar
  50. Liu Y, Meyer-Zaika W, Franzka S, Schmid G, Tsoli M, Kuhn H (2003) Gold-cluster degradation by the transition of B-DNA into A-DNA and the formation of nanowires. Angew Chem Int Ed 42:2853. doi: 10.1002/anie.200250235 CrossRefGoogle Scholar
  51. Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439. doi: 10.1039/b818082b CrossRefPubMedGoogle Scholar
  52. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445. doi: 10.1002/andp.19083300302 CrossRefGoogle Scholar
  53. Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, Wilson S, Vesey AT, Fokkens PHB, Boere AJF, Krystek P, Campbell CJ, Hadoke PWF, Donaldson K, Cassee FR, Newby DE, Duffin R, Mills NL (2017) Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano. doi: 10.1021/acsnano.6b08551 (Article ASAP) PubMedCentralGoogle Scholar
  54. Monopoli MP, Pitek AS, Lynch I, Dawson KA (2013) Formation and characterization of the nanoparticle-protein corona. Methods Mol Biol 1025:137–155. doi: 10.1007/978-1-62703-462-3_11 CrossRefPubMedGoogle Scholar
  55. Narayanan R, El-Sayed MA (2004) Effect of nanocatalysis in colloidal solution on the tetrahedral and cubic nanoparticle shape: electron-transfer reaction catalyzed by platinum nanoparticles. J Phys Chem B 108(18):5726–5733. doi: 10.1021/jp0493780 CrossRefGoogle Scholar
  56. Ohde H, Wai CM, Kim H, Kim J, Ohde M (2002) Hydrogenation of olefins in supercritical CO2 catalyzed by palladium nanoparticles in a water-in-CO2 microemulsion. J Am Chem Soc 124(17):4540–4541. doi: 10.1021/ja012232j CrossRefPubMedGoogle Scholar
  57. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949. doi: 10.1002/smll.200700378 CrossRefPubMedGoogle Scholar
  58. Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076. doi: 10.1002/smll.200900466 CrossRefPubMedGoogle Scholar
  59. Pan Y, Leifert A, Graf M, Schiefer F, Thoröe-Boveleth S, Broda J, Halloran MC, Hollert H, Laaf D, Simon U, Jahnen-Dechent W (2013) High-sensitivity real-time analysis of nanoparticle toxicity in green fluorescent protein-expressing Zebrafish. Small 9:863–869. doi: 10.1002/smll.201201173 CrossRefPubMedGoogle Scholar
  60. Powell JJ, Faria N, Thomas-Mckay E, Pele LC (2010) Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 34:J226–J233. doi: 10.1016/j.jaut.2009.11.006 CrossRefPubMedGoogle Scholar
  61. Reimers JR, Ford MJ, Marcuccio SM, Ulstrup J, Hush NS (2017) Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles. Nat Rev Chem 1:0017. doi: 10.1038/s41570-017-0017 CrossRefGoogle Scholar
  62. Rivera-Gil P, De Aberasturi DJ, Wulf V, Pelaz B, Del Pino P, Zhao Y, De La Fuente JM, De Larramend IR, Rojo T, Liang X-J, Parak WJ (2013) The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res 46(3):743749. doi: 10.1021/ar300039j CrossRefGoogle Scholar
  63. Rizzo LY, Golombek SK, Mertens ME, Pan Y, Laaf D, Broda J, Jayapaul J, Möckel D, Subr V, Hennink WE, Storm G, Simon U, Jahnen-Dechent W, Kiessling F, Lammers T (2013) In vivo nanotoxicity testing using the zebrafish embryo assay. J Mater Chem B Mater Biol Med 10(1):3918–3925. doi: 10.1039/C3TB20528B CrossRefGoogle Scholar
  64. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312(5776):1027–1030. doi: 10.1126/science.1125559 CrossRefPubMedGoogle Scholar
  65. Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, Hussain SM (2011) Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3(2):410–420. doi: 10.1039/c0nr00478b CrossRefPubMedGoogle Scholar
  66. Schäffler M, Sousa F, Wenk A, Sitia L, Hirn S, Schleh C, Haberl N, Violatto M, Canovi M, Andreozzi P, Salmona M, Bigini P, Kreyling WG, Krol S (2014) Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials 35(10):3455–3466. doi: 10.1016/j.biomaterials.2013.12.100 CrossRefPubMedGoogle Scholar
  67. Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schaffler M, Schmid G, Simon U, Kreyling WG (2012) Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6(1):36–46. doi: 10.3109/17435390.2011.552811 CrossRefPubMedGoogle Scholar
  68. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727. doi: 10.1021/cr00016a002 CrossRefGoogle Scholar
  69. Schmid G (1994) Clusters and colloids. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  70. Schmid G (2004) Nanoparticles. Wiley-VCH, WeinheimGoogle Scholar
  71. Schmid G (2008) The relevance of shape and size of Au55 clusters. Chem Soc Rev 37:1909–1930. doi: 10.1039/B713631P CrossRefPubMedGoogle Scholar
  72. Schmid G, Bäumle M, Beyer N (2000) Ordered two-dimensional monolayers of Au55 clusters. Angew Chem Int Ed Engl 39(1):181–183CrossRefPubMedGoogle Scholar
  73. Schmid G, Corain B (2003) Nanoparticulated gold: syntheses, structures, electronics, and reactivities. Eur J Inorg Chem 2003:3081–3098. doi: 10.1002/ejic.200300187 CrossRefGoogle Scholar
  74. Schmid G, Simon U (2005) Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem Commun 6:697–710. doi: 10.1039/B411696H CrossRefGoogle Scholar
  75. Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis Gijs HM, van der Velden JWA (1981) Au55[P(C6H5)3]12CI6—ein Goldcluster ungewöhnlicher Größe. Chem Ber 114:3634–3642. doi: 10.1002/cber.19811141116 CrossRefGoogle Scholar
  76. Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ Sci Pollut Res Int 15(5):394–404. doi: 10.1007/s11356-008-0018-z CrossRefPubMedGoogle Scholar
  77. Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4:2108–2111. doi: 10.1002/smll.200800922 CrossRefPubMedGoogle Scholar
  78. Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schaffler M, Tian F, Schmid G, Oberdorster G, Kreyling W (2014) Size dependent translocation and fetal accumulation of gold nanoparticles from maternal blood in the rat. Part Fibre Toxicol 11:33. doi: 10.1186/s12989-014-0033-9 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Shaw CF III (1999) Gold-based therapeutic agents. Chem Rev 99(9):2589–2600. doi: 10.1021/cr980431o CrossRefGoogle Scholar
  80. Smith BA, Zhang JZ, Giebel U, Schmid G (1997) Direct probe of size-dependent electronic relaxation in single-sized Au and nearly monodisperse Pt colloidal nano-particles. Chem Phys Lett 270(1–2):139. doi: 10.1016/S0009-2614(97)00339-4 CrossRefGoogle Scholar
  81. Soenen SJ, Manshian B, Montenegro JM, Amin F, Meermann B, Thiron T, Cornelissen M, Vanhaecke F, Doak S, Parak WJ, De Smedt S, Braeckmans K (2012) Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano 6(7):5767–5783. doi: 10.1021/nn301714n CrossRefPubMedGoogle Scholar
  82. Sousa F, Mandal S, Garrovo C, Astolfo A, Bonifacio A, Latawiec D, Menk RH, Arfelli F, Huewel S, Legname G, Galla HJ, Krol S (2010) Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale 2(12):2826–2834. doi: 10.1039/c0nr00345j CrossRefPubMedGoogle Scholar
  83. Sousa AA, Morgan JT, Brown PH, Adams A, Jayasekara MPS, Zhang G, Ackerson CJ, Kruhlak MJ, Leapman RD (2012) Synthesis, characterization, and direct intracellular imaging of ultrasmall and uniform glutathione-coated gold nanoparticles. Small 8:2277–2286. doi: 10.1002/smll.201200071 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Stone V, Miller MR, Clift MJ, Elder A, Mills NL, Møller P, Schins RP, Vogel U, Kreyling WG, Jensen KA, Kuhlbusch TA, Schwarze PE, Hoet P, Pietroiusti A, De Vizcaya-Ruiz A, Baeza-Squiban A, Tran CL, Cassee FR (2016) Nanomaterials vs ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ Health Perspect. doi: 10.1289/EHP424 PubMedGoogle Scholar
  85. Tano T, Esumi K, Meguro K (1989) Preparation of organopalladium sols by thermal decomposition of palladium acetate. J Colloid Interface Sci 133:530–533. doi: 10.1016/S0021-9797(89)80069-4 CrossRefGoogle Scholar
  86. Tsoli M, Kuhn H, Brandau W, Esche H, Schmid G (2005) Cellular uptake and toxicity of Au55 clusters. Small. doi: 10.1002/smll.200500104 PubMedGoogle Scholar
  87. Turner M, Golovko VB, Vaughan OP, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BF, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981–983. doi: 10.1038/nature07194 CrossRefPubMedGoogle Scholar
  88. Tyo EC, Vajda S (2015) Catalysis by clusters with precise numbers of atoms. Nat Nanotechnol 10:577–588. doi: 10.1038/nnano.2015.140 CrossRefPubMedGoogle Scholar
  89. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6:12–21. doi: 10.1002/smll.200901158 CrossRefPubMedGoogle Scholar
  90. Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 8:935–939. doi: 10.1038/nmat2564 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA (2016) Ultrasmall inorganic nanoparticles: state-of-the-art and perspectives for biomedical applications. Nanomedicine 12:1663–1701. doi: 10.1016/j.nano.2016.02.019 CrossRefPubMedGoogle Scholar
  92. Zhang H, Schmid G, Hartmann U (2003) Reduced metallic properties of ligand-stabilized small metal clusters. Nano Lett 33(3):305–307. doi: 10.1021/nl0258980 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Günter Schmid
    • 1
    Email author
  • Wolfgang G. Kreyling
    • 2
  • Ulrich Simon
    • 3
  1. 1.Institute of Inorganic ChemistryUniversity Duisburg-EssenEssenGermany
  2. 2.Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology 2MunichGermany
  3. 3.Institute of Inorganic ChemistryRWTH Aachen UniversityAachenGermany

Personalised recommendations