Skip to main content

Advertisement

Log in

Tributyltin exposure at noncytotoxic doses dysregulates pancreatic β-cell function in vitro and in vivo

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Tributyltin (TBT) is an endocrine disruptor. TBT can be found in food and in human tissues and blood. Several animal studies revealed that organotins induced diabetes with decreased insulin secretion. The detailed effect and mechanism of TBT on pancreatic β-cell function still remain unclear. We investigated the effect and mechanism of TBT exposure at noncytotoxic doses relevant to human exposure on β-cell function in vitro and in vivo. The β-cell-derived RIN-m5F cells and pancreatic islets from mouse and human were treated with TBT (0.05–0.2 μM) for 0.5–4 h. Adult male mice were orally exposed to TBT (25 μg/kg/day) with or without antioxidant N-acetylcysteine (NAC) for 1–3 weeks. Assays for insulin secretion and glucose metabolism were carried out. Unlike previous studies, TBT at noncytotoxic concentrations significantly increased glucose-stimulated insulin secretion and intracellular Ca2+ ([Ca2+]i) in β-cells. The reactive oxygen species (ROS) production and phosphorylation of protein kinase C (PKC-pan) and extracellular signal-regulated kinase (ERK)1/2 were also increased. These TBT-triggered effects could be reversed by antiestrogen ICI182780 and inhibitors of ROS, [Ca2+]i, and PKC, but not ERK. Similarly, islets treated with TBT significantly increased glucose-stimulated insulin secretion, which could be reversed by ICI182780, NAC, and PKC inhibitor. Mice exposed to TBT for 3 weeks significantly increased blood glucose and plasma insulin and induced glucose intolerance and insulin resistance, which could be reversed by NAC. These findings suggest that low/noncytotoxic doses of TBT induce insulin dysregulation and disturb glucose homeostasis, which may be mediated through the estrogen receptor-regulated and/or oxidative stress-related signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A (2006) The estrogenic effect of bisphenol A disrupts pancreatic β-cell function in vivo and induces insulin resistance. Environ Health Perspect 114:106–112

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquié M, Gauthier BR et al (2008) Pancreatic insulin content regulation by the estrogen receptor ERα. PLoS One 3:e2069

    Article  PubMed  PubMed Central  Google Scholar 

  • Alonso-Magdalena P, Quesada I, Nadal A (2011) Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat Rev Endocrinol 7:346–353

    Article  CAS  PubMed  Google Scholar 

  • Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. Environ Int 34:292–308

    Article  CAS  PubMed  Google Scholar 

  • Casals-Casas C, Desvergne B (2011) Endocrine disruptors: From endocrine to metabolic disruption. Annu Rev Physiol 73:135–162

    Article  CAS  PubMed  Google Scholar 

  • Chamorro-Garcia R, Sahu M, Abbey RJ, Laude J, Pham N, Blumberg B (2013) Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environ Health Perspect 121:359–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen YW, Huang CF, Tsai KS, Yang RS, Yen CC, Yang CY et al (2006) The role of phosphoinositide 3-kinase/Akt signaling in low-dose mercury-induced mouse pancreatic β-cell dysfunction in vitro and in vivo. Diabetes 55:1614–1624

    Article  CAS  PubMed  Google Scholar 

  • Chien LC, Hung TC, Choang KY, Yeh CY, Meng PJ, Shieh MJ et al (2002) Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Sci Total Environ 285:177–185

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Millan E, Ramos S, Alvarez C, Bravo L, Goya L, Martin MA (2014) Microbial phenolic metabolites improve glucose-stimulated insulin secretion and protect pancreatic β-cells against tert-butyl hydroperoxide-induced toxicity via ERKs and PKC pathways. Food Chem Toxicol 66:245–253

    Article  CAS  PubMed  Google Scholar 

  • Fu Z, Gilbert ER, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic β-cell dysfunction in diabetes. Curr Diabetes Rev 9:25–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Görlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271

    Article  PubMed  PubMed Central  Google Scholar 

  • Grandjean P (2011) Exposure to environmental chemicals as a risk factor for diabetes development. In: Bourguignon JP, Jégou B, Kerdelhué B, Toppari J, Christen Y (eds) Multi-system endocrine disruption. Springer, Berlin, pp 91–99

    Chapter  Google Scholar 

  • Gupte AA, Pownall HJ, Hamilton DJ (2015) Estrogen: an emerging regulator of insulin action and mitochondrial function. J Diabetes Res 2015:916585

    Article  PubMed  PubMed Central  Google Scholar 

  • Hectors TL, Vanparys C, van der Ven K, Martens GA, Jorens PG, Van Gaal LF et al (2011) Environmental pollutants and type 2 diabetes: a review of mechanisms that can disrupt beta cell function. Diabetologia 54:1273–1290

    Article  CAS  PubMed  Google Scholar 

  • Huang CF, Chen YW, Yang CY, Lin HY, Way TD, Chiang W et al (2011) Extract of lotus leaf (Nelumbo nucifera) and its active constituent catechin with insulin secretagogue activity. J Agric Food Chem 59:1087–1094

    Article  CAS  PubMed  Google Scholar 

  • Kannan K, Senthilkumar K, Giesy JP (1999) Occurrence of butyltin compounds in human blood. Environ Sci Technol 33:1776–1779

    Article  CAS  Google Scholar 

  • Le May C, Chu K, Hu M, Ortega CS, Simpson ER, Korach KS et al (2006) Estrogens protect pancreatic β-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci USA 103:9232–9237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CC, Hsieh CY, Tien CJ (2006) Factors influencing organotin distribution in different marine environmental compartments, and their potential health risk. Chemosphere 65:547–559

    Article  CAS  PubMed  Google Scholar 

  • Manabe S, Wada O (1981) Triphenyltin fluoride (TPTF) as a diabetogenic agent. TPTF induces diabetic lipemia by inhibiting insulin secretion from morphologically intact rabbit β-cell. Diabetes 30:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Mauvais-Jarvis F, Clegg DJ, Hevener AL (2013) The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev 34:309–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mbaya E, Oules B, Caspersen C, Tacine R, Massinet H, Pennuto M et al (2010) Calcium signalling-dependent mitochondrial dysfunction and bioenergetics regulation in respiratory chain complex II deficiency. Cell Death Differ 17:1855–1866

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Gera R, Siddiqui WA, Khandelwal S (2013) Tributyltin induces oxidative damage, inflammation and apoptosis via disturbance in blood-brain barrier and metal homeostasis in cerebral cortex of rat brain: an in vivo and in vitro study. Toxicology 310:39–52

    Article  CAS  PubMed  Google Scholar 

  • Miura Y, Matsui H (1987) The effects of triphenyltin on insulin release from pancreatic islets in hamsters. J Japan Diab Soc 30:895–900

    CAS  Google Scholar 

  • Miura Y, Kato M, Ogino K, Matsui H (1997) Impaired cytosolic Ca2+ response to glucose and gastric inhibitory polypeptide in pancreatic β-cells from triphenyltin-induced diabetic hamster. Endocrinology 138:2769–2775

    Article  CAS  PubMed  Google Scholar 

  • Nadal A, Alonso-Magdalena P, Soriano S, Quesada I, Ropero AB (2009) The pancreatic β-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol 304:63–68

    Article  CAS  PubMed  Google Scholar 

  • Nakatsu Y, Kotake Y, Ohta S (2007) Concentration dependence of the mechanisms of tributyltin-induced apoptosis. Toxicol Sci 97:438–447

    Article  CAS  PubMed  Google Scholar 

  • Nielsen JB, Strand J (2002) Butyltin compounds in human liver. Environ Res 88:129–133

    Article  CAS  PubMed  Google Scholar 

  • Ovalle F, Azziz R (2002) Insulin resistance, polycystic ovary syndrome, and type 2 diabetes mellitus. Fertil Steril 77:1095–1105

    Article  PubMed  Google Scholar 

  • Penninks AH (1993) The evaluation of data-derived safety factors for bis(tri-n-butyltin)oxide. Food Addit Contam 10:351–361

    Article  CAS  PubMed  Google Scholar 

  • Quesada I, Fuentes E, Viso-León MC, Soria B, Ripoll C, Nadal A (2002) Low doses of the endocrine disruptor bisphenol-A and the native hormone 17β-estradiol rapidly activate transcription factor CREB. FASEB J 16:1671–1673

    CAS  PubMed  Google Scholar 

  • Ramadan JW, Steiner SR, O’Neill CM, Nunemaker CS (2011) The central role of calcium in the effects of cytokines on β-cell function: Implications for type 1 and type 2 diabetes. Cell Calcium 50:481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma N, Kumar A (2014) Mechanism of immunotoxicological effects of tributyltin chloride on murine thymocytes. Cell Biol Toxicol 30:101–112

    Article  CAS  PubMed  Google Scholar 

  • Sternberg RM, Gooding MP, Hotchkiss AK, LeBlanc GA (2010) Environmental-endocrine control of reproductive maturation in gastropods: Implications for the mechanism of tributyltin-induced imposex in prosobranchs. Ecotoxicology 19:4–23

    Article  CAS  PubMed  Google Scholar 

  • Thayer KA, Heindel JJ, Bucher JR, Gallo MA (2012) Role of environmental chemicals in diabetes and obesity: a national toxicology program workshop review. Environ Health Perspect 120:779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chakravarthy BR, Morley P, Whitfield JF, Durkin JP, Begin-Heick N (1996) Glucose, potassium, and CCK-8 induce increases in membrane-associated PKC activity that correspond to increases in [Ca2+]i in islet cells from neonatal rats. Cell Signal 8:305–311

    Article  PubMed  Google Scholar 

  • Wijesekara N, Krishnamurthy M, Bhattacharjee A, Suhail A, Sweeney G, Wheeler MB (2010) Adiponectin-induced ERK and Akt phosphorylation protects against pancreatic β-cell apoptosis and increases insulin gene expression and secretion. J Biol Chem 285:33623–33631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2016) Global report on diabetes. Geneva:WHO. Available: http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf. Accessed 8 September 2016]

  • Youl E, Bardy G, Magous R, Cros G, Sejalon F, Virsolvy A et al (2010) Quercetin potentiates insulin secretion and protects INS-1 pancreatic β-cells against oxidative damage via the ERK1/2 pathway. Br J Pharmacol 161:799–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu WJ, Lee BJ, Nam SY, Kim YC, Lee YS, Yun YW (2003) Spermatogenetic disorders in adult rats exposed to tributyltin chloride during puberty. J Vet. Med Sci 65:1331–1335

    CAS  Google Scholar 

  • Zhang Y, Chen Y, Sun L, Liang J, Guo Z, Xu L (2014) Protein phosphatases 2a as well as reactive oxygen species involved in tributyltin-induced apoptosis in mouse livers. Environ Toxicol 29:234–242

    Article  CAS  PubMed  Google Scholar 

  • Zhivotovsky B, Orrenius S (2011) Calcium and cell death mechanisms: A perspective from the cell death community. Cell Calcium 50:211–221

    Article  CAS  PubMed  Google Scholar 

  • Zuo Z, Wu T, Lin M, Zhang S, Yan F, Yang Z et al (2014) Chronic exposure to tributyltin chloride induces pancreatic islet cell apoptosis and disrupts glucose homeostasis in male mice. Environ Sci Technol 48:5179–5186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Ministry of Science and Technology of Taiwan (MOST103-2314-B-002-035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shing-Hwa Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

C.-Y. Yang and S.-H. Liu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YW., Lan, KC., Tsai, JR. et al. Tributyltin exposure at noncytotoxic doses dysregulates pancreatic β-cell function in vitro and in vivo. Arch Toxicol 91, 3135–3144 (2017). https://doi.org/10.1007/s00204-017-1940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-1940-y

Keywords

Navigation