Archives of Toxicology

, Volume 91, Issue 7, pp 2539–2549 | Cite as

Precision toxicology based on single cell sequencing: an evolving trend in toxicological evaluations and mechanism exploration

  • Boyang Zhang
  • Kunlun Huang
  • Liye Zhu
  • Yunbo Luo
  • Wentao XuEmail author
Review Article


In this review, we introduce a new concept, precision toxicology: the mode of action of chemical- or drug-induced toxicity can be sensitively and specifically investigated by isolating a small group of cells or even a single cell with typical phenotype of interest followed by a single cell sequencing-based analysis. Precision toxicology can contribute to the better detection of subtle intracellular changes in response to exogenous substrates, and thus help researchers find solutions to control or relieve the toxicological effects that are serious threats to human health. We give examples for single cell isolation and recommend laser capture microdissection for in vivo studies and flow cytometric sorting for in vitro studies. In addition, we introduce the procedures for single cell sequencing and describe the expected application of these techniques to toxicological evaluations and mechanism exploration, which we believe will become a trend in toxicology.


Precision toxicology Single cell sequencing Phenotype focusing Cell isolation 



This work was supported by the National Special Program of Transgenic Research (Grant No. 2016ZX08011-005). The authors thank Beijing Advanced Innovation Center for Food Nutrition and Human Health for their kind support of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Acosta D, Sorensen EM, Anuforo DC et al (1985) An in vitro approach to the study of target organ toxicity of drugs and chemicals. In Vitro Cell Dev Biol 21(9):495–504CrossRefPubMedGoogle Scholar
  2. Angermueller C, Clark SJ, Lee HJ et al (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13(3):229. doi: 10.1038/nmeth.3728 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bonner RF, Emmert-Buck M, Cole K et al (1997) Laser capture microdissection: molecular analysis of tissue. Science 278(5342):1481–1483CrossRefPubMedGoogle Scholar
  4. Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 18(5–6):240–249. doi: 10.1016/j.drudis.2012.10.003 CrossRefPubMedGoogle Scholar
  5. Catania JM, Pershing AM, Gandolfi AJ (2007) Precision-cut tissue chips as an in vitro toxicology system. Toxicol In Vitro 21(5):956–961. doi: 10.1016/j.tiv.2007.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W (2016) Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol 17:72. doi: 10.1186/s13059-016-0944-x CrossRefPubMedPubMedCentralGoogle Scholar
  7. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795. doi: 10.1056/Nejmp1500523 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dai Q, Zhao J, Qi X et al (2014) MicroRNA profiling of rats with ochratoxin A nephrotoxicity. BMC Genomics 15(1):333CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dalerba P, Kalisky T, Sahoo D et al (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29(12):1120–1127. doi: 10.1038/nbt.2038 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Davila JC, Cezar GG, Thiede M, Strom S, Miki T, Trosko J (2004) Use and application of stem cells in toxicology. Toxicol Sci 79(2):214–223. doi: 10.1093/toxsci/kfh100 CrossRefPubMedGoogle Scholar
  11. Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A (2015) Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol 33(3):285. doi: 10.1038/nbt.3129 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218. doi: 10.1038/nrd1985 CrossRefPubMedGoogle Scholar
  13. Dixit A, Parnas O, Li B et al (2016) Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167(7):1853 e17–1866 e17. doi: 10.1016/j.cell.2016.11.038 CrossRefGoogle Scholar
  14. Doherty M, Metcalfe T, Guardino E, Peters E, Ramage L (2016) Precision medicine and oncology: an overview of the opportunities presented by next-generation sequencing and big data and the challenges posed to conventional drug development and regulatory approval pathways. Ann Oncol 27(8):1644–1646. doi: 10.1093/annonc/mdw165 CrossRefPubMedGoogle Scholar
  15. Eberwine J, Sul JY, Bartfai T, Kim J (2014) The promise of single-cell sequencing. Nat Methods 11(1):25–27. doi: 10.1038/nmeth.2769 CrossRefPubMedGoogle Scholar
  16. Egger G, Liang GN, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463. doi: 10.1038/nature02625 CrossRefPubMedGoogle Scholar
  17. Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13(2):97–109. doi: 10.1038/nrg3142 PubMedGoogle Scholar
  18. Garraway LA, Verweij J, Ballman KV (2013) Precision oncology: an overview. J Clin Oncol 31(15):1803–1805. doi: 10.1200/Jco.2013.49.4799 CrossRefPubMedGoogle Scholar
  19. Goldring C, Antoine DJ, Bonner F et al (2016) Stem cell-derived models to improve mechanistic understanding and prediction of human drug induced liver injury. Hepatology. doi: 10.1002/hep.28886 PubMedCentralGoogle Scholar
  20. Guo H, Zhu P, Yan L et al (2014) The DNA methylation landscape of human early embryos. Nature 511(7511):606–610. doi: 10.1038/nature13544 CrossRefPubMedGoogle Scholar
  21. Guo F, Yan L, Guo H et al (2015) The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161(6):1437–1452. doi: 10.1016/j.cell.2015.05.015 CrossRefPubMedGoogle Scholar
  22. Hammad S, Mahmoud HY, Hamadneh L, Elsherief AM, Meindl-Beinker NM, Kotb AM (2016) Highlight report: pluripotent stem cells in translational research. Arch Toxicol 90(12):3145–3146. doi: 10.1007/s00204-016-1867-8 CrossRefPubMedGoogle Scholar
  23. Helbert MJ, Dauwe SE, Van der Biest I, Nouwen EJ, De Broe ME (1997) Immunodissection of the human proximal nephron: flow sorting of S1S2S3, S1S2 and S3 proximal tubular cells. Kidney Int 52(2):414–428CrossRefPubMedGoogle Scholar
  24. Hou Y, Guo H, Cao C et al (2016) Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 26(3):304–319. doi: 10.1038/cr.2016.23 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ijssennagger N, Janssen AW, Milona A et al (2016) Gene expression profiling in human precision cut liver slices in response to the FXR agonist obeticholic acid. J Hepatol 64(5):1158–1166. doi: 10.1016/j.jhep.2016.01.016 CrossRefPubMedGoogle Scholar
  26. Insel PA, Amara SG, Blaschke TF (2015) Introduction to the theme “precision medicine and prediction in pharmacology”. Annu Rev Pharmacol Toxicol 55:11–14. doi: 10.1146/annurev-pharmtox-101714-123102 CrossRefPubMedGoogle Scholar
  27. Jaitin DA, Kenigsberg E, Keren-Shaul H et al (2014) Massively parallel single-cell RNA-Seq for marker-free decomposition of tissues into cell types. Science 343(6172):776–779. doi: 10.1126/science.1247651 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jaitin DA, Weiner A, Yofe I et al (2016) Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167(7):1883 e15–1896 e15. doi: 10.1016/j.cell.2016.11.039 CrossRefGoogle Scholar
  29. Jennings P (2015) The future of in vitro toxicology. Toxicol In Vitro 29(6):1217–1221. doi: 10.1016/j.tiv.2014.08.011 CrossRefPubMedGoogle Scholar
  30. Ke R, Mignardi M, Hauling T, Nilsson M (2016) Fourth generation of next-generation sequencing technologies: promise and consequences. Hum Mutat 37(12):1363–1367. doi: 10.1002/humu.23051 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kermanizadeh A, Lohr M, Roursgaard M et al (2014) Hepatic toxicology following single and multiple exposure of engineered nanomaterials utilising a novel primary human 3D liver microtissue model. Part Fibre Toxicol 11:56. doi: 10.1186/s12989-014-0056-2 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Klein AM, Mazutis L, Akartuna I et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201. doi: 10.1016/j.cell.2015.04.044 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kohler JJ, Hosseini SH, Hoying-Brandt A et al (2009) Tenofovir renal toxicity targets mitochondria of renal proximal tubules. Lab Investig 89(5):513–519. doi: 10.1038/labinvest.2009.14 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kohler JJ, Hosseini SH, Green E et al (2011) Tenofovir renal proximal tubular toxicity is regulated by OAT1 and MRP4 transporters. Lab Investig 91(6):852–858. doi: 10.1038/labinvest.2011.48 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kowalczyk MS, Tirosh I, Heckl D et al (2015) Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res 25(12):1860–1872. doi: 10.1101/gr.192237.115 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kruger CT, Hofmann M, Hartwig A (2015) The in vitro PIG-A gene mutation assay: mutagenicity testing via flow cytometry based on the glycosylphosphatidylinositol (GPI) status of TK6 cells. Arch Toxicol 89(12):2429–2443. doi: 10.1007/s00204-014-1413-5 CrossRefPubMedGoogle Scholar
  37. Lauschke VM, Hendriks DFG, Bell CC, Andersson TB, Ingelman-Sundberg M (2016) Novel 3D Culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem Res Toxicol 29(12):1936–1955. doi: 10.1021/acs.chemrestox.6b00150 CrossRefPubMedGoogle Scholar
  38. Le Roux K, Prinsloo LC, Meyer D (2015) Fourier transform infrared spectroscopy discloses different types of cell death in flow cytometrically sorted cells. Toxicol In Vitro 29(7):1932–1940. doi: 10.1016/j.tiv.2015.08.002 CrossRefPubMedGoogle Scholar
  39. Lecault V, White AK, Singhal A, Hansen CL (2012) Microfluidic single cell analysis: from promise to practice. Curr Opin Chem Biol 16(3–4):381–390. doi: 10.1016/j.cbpa.2012.03.022 CrossRefPubMedGoogle Scholar
  40. Li M, de Graaf IA, Groothuis GM (2016) Precision-cut intestinal slices: alternative model for drug transport, metabolism, and toxicology research. Expert Opin Drug Metab Toxicol 12(2):175–190. doi: 10.1517/17425255.2016.1125882 CrossRefPubMedGoogle Scholar
  41. Lin Z, Will Y (2012) Evaluation of drugs with specific organ toxicities in organ-specific cell lines. Toxicol Sci 126(1):114–127. doi: 10.1093/toxsci/kfr339 CrossRefPubMedGoogle Scholar
  42. Lovatt D, Ruble BK, Lee J et al (2014) Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat Methods 11(2):190–196. doi: 10.1038/nmeth.2804 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Luckert C, Schulz C, Lehmann N et al (2017) Comparative analysis of 3D culture methods on human HepG2 cells. Arch Toxicol 91(1):393–406. doi: 10.1007/s00204-016-1677-z CrossRefPubMedGoogle Scholar
  44. Ma Q, Chang HY (2016) Single-cell profiling of lncRNAs in the developing human brain. Genome Biol 17:68. doi: 10.1186/s13059-016-0933-0 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Macaulay IC, Voet T (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10(1):e1004126. doi: 10.1371/journal.pgen.1004126 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Macaulay IC, Haerty W, Kumar P et al (2015) G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods 12(6):519. doi: 10.1038/nmeth.3370 CrossRefPubMedGoogle Scholar
  47. Muoth C, Wichser A, Monopoli M et al (2016) A 3D co-culture microtissue model of the human placenta for nanotoxicity assessment. Nanoscale 8(39):17322–17332. doi: 10.1039/c6nr06749b CrossRefPubMedGoogle Scholar
  48. Nagano T, Lubling Y, Yaffe E et al (2015) Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat Protoc 10(12):1986–2003. doi: 10.1038/nprot.2015.127 CrossRefPubMedGoogle Scholar
  49. Navin N, Kendall J, Troge J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94. doi: 10.1038/nature09807 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ozdemir V, Kolker E (2016) Precision nutrition 4.0: a big data and ethics foresight analysis-convergence of agrigenomics, nutrigenomics, nutriproteomics, and nutrimetabolomics. OMICS 20(2):69–75. doi: 10.1089/omi.2015.0193 CrossRefPubMedGoogle Scholar
  51. Parrish AR, Gandolfi AJ, Brendel K (1995) Precision-cut tissue slices: applications in pharmacology and toxicology. Life Sci 57(21):1887–1901CrossRefPubMedGoogle Scholar
  52. Peng Q, Collette W 3rd, Giddabasappa A et al (2016) Editor’s highlight: plasma miR-183/96/182 cluster and miR-124 are promising biomarkers of rat retinal toxicity. Toxicol Sci 152(2):273–283. doi: 10.1093/toxsci/kfw085 CrossRefPubMedGoogle Scholar
  53. Plummer S, Sharpe RM, Hallmark N, Mahood IK, Elcombe C (2007) Time-dependent and compartment-specific effects of in utero exposure to di(n-butyl) phthalate on gene/protein expression in the fetal rat testis as revealed by transcription profiling and laser capture microdissection. Toxicol Sci 97(2):520–532. doi: 10.1093/toxsci/kfm062 CrossRefPubMedGoogle Scholar
  54. Ramskold D, Luo SJ, Wang YC et al (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30(8):777–782. doi: 10.1038/nbt.2282 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Reece A, Xia B, Jiang Z, Noren B, McBride R, Oakey J (2016) Microfluidic techniques for high throughput single cell analysis. Curr Opin Biotechnol 40:90–96. doi: 10.1016/j.copbio.2016.02.015 CrossRefPubMedGoogle Scholar
  56. Rolletschek A, Blyszczuk P, Wobus AM (2004) Embryonic stem cell-derived cardiac, neuronal and pancreatic cells as model systems to study toxicological effects. Toxicol Lett 149(1–3):361–369. doi: 10.1016/j.toxlet.2003.12.064 CrossRefPubMedGoogle Scholar
  57. Rotem A, Ram O, Shoresh N et al (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33(11):1165–1191. doi: 10.1038/nbt.3383 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Schillebeeckx M, Schrade A, Lobs AK, Pihlajoki M, Wilson DB, Mitra RD (2013) Laser capture microdissection-reduced representation bisulfite sequencing (LCM-RRBS) maps changes in DNA methylation associated with gonadectomy-induced adrenocortical neoplasia in the mouse. Nucleic Acids Res 41(11):e116. doi: 10.1093/nar/gkt230 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14(9):618–630. doi: 10.1038/nrg3542 CrossRefPubMedGoogle Scholar
  60. Shi QH, Qin LD, Wei W et al (2012) Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci USA 109(2):419–424. doi: 10.1073/pnas.1110865109 CrossRefPubMedGoogle Scholar
  61. Singh S, Banerjee S, Chattopadhyay P, Borthakur SK, Veer V (2015) Deoxynivalenol induces cytotoxicity and genotoxicity in animal primary cell culture. Toxicol Mech Methods 25(3):184–191. doi: 10.3109/15376516.2015.1006743 CrossRefPubMedGoogle Scholar
  62. Sklar LA, Carter MB, Edwards BS (2007) Flow cytometry for drug discovery, receptor pharmacology and high-throughput screening. Curr Opin Pharmacol 7(5):527–534. doi: 10.1016/j.coph.2007.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sladitschek HL, Neveu PA (2016) Bidirectional promoter engineering for single cell MicroRNA sensors in embryonic stem cells. PLoS One 11(5):e0155177. doi: 10.1371/journal.pone.0155177 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Smith PF, Gandolfi AJ, Krumdieck CL et al (1985) Dynamic organ culture of precision liver slices for in vitro toxicology. Life Sci 36(14):1367–1375CrossRefPubMedGoogle Scholar
  65. Streets AM, Zhang X, Cao C et al (2014) Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci USA 111(19):7048–7053. doi: 10.1073/pnas.1402030111 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Suter-Dick L, Alves PM, Blaauboer BJ et al (2015) Stem cell-derived systems in toxicology assessment. Stem Cells Dev 24(11):1284–1296. doi: 10.1089/scd.2014.0540 CrossRefPubMedGoogle Scholar
  67. Tang FC, Hajkova P, Barton SC, Lao KQ, Surani MA (2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34(2):E9. doi: 10.1093/Nar/Gnj009 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25(10):1491–1498. doi: 10.1101/gr.190595.115 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Vatakuti S, Olinga P, Pennings JL, Groothuis GM (2016) Validation of precision-cut liver slices to study drug-induced cholestasis: a transcriptomics approach. Arch Toxicol. doi: 10.1007/s00204-016-1778-8 Google Scholar
  70. Wang DJ, Bodovitz S (2010) Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol 28(6):281–290. doi: 10.1016/j.tibtech.2010.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 5(12):936–948. doi: 10.1038/nrg1493 CrossRefPubMedGoogle Scholar
  72. Wobus AM, Loser P (2011) Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 85(2):79–117. doi: 10.1007/s00204-010-0641-6 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Xie Y, McGill MR, Dorko K et al (2014) Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol Appl Pharmacol 279(3):266–274. doi: 10.1016/j.taap.2014.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhang B, Shen XL, Liang R et al (2014) Protective role of the mitochondrial Lon protease 1 in ochratoxin A-induced cytotoxicity in HEK293 cells. J Proteomics 101:154–168CrossRefPubMedGoogle Scholar
  75. Zong CH, Lu SJ, Chapman AR, Xie XS (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338(6114):1622–1626. doi: 10.1126/science.1229164 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Boyang Zhang
    • 1
    • 2
  • Kunlun Huang
    • 1
    • 2
  • Liye Zhu
    • 1
    • 2
  • Yunbo Luo
    • 1
    • 2
  • Wentao Xu
    • 1
    • 2
    Email author
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina

Personalised recommendations