Archives of Toxicology

, Volume 91, Issue 4, pp 1623–1634 | Cite as

High bioavailability curcumin: an anti-inflammatory and neurosupportive bioactive nutrient for neurodegenerative diseases characterized by chronic neuroinflammation

  • Faheem Ullah
  • Andy Liang
  • Alejandra Rangel
  • Erika Gyengesi
  • Garry NiedermayerEmail author
  • Gerald Münch
Review Article


Neuroinflammation is a pathophysiological process present in a number of neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, stroke, traumatic brain injury including chronic traumatic encephalopathy and other age-related CNS disorders. Although there is still much debate about the initial trigger for some of these neurodegenerative disorders, during the progression of disease, broad range anti-inflammatory drugs including cytokine suppressive anti-inflammatory drugs (CSAIDs) might be promising therapeutic options to limit neuroinflammation and improve the clinical outcome. One of the most promising CSAIDs is curcumin, which modulates the activity of several transcription factors (e.g., STAT, NF-κB, AP-1) and their pro-inflammatory molecular signaling pathways. However, normal curcumin preparations demonstrate low bioavailability in vivo. To increase bioavailability, preparations of high bioavailability curcumin have been introduced to achieve therapeutically relevant concentrations in target tissues. This literature review aims to summarize the pharmacokinetic and toxicity profile of different curcumin formulations.


Neuroinflammation Curcumin Pharmacokinetics Microglia 



I gratefully acknowledge the moral and financial support of Graduate research school, Western Sydney University, most particularly our Research fellowships committee. My thanks also go out to our Pharmacology group, School of Medicine and all the academic and technical staff for their kind support.


  1. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007a) Curcumin: the Indian solid gold. In: Aggarwal BB, Surh Y-J, Shishodia S (eds) The molecular targets and therapeutic uses of curcumin in health and disease. Springer US, Boston, pp 1–75CrossRefGoogle Scholar
  2. Aggarwal BB, Surh Y-J, Shishodia S (2007b) The molecular targets and therapeutic uses of curcumin in health and disease, vol 595. Springer Science & Business Media, Springer US, BostonGoogle Scholar
  3. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16(25):2766–2778CrossRefPubMedGoogle Scholar
  4. Akiyama H, Barger S, Barnum S et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421CrossRefPubMedPubMedCentralGoogle Scholar
  5. Antony B, Merina B, Iyer VS, Judy N, Lennertz K, Joyal S (2008) A pilot cross-over study to evaluate human oral bioavailability of BCM-95®CG (Biocurcumax™), a novel bioenhanced preparation of curcumin. Indian J Pharm Sci 70(4):445CrossRefPubMedPubMedCentralGoogle Scholar
  6. Basnet P, Tho I, Skalko-Basnet N (2010) Curcumin a wonder drug of 21st century: liposomal delivery system targeting vaginal inflammation. In: 5th International Congress on Complementary Medicine Research, Tromsø, NorwayGoogle Scholar
  7. Baum L, Lam CW, Cheung SK, et al. (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol. doi: 10.1097/jcp.0b013e318160862c PubMedGoogle Scholar
  8. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet (London, England) 368(9533):387–403. doi: 10.1016/s0140-6736(06)69113-7 CrossRefGoogle Scholar
  9. Bombardelli E, Curri S, Della L, Del N, Tubaro A, Gariboldi P (1989) Complexes between phospholipids and vegetal derivatives of biological interest. Fitoterapia 60:1–9Google Scholar
  10. Bombardelli E, Cristoni A, Morazzoni P (1994) Phytosomes in functional cosmetics. Fitoterapia 65:387–401Google Scholar
  11. Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. In: Jellinger K, Fazekas F, Windisch M (eds) Ageing and dementia, vol 53. Springer, Vienna, pp 127–140Google Scholar
  12. Campbell IL, Erta M, Lim SL et al (2014) Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J Neurosci 34(7):2503–2513. doi: 10.1523/jneurosci.2830-13.2014 CrossRefPubMedGoogle Scholar
  13. Carroll RE, Benya RV, Turgeon DK et al (2011) Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res 4(3):354–364. doi: 10.1158/1940-6207.capr-10-0098 CrossRefGoogle Scholar
  14. Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med (New York NY) 9(1):161–168. doi: 10.1089/107555303321223035 CrossRefGoogle Scholar
  15. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87(1):44–53Google Scholar
  16. Cheng A-L, Hsu C-H, Lin J-K et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B):2895–2900PubMedGoogle Scholar
  17. Citernesi U, Sciacchitano M (1995) Phospholipid/active ingredient complexes. Cosmet Toilet 110(11):57–68Google Scholar
  18. Cornago P, Claramunt RM, Bouissane L, Alkorta I, Elguero J (2008) A study of the tautomerism of β-dicarbonyl compounds with special emphasis on curcuminoids. Tetrahedron 64(35):8089–8094. doi: 10.1016/j.tet.2008.06.065 CrossRefGoogle Scholar
  19. Cox KH, Pipingas A, Scholey AB (2015) Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol 29(5):642–651. doi: 10.1177/0269881114552744 CrossRefPubMedGoogle Scholar
  20. Cuomo J, Appendino G, Dern AS et al (2011) Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J Nat Prod 74(4):664–669. doi: 10.1021/np1007262 CrossRefPubMedGoogle Scholar
  21. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. doi: 10.1038/nrn2297 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Davis S, Laroche S (2003) What can rodent models tell us about cognitive decline in Alzheimer’s disease? Mol Neurobiol 27(3):249–276. doi: 10.1385/mn:27:3:249 CrossRefPubMedGoogle Scholar
  23. Dhillon N, Aggarwal BB, Newman RA et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14(14):4491–4499. doi: 10.1158/1078-0432.ccr-08-0024 CrossRefPubMedGoogle Scholar
  24. DiSilvestro RA, Joseph E, Zhao S, Bomser J (2012) Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J 11:79. doi: 10.1186/1475-2891-11-79
  25. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  26. Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454. doi: 10.1056/nejm199902113400607 CrossRefPubMedGoogle Scholar
  27. Ganiger S, Malleshappa HN, Krishnappa H, Rajashekhar G, Ramakrishna Rao V, Sullivan F (2007) A two generation reproductive toxicity study with curcumin, turmeric yellow, in Wistar rats. Food Chem Toxicol 45(1):64–69 doi: 10.1016/j.fct.2006.07.016 CrossRefPubMedGoogle Scholar
  28. Garcea G, Berry DP, Jones DJ et al (2005) Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cospons Am Soc Prev Int Soc Cell 14(1):120–125Google Scholar
  29. Goel A, Aggarwal BB (2010) Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutr Cancer 62(7):919–930. doi: 10.1080/01635581.2010.509835 CrossRefPubMedGoogle Scholar
  30. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75(4):787–809. doi: 10.1016/j.bcp.2007.08.016 CrossRefPubMedGoogle Scholar
  31. Guerreiro RJ, Santana I, Bras JM, Santiago B, Paiva A, Oliveira C (2007) Peripheral inflammatory cytokines as biomarkers in Alzheimer’s disease and mild cognitive impairment. Neurodegener Dis 4(6):406–412. doi: 10.1159/000107700 CrossRefPubMedGoogle Scholar
  32. He P, Zhong Z, Lindholm K et al (2007) Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178(5):829–841. doi: 10.1083/jcb.200705042 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20. doi: 10.1042/bj20030407 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nature reviews Immunology 14(7):463–477. doi: 10.1038/nri3705 CrossRefPubMedGoogle Scholar
  35. Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. The Lancet Neurology 14(4):388–405. doi: 10.1016/s1474-4422(15)70016-5 CrossRefPubMedGoogle Scholar
  36. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? The Lancet Neurology 8(4):382–397. doi: 10.1016/s1474-4422(09)70062-6 CrossRefPubMedGoogle Scholar
  37. Honda M, Yamamoto S, Cheng M, et al. (1992) Human soluble IL-6 receptor: its detection and enhanced release by HIV infection. J Immunol (Baltimore, Md: 1950) 148(7):2175–2180Google Scholar
  38. Hoppe JB, Coradini K, Frozza RL et al (2013) Free and nanoencapsulated curcumin suppress beta-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3beta signaling pathway. Neurobiol Learn Mem 106:134–144. doi: 10.1016/j.nlm.2013.08.001 CrossRefPubMedGoogle Scholar
  39. Jäger R, Lowery RP, Calvanese AV, Joy JM, Purpura M, Wilson JM (2014) Comparative absorption of curcumin formulations. Nutr J 13(1):11CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK (2005) Chemistry and biological activities of C. longa. Trends Food Sci Technol 16(12):533–548 doi: 10.1016/j.tifs.2005.08.006 CrossRefGoogle Scholar
  41. Kanai M, Yoshimura K, Asada M et al (2011) A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 68(1):157–164. doi: 10.1007/s00280-010-1470-2 CrossRefPubMedGoogle Scholar
  42. Kanai M, Imaizumi A, Otsuka Y et al (2012) Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol 69(1):65–70. doi: 10.1007/s00280-011-1673-1 CrossRefPubMedGoogle Scholar
  43. Kidd P, Head K (2005) A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin-phosphatidylcholine complex (Siliphos). Alternative medicine review : a journal of clinical therapeutic 10(3):193–203Google Scholar
  44. Kocher A, Schiborr C, Behnam D, Frank J (2015) The oral bioavailability of curcuminoids in healthy humans is markedly enhanced by micellar solubilisation but not further improved by simultaneous ingestion of sesamin, ferulic acid, naringenin and xanthohumol. J Funct Foods 14:183–191CrossRefGoogle Scholar
  45. Lopez-Lazaro M (2008) Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 52(Suppl 1):S103–27 doi: 10.1002/mnfr.200700238 PubMedGoogle Scholar
  46. Lust JA, Donovan KA, Kline MP, Greipp PR, Kyle RA, Maihle NJ (1992) Isolation of an mRNA encoding a soluble form of the human interleukin-6 receptor. Cytokine 4(2):96–100CrossRefPubMedGoogle Scholar
  47. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747PubMedGoogle Scholar
  48. Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ (2007) Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemoth Pharm 60(2):171–177. doi: 10.1007/s00280-006-0355-x CrossRefGoogle Scholar
  49. Mathew A, Pushpanath S (2005) Indian spices. DEE BEE Info Publications, IndiaGoogle Scholar
  50. Mauri P, Simonetti P, Gardana C et al (2001) Liquid chromatography/atmospheric pressure chemical ionization mass spectrometry of terpene lactones in plasma of volunteers dosed with Ginkgo biloba L. extracts. RCM 15(12):929–934. doi: 10.1002/rcm.316 PubMedGoogle Scholar
  51. Meager (2004) Cytokines: interleukins. In: Meyers R (ed) Encyclopedia of molecular cell biology and molecular medicine, Wiley-Blackwell, Hoboken, New Jersey, pp 115–151Google Scholar
  52. Meda L, Cassatella MA, Szendrei GI et al (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374(6523):647–650. doi: 10.1038/374647a0 CrossRefPubMedGoogle Scholar
  53. Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Abeta and its associated proteins. Neurobiol Aging 22(6):885–893CrossRefPubMedGoogle Scholar
  54. Milobedzka J, von Kostanecki S (1910) On knowledge of curcumin. Ber Dtsch Chem Ges 43:2163–2170. doi: 10.1002/cber.191004302168
  55. Morgan D, Gordon MN, Tan J, Wilcock D, Rojiani AM (2005) Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. J Neuropathol Exp Neurol 64(9):743–753CrossRefPubMedGoogle Scholar
  56. National Toxicology P (1993) NTP toxicology and carcinogenesis studies of turmeric oleoresin (CAS No. 8024-37-1) (major component 79%–85% curcumin, CAS No. 458-37-7) in F344/N rats and B6C3F1 Mice (feed studies). Natl Toxicol Program Tech Rep Ser 427:1–275Google Scholar
  57. Norman J (1991) The complete book of spices. Viking Studio Books, Penguin Books USA Inc, Westminster, LondonGoogle Scholar
  58. Novick D, Engelmann H, Wallach D, Rubinstein M (1989) Soluble cytokine receptors are present in normal human urine. J Exp Med 170(4):1409–1414CrossRefPubMedGoogle Scholar
  59. Parada E, Buendia I, Navarro E, Avendano C, Egea J, Lopez MG (2015) Microglial HO-1 induction by curcumin provides antioxidant, antineuroinflammatory, and glioprotective effects. Mol Nutr Food Res 59(9):1690–1700 doi: 10.1002/mnfr.201500279 CrossRefPubMedGoogle Scholar
  60. Pawar YB, Munjal B, Arora S, Karwa M, Kohli G, Paliwal JK, Bansal AK (2012) Bioavailability of a lipidic formulation of curcumin in healthy human volunteers. Pharmaceutics 4(4):517–530CrossRefPubMedPubMedCentralGoogle Scholar
  61. Payton F, Sandusky P, Alworth WL (2007) NMR study of the solution structure of curcumin. J Nat Prod 70(2):143–146. doi: 10.1021/np060263s CrossRefPubMedGoogle Scholar
  62. Priyadarsini KI (2013) Chemical and structural features influencing the biological activity of curcumin. Curr Pharm Des 19(11):2093–2100PubMedGoogle Scholar
  63. Ringman JM, Frautschy SA, Teng E, et al. (2012) Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer’s Res Ther 4(5):1–8 doi: 10.1186/alzrt146 Google Scholar
  64. Rogers JT, Leiter LM, McPhee J et al (1999) Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences. J Biol Chem 274(10):6421–6431CrossRefPubMedGoogle Scholar
  65. Rose-John S (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci 8(9):1237–1247. doi: 10.7150/ijbs.4989 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Roughley PJ, Whiting DA (1973) Experiments in the biosynthesis of curcumin. J Chem Soc Perkin Trans 1(0):2379–2388. doi: 10.1039/P19730002379 CrossRefGoogle Scholar
  67. Schiborr C, Kocher A, Behnam D, Jandasek J, Toelstede S, Frank J (2014) The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol Nutr Food Res 58(3):516–527CrossRefPubMedGoogle Scholar
  68. Shaiju B (2008) Psychological problem of patients with rheumatoid arthritis and guidelines for health professionals. Nurs J India 99(9):202–204Google Scholar
  69. Sharma RA, McLelland HR, Hill KA et al (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7(7):1894–1900PubMedGoogle Scholar
  70. Sharma RA, Euden SA, Platton SL et al (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10(20):6847–6854. doi: 10.1158/1078-0432.ccr-04-0744 CrossRefPubMedGoogle Scholar
  71. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer (Oxford, England: 1990) 41(13):1955–1968. doi: 10.1016/j.ejca.2005.05.009 CrossRefGoogle Scholar
  72. Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13(2):139–145. doi: 10.1038/nm1551 CrossRefPubMedGoogle Scholar
  73. Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68(10):930–941. doi: 10.1016/j.biopsych.2010.06.012 CrossRefPubMedGoogle Scholar
  74. Swomley AM, Butterfield DA (2015) Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch Toxicol 89(10):1669–1680. doi: 10.1007/s00204-015-1556-z CrossRefPubMedGoogle Scholar
  75. Tan ZS, Seshadri S (2010) Inflammation in the Alzheimer’s disease cascade: culprit or innocent bystander? Alzheimer’s Res Ther 2(2):6. doi: 10.1186/alzrt29 CrossRefGoogle Scholar
  76. Tiwari SK, Agarwal S, Seth B et al (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS nano 8(1):76–103. doi: 10.1021/nn405077y CrossRefPubMedGoogle Scholar
  77. Tsai YM, Chien CF, Lin LC, Tsai TH (2011) Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm 416(1):331–338. doi: 10.1016/j.ijpharm.2011.06.030 CrossRefPubMedGoogle Scholar
  78. Vergoni AV, Tosi G, Tacchi R, Vandelli MA, Bertolini A, Costantino L (2009) Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomed Nanotechnol Biol Med 5(4):369–377. doi: 10.1016/j.nano.2009.02.005 CrossRefGoogle Scholar
  79. Wahlstrom B, Blennow G (1978) A study on the fate of curcumin in the rat. Acta pharmacologica et toxicologica 43(2):86–92CrossRefPubMedGoogle Scholar
  80. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44(1):181–193. doi: 10.1016/j.neuron.2004.09.010 CrossRefPubMedGoogle Scholar
  81. Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30(4):552–557. doi:10.1042/CrossRefPubMedGoogle Scholar
  82. Wang YJ, Pan MH, Cheng AL et al (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15(12):1867–1876CrossRefPubMedGoogle Scholar
  83. Wilken R, Veena MS, Wang MB, Srivatsan ES (2011) Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 10:12. doi: 10.1186/1476-4598-10-12 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Yanagisawa D, Shirai N, Amatsubo T et al (2010) Relationship between the tautomeric structures of curcumin derivatives and their Abeta-binding activities in the context of therapies for Alzheimer’s disease. Biomaterials 31(14):4179–4185. doi: 10.1016/j.biomaterials.2010.01.142 CrossRefPubMedGoogle Scholar
  85. Yang Z, Zhao T, Zou Y, Zhang JH, Feng H (2014) Curcumin inhibits microglia inflammation and confers neuroprotection in intracerebral hemorrhage. Immunol Lett 160(1):89–95. doi: 10.1016/j.imlet.2014.03.005 CrossRefPubMedGoogle Scholar
  86. Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45(2):27–37. doi: 10.1097/AIA.0b013e318034194e CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhang Q, Kang R, Zeh HJ 3rd, Lotze MT, Tang D (2013) DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death. Autophagy 9(4):451–458. doi: 10.4161/auto.23691 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Pharmacology, School of MedicineWestern Sydney UniversityCampbelltownAustralia
  2. 2.Molecular Medicine Research GroupWestern Sydney UniversityCampbelltownAustralia
  3. 3.School of Science and HealthWestern Sydney UniversityCampbelltownAustralia

Personalised recommendations