Advertisement

Archives of Toxicology

, Volume 91, Issue 12, pp 3897–3912 | Cite as

Experimental and computational insights on the recognition mechanism between the estrogen receptor α with bisphenol compounds

  • Huiming Cao
  • Fengbang Wang
  • Yong Liang
  • Hailin Wang
  • Aiqian ZhangEmail author
  • Maoyong SongEmail author
Molecular Toxicology

Abstract

Certain bisphenols (BPs) have been regarded as endocrine-disrupting chemicals due to their structural similarities to bisphenol A (BPA), a well-known weak estrogenic chemical. However, very limited data are currently available on the relationship between estrogenic activity and the structure of BP analogs. Therefore, we systematically investigated the estrogenic potency of 14 selected BP analogs with typical structures using experimental and computational methods. Most of the tested BP analogs exhibited weak estrogenic activities in both cell proliferation and MVLN assays with the exception of TBBPA, TCBPA and TBBPS. Molecular modeling techniques have been performed to investigate the dynamic structural characteristics of recognition processes between BPs and estrogen receptor α (ERα) at the atomic level. Thr347 was identified as the key residue responsible for the recognition of TBBPA, TCBPA and TBBPS by means of induced-fit H-bonding interactions in the binding pocket of ERα, whereas other BPs, in turn, rely on the alternative formation of H-bonds with His524. Subsequent allosteric modulation interferes significantly with the stability of helix 12 that is crucial for the transcriptional activity of ERα. These structural perturbations that are induced by the three compounds were further confirmed to reduce the recruitment potency of co-activators more than other BPs based on calculations of binding free energies, which is in line with observed experimental transcriptional activities. Our findings may help to elucidate the estrogenic potency of BPs with different molecular structures.

Keywords

Estrogen receptor α Bisphenols Estrogenic activity Molecular dynamics simulations 

Notes

Acknowledgements

This work was jointly supported in part by Chinese Academy of Sciences (XDB14030500, YSW2013B01), the National Natural Science Foundation (21177146), the National High Technology Research and Development Program (863) of China (2013AA065201), and the State Key Laboratory of Microbial Technology Open Projects Fund (M2015-07).

Compliance with ethical standards

Conflict of interest

The authors’ declares that they have no conflict of interest.

Supplementary material

204_2017_2011_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2018 kb)

References

  1. Aarts JM, Wang S, Houtman R et al (2013) Robust array-based coregulator binding assay predicting ERα-Agonist potency and generating binding profiles reflecting ligand structure. Chem Res Toxicol 26(3):336–346CrossRefPubMedGoogle Scholar
  2. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucl Acid Res 40(W1):W537–W541CrossRefGoogle Scholar
  3. Ando S, De Amicis F, Rago V et al (2002) Breast cancer: from estrogen to androgen receptor. Mol Cell Endocrinol 193(1):121–128CrossRefPubMedGoogle Scholar
  4. Andrianou XD, Gängler S, Piciu A, Charisiadis P, Zira C, Aristidou K, Piciu D, Hauser R, Makris KC (2016) Human exposures to bisphenol A, bisphenol F and chlorinated bisphenol a derivatives and thyroid function. PLoS One 11(10):e0155237CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berendsen HJ, Postma JPM, van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690CrossRefGoogle Scholar
  6. Bourgoin-Voillard S, Gallo D, Laïos I et al (2010) Capacity of type I and II ligands to confer to estrogen receptor alpha an appropriate conformation for the recruitment of coactivators containing a LxxLL motif—relationship with the regulation of receptor level and ERE-dependent transcription in MCF-7 cells. Biochem Pharmacol 79(5):746–757CrossRefPubMedGoogle Scholar
  7. Bramlett KS, Burris TP (2002) Effects of selective estrogen receptor modulators (SERMs) on coactivator nuclear receptor (NR) box binding to estrogen receptors. Mol Genet Metab 76(3):225–233CrossRefPubMedGoogle Scholar
  8. Bruning JB, Parent AA, Gil G et al (2010) Coupling of receptor conformation and ligand orientation determine graded activity. Nat Chem Biol 6(11):837–843CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brzozowski AM, Pike AC, Dauter Z et al (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389(6652):753–758CrossRefPubMedGoogle Scholar
  10. Cao H, Sun Y, Wang L, Zhao C, Fu J, Zhang A (2017) Understanding microscopic binding mechanism of hydroxylated and sulfated polybrominated diphenyl ethers with transthyretin by molecular docking, molecular dynamics simulations and binding free energy calculations. Mol Biosyst 13:736–749CrossRefPubMedGoogle Scholar
  11. Carraz M, Zwart W, Phan T, Michalides R, Brunsveld L (2009) Perturbation of estrogen receptor α localization with synthetic nona-arginine LXXLL-peptide coactivator binding inhibitors. Chem Biol 16(7):702–711CrossRefPubMedGoogle Scholar
  12. Chang C, Norris JD, Grøn H et al (1999) Dissection of the LXXLL nuclear receptor-coactivator interaction motif using combinatorial peptide libraries: discovery of peptide antagonists of estrogen receptors α and β. Mol Cell Biol 19(12):8226–8239CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chen MY, Ike M, Fujita M (2002) Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ Toxicol 17(1):80–86CrossRefPubMedGoogle Scholar
  14. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092CrossRefGoogle Scholar
  15. Delfosse V, Grimaldi M, Pons JL et al (2012) Structural and mechanistic insights into bisphenols action provide guidelines for risk assessment and discovery of bisphenol A substitutes. Proc Natl Acad Sci USA 109(37):14930–14935CrossRefPubMedPubMedCentralGoogle Scholar
  16. Delfosse V, Grimaldi M, Cavailles V, Balaguer P, Bourguet W (2014) Structural and functional profiling of environmental ligands for estrogen receptors. Environ Health Perspect 122(12):1306PubMedPubMedCentralGoogle Scholar
  17. Desaulniers D, Leingartner K, Zacharewski T, Foster W (1998) Optimization of an MCF7-E3 cell proliferation assay and effects of environmental pollutants and industrial chemicals. Toxicol In Vitro 12(4):409–422CrossRefPubMedGoogle Scholar
  18. Dickson RB, Lippman ME (1995) Growth factors in breast cancer. Endocr Rev 16(5):559–589CrossRefPubMedGoogle Scholar
  19. Diel IJ, Solomayer EF, Seibel MJ et al (1999) Serum bone sialoprotein in patients with primary breast cancer is a prognostic marker for subsequent bone metastasis. Clin Cancer Res 5(12):3914–3919PubMedGoogle Scholar
  20. Fox T, Kollman PA (1998) Application of the RESP methodology in the parametrization of organic solvents. J Phys Chem B 102(41):8070–8079CrossRefGoogle Scholar
  21. Han C, Fang S, Cao H, Lu Y, Ma Y, Wei D, Xie X, Liu X, Fei D, Zhao C (2013) Molecular interaction of PCB153 to human serum albumin: insights from spectroscopic and molecular modeling studies. J Hazard Mater 248:313–321CrossRefPubMedGoogle Scholar
  22. Hanson RN, Hua E, Adam Hendricks J, Labaree D, Hochberg RB (2012) Synthesis and evaluation of 11β-(4-substituted phenyl) estradiol analogs: transition from estrogen receptor agonists to antagonists. Biorg Med Chem 20(12):3768–3780CrossRefGoogle Scholar
  23. Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387(6634):733–736CrossRefPubMedGoogle Scholar
  24. Henley DV, Korach KS (2006) Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function. Endocrinology 147(6):s25–s32CrossRefPubMedGoogle Scholar
  25. Hou T, Wang J, Li Y, Wang W (2011a) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51(1):69–82CrossRefPubMedGoogle Scholar
  26. Hou T, Wang J, Li Y, Wang W (2011b) Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem 32(5):866–877CrossRefPubMedGoogle Scholar
  27. Jakobsson K, Thuresson K, Rylander L, Sjödin A, Hagmar L, Bergman Å (2002) Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians. Chemosphere 46(5):709–716CrossRefPubMedGoogle Scholar
  28. Jeyakumar M, Carlson KE, Gunther JR, Katzenellenbogen JA (2011) Exploration of dimensions of estrogen potency parsing ligand binding and coactivator binding affinities. J Biol Chem 286(15):12971–12982CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRefGoogle Scholar
  30. Kitamura S, Suzuki T, Sanoh S et al (2005) Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol Sci 84(2):249–259CrossRefPubMedGoogle Scholar
  31. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482(7386):552–556CrossRefPubMedPubMedCentralGoogle Scholar
  32. Li Y, Burns KA, Arao Y, Luh CJ, Korach KS (2012) Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor α and β in vitro. Environ Health Perspect 120(7):1029–1035CrossRefPubMedPubMedCentralGoogle Scholar
  33. Li Y, Luh CJ, Burns KA et al (2013) Endocrine-disrupting chemicals (EDCs). In vitro mechanism of estrogenic activation and differential effects on ER target genes. Environ Health Perspect 121(4):459–466PubMedPubMedCentralGoogle Scholar
  34. Liu H, An X, Li S, Wang Y, Li J, Liu H (2015) Interaction mechanism exploration of R-bicalutamide/S-1 with WT/W741L AR using molecular dynamics simulations. Mol Biosyst 11(12):3347–3354CrossRefPubMedGoogle Scholar
  35. Liu J, Li J, Wu Y, Zhao Y, Luo F, Li S, Yang L, Moez EK, Dinu I, Martin JW (2017) Bisphenol A metabolites and bisphenol S in paired maternal and cord serum. Environ Sci Technol 51(4):2456–2463CrossRefPubMedGoogle Scholar
  36. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713CrossRefPubMedPubMedCentralGoogle Scholar
  37. Margeat E, Poujol N, Boulahtouf A et al (2001) The human estrogen receptor α dimer binds a single SRC-1 coactivator molecule with an affinity dictated by agonist structure. J Mol Biol 306(3):433–442CrossRefPubMedGoogle Scholar
  38. Metskas LA, Rhoades E (2015) Conformation and dynamics of the troponin I C-terminal domain: combining single-molecule and computational approaches for a disordered protein region. J Am Chem Soc 137(37):11962–11969CrossRefPubMedPubMedCentralGoogle Scholar
  39. Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321CrossRefPubMedGoogle Scholar
  40. Molina-Molina JM, Amaya E, Grimaldi M et al (2013) In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol Appl Pharmacol 272(1):127–136CrossRefPubMedGoogle Scholar
  41. Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A (2007) Generalized Born model with a simple, robust molecular volume correction. J Chem Theory Comput 3(1):156–169CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ng HW, Shu M, Luo H et al (2015) Estrogenic activity data extraction and in silico prediction show the endocrine disruption potential of bisphenol a replacement compounds. Chem Res Toxicol 28(9):1784–1795CrossRefPubMedGoogle Scholar
  43. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct Funct Bioinf 55(2):383–394CrossRefGoogle Scholar
  44. Osborne CK, Clemmons DR, Arteaga CL (1990) Regulation of breast cancer growth by insulin-like growth factors. J Steroid Biochem Mol Biol 37(6):805–809CrossRefPubMedGoogle Scholar
  45. Pike AC, Brzozowski AM, Walton J et al (2001) Structural insights into the mode of action of a pure antiestrogen. Structure 9(2):145–153CrossRefPubMedGoogle Scholar
  46. Ren XM, Zhang YF, Guo LH, Qin ZF, Lv QY, Zhang LY (2015) Structure–activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor. Arch Toxicol 89(2):233–242CrossRefPubMedGoogle Scholar
  47. Riu A, Grimaldi M, le Maire A et al (2011) Peroxisome proliferator-activated receptor γ is a target for halogenated analogs of bisphenol A. Environ Health Perspect 119(9):1227–1232CrossRefPubMedPubMedCentralGoogle Scholar
  48. Robinson DR, Wu YM, Vats P et al (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet 45(12):1446–1451CrossRefPubMedPubMedCentralGoogle Scholar
  49. Roe DR, Cheatham TE III (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095CrossRefPubMedGoogle Scholar
  50. Rosenmai AK, Dybdahl M, Pedersen M et al (2014) Are structural analogues to bisphenol A safe alternatives? Toxicol Sci 139(1):35–47CrossRefPubMedGoogle Scholar
  51. Ruan T, Liang D, Song S, Song M, Wang H, Jiang G (2015) Evaluation of the in vitro estrogenicity of emerging bisphenol analogs and their respective estrogenic contributions in municipal sewage sludge in China. Chemosphere 124:150–155CrossRefPubMedGoogle Scholar
  52. Ryckaert JP, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341CrossRefGoogle Scholar
  53. Salomon-Ferrer R, Götz AW, Poole D, Le GS, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9(9):3878–3888CrossRefPubMedGoogle Scholar
  54. Sheng N, Li J, Liu H, Zhang A, Dai J (2016) Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein. Arch Toxicol 90(1):217–227CrossRefPubMedGoogle Scholar
  55. Shiau AK, Barstad D, Loria PM et al (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95(7):927–937CrossRefPubMedGoogle Scholar
  56. Sindhikara DJ, Kim S, Voter AF, Roitberg AE (2009) Bad seeds sprout perilous dynamics: stochastic thermostat induced trajectory synchronization in biomolecules. J Chem Theory Comput 5(6):1624–1631CrossRefPubMedGoogle Scholar
  57. Singh T, Adekoya OA, Jayaram B (2015) Understanding the binding of inhibitors of matrix metalloproteinases by molecular docking, quantum mechanical calculations, molecular dynamics simulations, and a MMGBSA/MMBappl study. Mol BioSyst 11(4):1041–1051CrossRefPubMedGoogle Scholar
  58. Song M, Xu Y, Jiang Q et al (2006) Measurement of estrogenic activity in sediments from Haihe and Dagu River, China. Environ Int 32(5):676–681CrossRefPubMedGoogle Scholar
  59. Song M, Liang D, Liang Y et al (2014) Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio). Chemosphere 112:275–281CrossRefPubMedGoogle Scholar
  60. Teng C, Goodwin B, Shockley K et al (2013) Bisphenol A affects androgen receptor function via multiple mechanisms. Chem Biol Interact 203(3):556–564CrossRefPubMedPubMedCentralGoogle Scholar
  61. van der Burg B, Rutteman GR, Blankenstein MA, de Laat SW, van Zoelen EJ (1988) Mitogenic stimulation of human breast cancer cells in a growth factor-defined medium: synergistic action of insulin and estrogen. J Cell Physiol 134(1):101–108CrossRefPubMedGoogle Scholar
  62. Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM (2007) Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters development of the fetal mouse mammary gland. Endocrinology 148(1):116–127CrossRefPubMedGoogle Scholar
  63. Vom Saal FS, Akingbemi BT, Belcher SM et al (2007) Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol 24(2):131–138CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174CrossRefPubMedGoogle Scholar
  65. Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18(18):12964–12975CrossRefPubMedGoogle Scholar
  66. Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20(2):217–230CrossRefGoogle Scholar
  67. Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD (2011) Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect 119(7):989–996CrossRefPubMedPubMedCentralGoogle Scholar
  68. Yang Y, Lv QY, Guo LH, Wan B, Ren XM, Shi YL, Cai YQ (2017) Identification of protein tyrosine phosphatase SHP-2 as a new target of perfluoroalkyl acids in HepG2 cells. Arch Toxicol 91:1697–1707CrossRefPubMedGoogle Scholar
  69. Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J, Ahn J, Gronenborn AM, Schulten K, Aiken C, Zhang P (2013) Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497(7451):643–646CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental SciencesChinese Academy of ScienceBeijingPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Institute of Environment and HealthJianghan UniversityWuhanPeople’s Republic of China

Personalised recommendations