Archives of Toxicology

, Volume 91, Issue 7, pp 2655–2661 | Cite as

Genetic heterogeneity among slow acetylator N-acetyltransferase 2 phenotypes in cryopreserved human hepatocytes

  • Mark A. Doll
  • David W. HeinEmail author


Genetic polymorphisms in human N-acetyltransferase 2 (NAT2) modify the metabolism of numerous drugs and carcinogens. These genetic polymorphisms modify both drug efficacy and toxicity and cancer risk associated with carcinogen exposure. Previous studies have suggested phenotypic heterogeneity among different NAT2 slow acetylator genotypes. NAT2 phenotype was investigated in vitro and in situ in samples of human hepatocytes obtained from various NAT2 slow and intermediate NAT2 acetylator genotypes. NAT2 gene dose response (NAT2*5B/*5B > NAT2*5B/*6A > NAT2*6A/*6A) was observed towards the N-acetylation of the NAT2-specific drug sulfamethazine by human hepatocytes both in vitro and in situ. N-acetylation of 4-aminobiphenyl, an arylamine carcinogen substrate for both N-acetyltransferase 1 and NAT2, showed the same trend both in vitro and in situ although the differences were not significant (p > 0.05). The N-acetylation of the N-acetyltransferase 1-specific substrate p-aminobenzoic acid did not follow this trend. In comparisons of NAT2 intermediate acetylator genotypes, differences in N-acetylation between NAT2*4/*5B and NAT2*4/*6B hepatocytes were not observed in vitro or in situ towards any of these substrates. These results further support phenotypic heterogeneity among NAT2 slow acetylator genotypes, consistent with differential risks of drug failure or toxicity and cancer associated with carcinogen exposure.


N-acetyltransferase 2 Slow acetylator genotype Human hepatocytes Sulfamethazine 4-Aminobiphenyl 



We thank Timothy Moeller and Bioreclamation IVT (Baltimore, MD) for their valuable contributions towards this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.


  1. Ambrosone CB, Kropp S, Yang J, Yao S, Shields PG, Chang-Claude J (2008) Cigarette smoking, N-acetyltransferase 2 genotypes, and breast cancer risk: pooled analysis and meta-analysis. Cancer Epidemiol Biomark Prev 17(1):15–26CrossRefGoogle Scholar
  2. Baumgartner KB, Schlierf TJ, Yang D, Doll MA, Hein DW (2009) N-acetyltransferase 2 genotype modification of active cigarette smoking on breast cancer risk among hispanic and non-hispanic white women. Toxicol Sci 112(1):211–220CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bolt HM, Selinski S, Dannappel D, Blaszkewicz M, Golka K (2005) Re-investigation of the concordance of human NAT2 phenotypes and genotypes. Arch Toxicol 79(4):196–200CrossRefPubMedGoogle Scholar
  4. Cascorbi I, Drakoulis N, Brockmoller J, Maurer A, Sperling K, Roots I (1995) Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. Am J Hum Genet 57(3):581–592PubMedPubMedCentralGoogle Scholar
  5. Conlon MS, Johnson KC, Bewick MA, Lafrenie RM, Donner A (2010) Smoking (active and passive), N-acetyltransferase 2, and risk of breast cancer. Cancer Epidemiol 34(2):142–149CrossRefPubMedGoogle Scholar
  6. Deitz AC, Zheng W, Leff MA et al (2000) N-Acetyltransferase-2 genetic polymorphism, well-done meat intake, and breast cancer risk among postmenopausal women. Cancer Epidemiol Biomark Prev 9(9):905–910Google Scholar
  7. Doll MA, Hein DW (2001) Comprehensive human NAT2 genotype method using single nucleotide polymorphism-specific polymerase chain reaction primers and fluorogenic probes. Anal Biochem 288(1):106–108CrossRefPubMedGoogle Scholar
  8. Doll MA, Zang Y, Moeller T, Hein DW (2010) Codominant expression of N-acetylation and O-acetylation activities catalyzed by N-acetyltransferase 2 in human hepatocytes. J Pharmacol Exp Ther 334(2):540–544CrossRefPubMedPubMedCentralGoogle Scholar
  9. Garcia-Closas M, Malats N, Silverman D et al (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366(9486):649–659CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hein DW (1988) Acetylator genotype and arylamine-induced carcinogenesis. Biochim Biophys Acta 948(1):37–66PubMedGoogle Scholar
  11. Hein DW (2002) Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res 506–507:65–77CrossRefPubMedGoogle Scholar
  12. Hein DW (2009) N-acetyltransferase SNPs: emerging concepts serve as a paradigm for understanding complexities of personalized medicine. Expert Opin Drug Metab Toxicol 5(4):353–366CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hein DW (2017) N-acetyltransferase 2 polymorphism and human urinary bladder and breast cancer risk. In: Sim E, Laurieri N (eds) Arylamine N-acetyltransferases in health and disease. World Scientific Publishing, Singapore (in press) Google Scholar
  14. Hein DW, Doll MA (2012) Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes. Pharmacogenomics 13(1):31–41CrossRefPubMedGoogle Scholar
  15. Hein DW, Doll MA, Rustan TD et al (1993) Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases. Carcinogenesis 14(8):1633–1638CrossRefPubMedGoogle Scholar
  16. Hein DW, Ferguson RJ, Doll MA, Rustan TD, Gray K (1994a) Molecular genetics of human polymorphic N-acetyltransferase: enzymatic analysis of 15 recombinant wild-type, mutant, and chimeric NAT2 allozymes. Hum Mol Genet 3(5):729–734CrossRefPubMedGoogle Scholar
  17. Hein DW, Rustan TD, Ferguson RJ, Doll MA, Gray K (1994b) Metabolic activation of aromatic and heterocyclic N-hydroxyarylamines by wild-type and mutant recombinant human NAT1 and NAT2 acetyltransferases. Arch Toxicol 68(2):129–133CrossRefPubMedGoogle Scholar
  18. Hein DW, Doll MA, Rustan TD, Ferguson RJ (1995) Metabolic activation of N-hydroxyarylamines and N-hydroxyarylamides by 16 recombinant human NAT2 allozymes: effects of 7 specific NAT2 nucleic acid substitutions. Cancer Res 55(16):3531–3536PubMedGoogle Scholar
  19. Hein DW, Doll MA, Nerland DE, Fretland AJ (2006) Tissue distribution of N-acetyltransferase 1 and 2 catalyzing the N-acetylation of 4-aminobiphenyl and O-acetylation of N-hydroxy-4-aminobiphenyl in the congenic rapid and slow acetylator Syrian hamster. Mol Carcinog 45(4):230–238CrossRefPubMedGoogle Scholar
  20. Hickman D, Palamanda JR, Unadkat JD, Sim E (1995) Enzyme kinetic properties of human recombinant arylamine N-acetyltransferase 2 allotypic variants expressed in Escherichia coli. Biochem Pharmacol 50(5):697–703CrossRefPubMedGoogle Scholar
  21. McDonagh EM, Boukouvala S, Aklillu E, Hein DW, Altman RB, Klein TE (2014) PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genom 24(8):409–425Google Scholar
  22. Meisel P, Arndt D, Scheuch E, Klebingat KJ, Siegmund W (2001) Prediction of metabolic activity from genotype: the gene-dose effect of N-acetyltransferase. Ther Drug Monit 23(1):9–14CrossRefPubMedGoogle Scholar
  23. Moore LE, Baris DR, Figueroa JD et al (2011) GSTM1 null and NAT2 slow acetylation genotypes, smoking intensity and bladder cancer risk: results from the New England bladder cancer study and NAT2 meta-analysis. Carcinogenesis 32(2):182–189CrossRefPubMedGoogle Scholar
  24. Moslehi R, Chatterjee N, Church TR et al (2006) Cigarette smoking, N-acetyltransferase genes and the risk of advanced colorectal adenoma. Pharmacogenomics 7(6):819–829CrossRefPubMedGoogle Scholar
  25. Rothman N, Hayes RB, Bi W et al (1993) Correlation between N-acetyltransferase activity and NAT2 genotype in Chinese males. Pharmacogenetics 3(5):250–255CrossRefPubMedGoogle Scholar
  26. Ruiz JD, Martinez C, Anderson K et al (2012) The differential effect of NAT2 variant alleles permits refinement in phenotype inference and identifies a very slow acetylation genotype. PLoS One 7(9):e44629CrossRefPubMedPubMedCentralGoogle Scholar
  27. Selinski S, Blaszkewicz M, Ickstadt K, Hengstler JG, Golka K (2013) Refinement of the prediction of N-acetyltransferase 2 (NAT2) phenotypes with respect to enzyme activity and urinary bladder cancer risk. Arch Toxicol 87(12):2129–2139CrossRefPubMedGoogle Scholar
  28. Selinski S, Blaszkewicz M, Getzmann S, Golka K (2015a) N-Acetyltransferase 2: ultra-slow acetylators enter the stage. Arch Toxicol 89(12):2445–2447CrossRefPubMedGoogle Scholar
  29. Selinski S, Getzmann S, Gajewski PD et al (2015b) The ultra-slow NAT2*6A haplotype is associated with reduced higher cognitive functions in an elderly study group. Arch Toxicol 89(12):2291–2303CrossRefPubMedGoogle Scholar
  30. Shin A, Shrubsole MJ, Rice JM et al (2008) Meat intake, heterocyclic amine exposure, and metabolizing enzyme polymorphisms in relation to colorectal polyp risk. Cancer Epidemiol Biomark Prev 17(2):320–329CrossRefGoogle Scholar
  31. Smith CA, Wadelius M, Gough AC, Harrison DJ, Wolf CR, Rane A (1997) A simplified assay for the arylamine N-acetyltransferase 2 polymorphism validated by phenotyping with isoniazid. J Med Genet 34(9):758–760CrossRefPubMedPubMedCentralGoogle Scholar
  32. van der Hel OL, Peeters PHM, Hein DW et al (2003) NAT2 slow acetylation and GSTM1 null genotypes may increase postmenopausal breast cancer risk in long-term smoking women. Pharmacogenetics 13(7):399–407CrossRefPubMedGoogle Scholar
  33. Wang T, Darwin KH, Li H (2010) Binding-induced folding of prokaryotic ubiquitin-like protein on the mycobacterium proteasomal ATPase targets substrates for degradation. Nat Struct Mol Biol 17(11):1352–1357CrossRefPubMedPubMedCentralGoogle Scholar
  34. Weber WW, Hein DW (1985) N-acetylation pharmacogenetics. Pharmacol Rev 37(1):25–79PubMedGoogle Scholar
  35. Zabost A, Brzezinska S, Kozinska M et al (2013) Correlation of N-acetyltransferase 2 genotype with isoniazid acetylation in Polish tuberculosis patients. Biomed Res Int 2013:853602. doi: 10.1155/2013/853602 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zang Y, Zhao S, Doll MA, States JC, Hein DW (2004) The T341C (Ile114Thr) polymorphism of N-acetyltransferase 2 yields slow acetylator phenotype by enhanced protein degradation. Pharmacogenetics 14(11):717–723CrossRefPubMedGoogle Scholar
  37. Zang Y, Doll MA, Zhao S, States JC, Hein DW (2007) Functional characterization of single-nucleotide polymorphisms and haplotypes of human N-acetyltransferase 2. Carcinogenesis 28(8):1665–1671CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology and James Graham Brown Cancer CenterUniversity of Louisville Health Sciences Center, Kosair Charities CTRLouisvilleUSA

Personalised recommendations