Skip to main content

Advertisement

Log in

Organophosphate neurotoxicity to the voluntary motor system on the trail of environment-caused amyotrophic lateral sclerosis: the known, the misknown, and the unknown

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset paralytic disorder. It is characterized by progressive degeneration of the motor neurons controlling voluntary movement. The underlying mechanisms remain elusive, a fact that has precluded development of effective treatments. ALS presents as a sporadic condition 90–95% of the time, i.e., without familial history or obvious genetic mutation. This suggests that ALS has a strong environmental component. Organophosphates (OPs) are prime candidate neurotoxicants in the etiology of ALS, as exposure to OPs was linked to higher ALS incidence among farmers, soccer players, and Gulf War veterans. In addition, polymorphisms in paraoxonase 1, an enzyme that detoxifies OPs, may increase individual vulnerability both to OP poisoning and to the risk of developing ALS. Furthermore, exposure to high doses of OPs can give rise to OP-induced delayed neuropathy (OPIDN), a debilitating condition akin to ALS characterized by similar motor impairment and paralysis. The question we pose in this review is: “what can we learn from acute exposure to high doses of neurotoxicants (OPIDN) that could help our understanding of chronic diseases resulting from potentially decades of silent exposure (ALS)?” The resemblances between OPIDN and ALS are striking at the clinical, etiological, neuropathological, cellular, and potentially molecular levels. Here, we critically present available evidence, discuss current limitations, and posit future research. In the search for the environmental origin of ALS, OPIDN offers an exciting trail to follow, which can hopefully lead to the development of novel strategies to prevent and cure these dreadful disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Rahman A, Shetty AK, Abou-Donia MB (2002) Acute exposure to sarin increases blood brain barrier permeability and induces neuropathological changes in the rat brain: dose–response relationships. Neuroscience 113:721–741

    Article  CAS  PubMed  Google Scholar 

  • Abou-Donia MB (1992) Triphenyl phosphite: a type II organophosphorus compound-induced delayed neurotoxic agent. In: Chamber JE, Levi LP (ed) Organophosphates chemistry, fate, and effects. Part IV: toxic effects-organismal. Academic Press, San Diego, pp 327–351

    Chapter  Google Scholar 

  • Abou-Donia MB (2003) Organophosphorus ester-induced chronic neurotoxicity. Arch Environ Health 58:484–497

    Article  CAS  PubMed  Google Scholar 

  • Abou-Donia MB (2005) Organophosphate ester-induced chronic neurotoxicity (OPICN). In: Winder C (ed) Contaminated air protection conference, proceedings of a conference, held at Imperial College, London, 20–21 April. University of New South Wales, Sydney, pp 59–90

  • Abou-Donia MB, Lapadula DM (1990) Mechanisms of organophosphorus ester-induced delayed neurotoxicity: type I and type II. Annu Rev Pharmacol Toxicol 30:405–440

    Article  CAS  PubMed  Google Scholar 

  • Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7:603–615. doi:10.1038/nrneurol.2011.150

    Article  CAS  PubMed  Google Scholar 

  • Beavers CT, Parker JJ, Flinchum DA et al (2014) Pesticide-induced quadriplegia in a 55-year-old woman. Am J Forensic Med Pathol 35:239–241

    Article  PubMed  Google Scholar 

  • Benabent M, Vilanova E, Mangas I et al (2014) Interaction between substrates suggests a relationship between organophosphorus-sensitive phenylvalerate- and acetylcholine-hydrolyzing activities in chicken brain. Toxicol Lett 230:132–138. doi:10.1016/j.toxlet.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  • Boulting GL, Kiskinis E, Croft GF et al (2011) A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol 29:279–286. doi:10.1038/nbt.1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capodicasa E, Scapellato ML, Moretto A et al (1991) Chlorpyrifos-induced delayed polyneuropathy. Arch Toxicol 65:150–155

    Article  CAS  PubMed  Google Scholar 

  • Ceron JJ, Tecles F, Tvarijonaviciute A (2014) Serum paraoxonase 1 (PON1) measurement: an update. BMC Vet Res 10:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiasserini D, van Weering JRT, Piersma SR et al (2014) Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset. J Proteom 106:191–204

    Article  CAS  Google Scholar 

  • Chio A, Calvo A, Dossena M et al (2009) ALS in Italian professional soccer players: the risk is still present and could be soccer-specific. Amyotroph Lateral Scler 10:205–209

    Article  PubMed  Google Scholar 

  • Chió A, Meineri P, Tribolo A, Schiffer D (1991) Risk factors in motor neuron disease: a case-control study. Neuroepidemiology 10:174–184

    Article  PubMed  Google Scholar 

  • Conde-Vancells J, Rodriguez-Suarez E, Embade N et al (2008) Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 7:5157–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa LG, Vitalone A, Cole TB, Furlong CE (2005) Modulation of paraoxonase (PON1) activity. Biochem Pharmacol 69:541–550

    Article  CAS  PubMed  Google Scholar 

  • Costa LG, Giordano G, Cole TB et al (2013) Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity. Toxicology 307:115–122

    Article  CAS  PubMed  Google Scholar 

  • Crowell JA, Parker RM, Bucci TJ, Dacre JC (1989) Neuropathy target esterase in hens after sarin and soman. J Biochem Toxicol 4:15–20

    Article  CAS  PubMed  Google Scholar 

  • D’Amico E, Factor-Litvak P, Santella RM, Mitsumoto H (2013) Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med 65:509–527

    Article  PubMed  Google Scholar 

  • Davis SL, Tanaka D, Aulerich RJ, Bursian SJ (1999) Organophosphorus-induced neurotoxicity in the absence of neuropathy target esterase inhibition: the effects of triphenyl phosphine in the European ferret. Toxicol Sci 49:78–85

    Article  CAS  PubMed  Google Scholar 

  • De Bleecker J, Lison D, Van Den Abeele K et al (1994) Acute and subacute organophosphate poisoning in the rat. Neurotoxicology 15:341–348

    CAS  PubMed  Google Scholar 

  • de Boer J, Antelo A, van der Veen I, et al (2015) Tricresyl phosphate and the aerotoxic syndrome of flight crew members–current gaps in knowledge. Chemosphere 119 Suppl:S58–S61.

  • Deakin SP, James RW (2004) Genetic and environmental factors modulating serum concentrations and activities of the antioxidant enzyme paraoxonase-1. Clin Sci (Lond) 107:435–447

    Article  CAS  Google Scholar 

  • Drexler B, Seeger T, Grasshoff C et al (2011) Long-term evaluation of organophosphate toxicity and antidotal therapy in co-cultures of spinal cord and muscle tissue. Toxicol Lett 206:89–93

    Article  CAS  PubMed  Google Scholar 

  • Eckerson HW, Wyte CM, La Du BN (1983) The human serum paraoxonase/arylesterase polymorphism. Am J Hum Genet 35:1126–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrich M, Jortner BS (2002) Organophosphate-induced delayed neuropathy. In: Handbook of neurotoxicology, vol 1, pp 17–27

  • El-Fawal HA, Jortner BS, Ehrich M (1989) Effect of verapamil on organophosphorus-induced delayed neuropathy in hens. Toxicol Appl Pharmacol 97:500–511

    Article  CAS  PubMed  Google Scholar 

  • El-Sebae AH, Soliman SA, Elamayem MA, Ahmed NS (1977) Neurotoxicity of organophosphorus insecticides leptophos and EPN. J Environ Sci Health B 12:269–287

    Article  CAS  PubMed  Google Scholar 

  • Emerick GL, DeOliveira GH, Oliveira RV, Ehrich M (2012) Comparative in vitro study of the inhibition of human and hen esterases by methamidophos enantiomers. Toxicology 292:145–150

    Article  CAS  PubMed  Google Scholar 

  • Emerick GL, Fernandes LS, de Paula ES et al (2015) In vitro study of the neuropathic potential of the organophosphorus compounds fenamiphos and profenofos: comparison with mipafox and paraoxon. Toxicol Vitr 29:1079–1087

    Article  CAS  Google Scholar 

  • Estévez J, Selva V, Benabent M et al (2016) Acetylcholine-hydrolyzing activities in soluble brain fraction: characterization with reversible and irreversible inhibitors. Chem Biol Interact 259:374–381. doi:10.1016/j.cbi.2016.08.004

    Article  PubMed  Google Scholar 

  • Fernandes LS, Emerick GL, dos Santos NAG et al (2015) In vitro study of the neuropathic potential of the organophosphorus compounds trichlorfon and acephate. Toxicol Vitr 29:522–528

    Article  CAS  Google Scholar 

  • Fioroni F, Moretto A, Lotti M (1995) Triphenylphosphite neuropathy in hens. Arch Toxicol 69:705–711

    Article  CAS  PubMed  Google Scholar 

  • Funk KA, Henderson JD, Liu CH et al (1994) Neuropathology of organophosphate-induced delayed neuropathy (OPIDN) in young chicks. Arch Toxicol 68:308–316

    Article  CAS  PubMed  Google Scholar 

  • Furlong CE, Richter RJ, Seidel SL, Motulsky AG (1988) Role of genetic polymorphism of human plasma paraoxonase/arylesterase in hydrolysis of the insecticide metabolites chlorpyrifos oxon and paraoxon. Am J Hum Genet 43:230–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giagheddu M, Puggioni G, Masala C et al (1983) Epidemiologic study of amyotrophic lateral sclerosis in Sardinia, Italy. Acta Neurol Scand 68:394–404

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AM, Brookes N, Burt DR (1980) The use of spinal cord cell cultures in the study of neurotoxicological agents. Toxicology 17:233–235

    Article  CAS  PubMed  Google Scholar 

  • Hall J, Prabhakar S, Balaj L et al (2016) Delivery of therapeutic proteins via extracellular vesicles: review and potential treatments for Parkinson’s disease, glioma, and Schwannoma. Cell Mol Neurobiol 36:417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano A (1996) Neuropathology of ALS: an overview. Neurology 47:S63–S66

    Article  CAS  PubMed  Google Scholar 

  • Holland N, Lizarraga D, Huen K (2015) Recent progress in the genetics and epigenetics of paraoxonase: why it is relevant to children’s environmental health. Curr Opin Pediatr 27:240–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horner RD, Kamins KG, Feussner JR et al (2003) Occurrence of amyotrophic lateral sclerosis among Gulf War veterans. Neurology 61:742–749

    Article  CAS  PubMed  Google Scholar 

  • Horner RD, Grambow SC, Coffman CJ et al (2008) Amyotrophic lateral sclerosis among 1991 Gulf War veterans: evidence for a time-limited outbreak. Neuroepidemiology 31:28–32

    Article  PubMed  Google Scholar 

  • Huen K, Yousefi P, Street K et al (2015) PON1 as a model for integration of genetic, epigenetic, and expression data on candidate susceptibility genes. Environ Epigenet 1(1):dvv003

    Article  PubMed  PubMed Central  Google Scholar 

  • Husain K, Vijayaraghavan R, Pant SC et al (1993) Delayed neurotoxic effect of sarin in mice after repeated inhalation exposure. J Appl Toxicol 13:143–145

    Article  CAS  PubMed  Google Scholar 

  • Jamal GA (1997) Neurological syndromes of organophosphorus compounds. Adverse Drug React Toxicol Rev 16:133–170

    CAS  PubMed  Google Scholar 

  • James RW, Leviev I, Righetti A (2000) Smoking is associated with reduced serum paraoxonase activity and concentration in patients with coronary artery disease. Circulation 101:2252–2257

    Article  CAS  PubMed  Google Scholar 

  • Johnson FO, Atchison WD (2009) The role of environmental mercury, lead and pesticide exposure in development of amyotrophic lateral sclerosis. Neurotoxicology 30:761–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MK, Glynn P (2001) Neuropathy target esterase. In: Krieger RI (ed) Handbook of Pesticide Toxicology, vol 2. Academic Press, San Diego, pp 953–965

    Chapter  Google Scholar 

  • Johnson MK, Lotti M (1980) Delayed neurotoxicity caused by chronic feeding of organophosphates requires a high-point of inhibition of neurotoxic esterase. Toxicol Lett 5:99–102

    Article  CAS  PubMed  Google Scholar 

  • Jokanović M, Kosanović M, Brkić D, Vukomanović P (2011) Organophosphate induced delayed polyneuropathy in man: an overview. Clin Neurol Neurosurg 113:7–10

    Article  PubMed  Google Scholar 

  • Kaji R, Izumi Y, Adachi Y, Kuzuhara S (2012) ALS-Parkinsonism-Dementia complex of Kii and other related diseases in Japan. Parkinsonism Relat Disord 18:S190–S191. doi:10.1016/S1353-8020(11)70059-1

    Article  PubMed  Google Scholar 

  • Kalfakis N, Vassilopoulos D, Voumvourakis C et al (1991) Amyotrophic lateral sclerosis in southern Greece: an epidemiologic study. Neuroepidemiology 10:170–173

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Cha ES, Choi GJ, Lee WJ (2014) Amyotrophic lateral sclerosis and agricultural environments: a systematic review. J Korean Med Sci 29:1610–1617

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiely T, Donaldson D, Arthur Grube P (2004) Pesticides industry sales and usage. US Environ Prot Agency, pp 1–30

  • Konno N, Horiguchi H, Fukushima M (1999) Delayed neurotoxicity of diisopropylfluorophosphate (DFP): autoradiographic localization of high-affinity [(3)H]DFP binding sites in the chicken spinal cord. Environ Health Prev Med 4:92–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusaka H (1999) [Neuropathology of the motor neuron disease–Bunina body]. Rinsho Shinkeigaku 39:65–66

    CAS  PubMed  Google Scholar 

  • Lacorte E, Ferrigno L, Leoncini E et al (2016) Physical activity, and physical activity related to sports, leisure and occupational activity as risk factors for ALS: a systematic review. Neurosci Biobehav Rev 66:61–79

    Article  PubMed  Google Scholar 

  • Lapadula DM, Patton SE, Campbell GA, Abou-Donia MB (1985) Characterization of delayed neurotoxicity in the mouse following chronic oral administration of tri-o-cresyl phosphate. Toxicol Appl Pharmacol 79:83–90

    Article  CAS  PubMed  Google Scholar 

  • Lehning EJ, Tanaka D, Bursian SJ (1996) Triphenyl phosphite and diisopropylphosphorofluoridate produce separate and distinct axonal degeneration patterns in the central nervous system of the rat. Fundam Appl Toxicol 29:110–118

    Article  CAS  PubMed  Google Scholar 

  • Lomen-Hoerth C, Murphy J, Langmore S et al (2003) Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 60:1094–1097

    Article  CAS  PubMed  Google Scholar 

  • Lotti M, Moretto A (2005) Organophosphate-induced delayed polyneuropathy. Toxicol Rev 24:37–49

    Article  CAS  PubMed  Google Scholar 

  • Mackness M, Mackness B (2015) Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene 567:12–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackness B, Beltran-Debon R, Aragones G et al (2010) Human tissue distribution of paraoxonases 1 and 2 mRNA. IUBMB Life 62:480–482. doi:10.1002/iub.347

    Google Scholar 

  • Mangas I, Estevez J, Vilanova E, França TCC (2016) New insights on molecular interactions of organophosphorus pesticides with esterases. Toxicology. doi:10.1016/j.tox.2016.06.006

    PubMed  Google Scholar 

  • Marrs TC (1993) Organophosphate poisoning. Pharmacol Ther 58:51–66

    Article  CAS  PubMed  Google Scholar 

  • Marsillach J, Mackness B, Mackness M et al (2008) Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med 45:146–157

    Article  CAS  PubMed  Google Scholar 

  • Meggs WJ (2003) Permanent paralysis at sites of dermal exposure to chlorpyrifos. J Toxicol Clin Toxicol 41:883–886

    Article  PubMed  Google Scholar 

  • Miranda ML, Alicia Overstreet Galeano M, Tassone E et al (2008) Spatial analysis of the etiology of amyotrophic lateral sclerosis among 1991 Gulf War veterans. Neurotoxicology 29:964–970

    Article  PubMed  Google Scholar 

  • Moretto A, Lotti M (2002) The relationship between isofenphos cholinergic toxicity and the development of polyneuropathy in hens and humans. Arch Toxicol 76:367–375

    Article  CAS  PubMed  Google Scholar 

  • Morgan JP (1982) The Jamaica ginger paralysis. JAMA 248:1864–1867

    Article  CAS  PubMed  Google Scholar 

  • Mou DL, Wang YP, Song JF et al (2006) Triorthocresyl phosphate-induced neuronal losses in lumbar spinal cord of hens—an immunohistochemistry and ultrastructure study. Int J Neurosci 116:1303–1316

    Article  CAS  PubMed  Google Scholar 

  • Murphy JM, Henry RG, Langmore S et al (2007) Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch Neurol 64:530–534. doi:10.1001/archneur.64.4.530

    Article  PubMed  Google Scholar 

  • Nagai M, Re DB, Nagata T et al (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda S, Tapaswi PK (1995) Biochemical, neuropathological and behavioral studies in hens induced by acute exposure of tri-ortho-cresyl phosphate. Int J Neurosci 82:243–254

    Article  CAS  PubMed  Google Scholar 

  • Nicholas JS, Butler GC, Lackland DT et al (2001) Health among commercial airline pilots. Aviat Space Environ Med 72:821–826

    CAS  PubMed  Google Scholar 

  • Oskarsson B, Horton DK, Mitsumoto H (2015) Potential environmental factors in amyotrophic lateral sclerosis. Neurol Clin 33:877–888

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzurro DM, Dao K, Costa LG (2014a) Astrocytes protect against diazinon- and diazoxon-induced inhibition of neurite outgrowth by regulating neuronal glutathione. Toxicology 318:59–68

  • Pizzurro DM, Dao K, Costa LG (2014b) Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. Toxicol Appl Pharmacol 274:372–382

  • Plato CC, Garruto RM, Galasko D et al (2003) Amyotrophic lateral sclerosis and parkinsonism-dementia complex of Guam: changing incidence rates during the past 60 years. Am J Epidemiol 157:149–157

    Article  PubMed  Google Scholar 

  • Rainier S, Bui M, Mark E et al (2008) Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet 82:780–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Re DB, Le Verche V, Yu C et al (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81:1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read DJ, Li Y, Chao MV et al (2009) Neuropathy target esterase is required for adult vertebrate axon maintenance. J Neurosci 29:11594–11600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read DJ, Li Y, Chao MV et al (2010) Organophosphates induce distal axonal damage, but not brain oedema, by inactivating neuropathy target esterase. Toxicol Appl Pharmacol 245:108–115

    Article  CAS  PubMed  Google Scholar 

  • Richardson RJ, Hein ND, Wijeyesakere SJ et al (2013) Neuropathy target esterase (NTE): overview and future. Chem Biol Interact 203:238–244

    Article  CAS  PubMed  Google Scholar 

  • Rowland LP, Mitsumoto H, Przedborski S (2010) Amyotrophic lateral sclerosis, progressive muscular atrophy, and primary lateral sclerosis. In: Rowland LP, Pedley TA (eds) Merritt’s neurology, 12th edn. Lippincott, Williams & Wilkins, Philadelphia, pp 802–808

    Google Scholar 

  • Saeed M, Siddique N, Hung WY et al (2006) Paraoxonase cluster polymorphisms are associated with sporadic ALS. Neurology 67:771–776

    Article  CAS  PubMed  Google Scholar 

  • Satoh T (2006) Global epidemiology of organophosphate and carbamate poisosings. In: Toxicology of organophosphate and carbamate compounds. Elsevier Academic Press, Burlington, MA, pp 89–100

  • Sirin GS, Zhou Y, Lior-Hoffmann L et al (2012) Aging Mechanism of Soman inhibited acetylcholinesterase. J Phys Chem B 116:12199–12207. doi:10.1021/jp307790v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slowik A, Tomik B, Partyka D et al (2006) Paraoxonase-1 Q192R polymorphism and risk of sporadic amyotrophic lateral sclerosis. Clin Genet 69:358–359

    Article  CAS  PubMed  Google Scholar 

  • Terry AV (2012) Functional consequences of repeated organophosphate exposure: potential non-cholinergic mechanisms. Pharmacol Ther 134:355–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thivakaran T, Gamage R, Gunarathne KS, Gooneratne IK (2012) Chlorpyrifos-induced delayed myelopathy and pure motor neuropathy: a case report. Neurologist 18:226–228

    Article  PubMed  Google Scholar 

  • Ticozzi N, LeClerc AL, Keagle PJ et al (2010) Paraoxonase gene mutations in amyotrophic lateral sclerosis. Ann Neurol 68:102–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosi L, Righetti C, Adami L, Zanette G (1994) October 1942: a strange epidemic paralysis in Saval, Verona, Italy. Revision and diagnosis 50 years later of tri-ortho-cresyl phosphate poisoning. J Neurol Neurosurg Psychiatry 57:810–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veronesi B, Padilla S, Blackmon K, Pope C (1991) Murine susceptibility to organophosphorus-induced delayed neuropathy (OPIDN). Toxicol Appl Pharmacol 107:311–324

    Article  CAS  PubMed  Google Scholar 

  • Vinsant S, Mansfield C, Jimenez-Moreno R, et al (2013) Characterization of early pathogenesis in the SOD1G93A mouse model of ALS: part I, background and methods. Brain Behav 3:335–350. doi:10.1002/brb3.143

  • Wang H, O’Reilly ÉJ, Weisskopf MG et al (2011) Smoking and risk of amyotrophic lateral sclerosis: a pooled analysis of 5 prospective cohorts. Arch Neurol 68:207–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    Article  CAS  PubMed  Google Scholar 

  • Wills A-M, Landers JE, Zhang H et al (2008) Paraoxonase 1 (PON1) organophosphate hydrolysis is not reduced in ALS. Neurology 70:929–934

    Article  CAS  PubMed  Google Scholar 

  • Wills A-M, Cronin S, Slowik A et al (2009) A large-scale international meta-analysis of paraoxonase gene polymorphisms in sporadic ALS. Neurology 73:16–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen J, Donerly S, Linney EA (2011) Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval zebrafish. Neurotoxicol Teratol 33:735–741. doi:10.1016/j.ntt.2011.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou C, Kou R, Gao Y et al (2013) Activation of mitochondria-mediated apoptotic pathway in tri-ortho-cresyl phosphate-induced delayed neuropathy. Neurochem Int 62:965–972

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIEHS (ES009089), NIGMS (R25GM62454-06), and the Mailman School of Public Health at Columbia University. D.B.R. is the recipient of a Career development award and two pilot grants from the NIEHS Center of Northern Manhattan and of the Calderone Prize for Junior Faculty in the Mailman School of Public Health. Y.N. is the recipient of a fellowship from The Initiative for Maximizing Student Development (IMSD) program at Columbia’s Mailman School of Public Health. The figures were created from materials made available by Creative Commons https://creativecommons.org/licenses/by/3.0/# and Mosby’s Medical Dictionary, 8th edition (2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane B. Re.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merwin, S.J., Obis, T., Nunez, Y. et al. Organophosphate neurotoxicity to the voluntary motor system on the trail of environment-caused amyotrophic lateral sclerosis: the known, the misknown, and the unknown. Arch Toxicol 91, 2939–2952 (2017). https://doi.org/10.1007/s00204-016-1926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1926-1

Keywords

Navigation