Archives of Toxicology

, Volume 91, Issue 3, pp 1049–1130 | Cite as

Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation

  • Franca M. Buratti
  • Maura Manganelli
  • Susanna Vichi
  • Mara Stefanelli
  • Simona Scardala
  • Emanuela TestaiEmail author
  • Enzo Funari
Review Article


Cyanobacteria were present on the earth 3.5 billion years ago; since then they have colonized almost all terrestrial and aquatic ecosystems. They produce a high number of bioactive molecules, among which some are cyanotoxins. Cyanobacterial growth at high densities, forming blooms, is increasing in extension and frequency, following anthropogenic activities and climate changes, giving rise to some concern for human health and animal life exposed to cyanotoxins. Numerous cases of lethal poisonings have been associated with cyanotoxins ingestion in wild animal and livestock. In humans few episodes of lethal or severe human poisonings have been recorded after acute or short-term exposure, but the repeated/chronic exposure to low cyanotoxin levels remains a critical issue. The properties of the most frequently detected cyanotoxins (namely, microcystins, nodularins, cylindrospermopsin and neurotoxins) are here critically reviewed, describing for each toxin the available information on producing organisms, biosynthesis/genetic and occurrence, with a focus on the toxicological profile (including kinetics, acute systemic toxicity, mechanism and mode of action, local effects, repeated toxicity, genotoxicity, carcinogenicity, reproductive toxicity; human health effects and epidemiological studies; animal poisoning) with the derivation of health-based values and considerations on the risks for human health.


Cyanobacteria Cyanotoxins Toxicological risk assessment Mechanism of action 


  1. Adamovsky O, Moosova Z, Pekarova M, Basu A, Babica P, Svihalkova Sindlerova L, Kubala L, Blaha L (2015) Immunomodulatory potency of microcystin, an important water-polluting cyanobacterial toxin. Environ Sci Technol 49(20):12457–12464. doi: 10.1021/acs.est.5b02049 PubMedCrossRefGoogle Scholar
  2. Affan A, Khomavis HS, Al-Harbi SM, Haque M, Khan S (2015) Effect of environmental factors on cyanobacterial abundance and cyanotoxins production in natural and drinking water, Bangladesh. Pak J Biol Sci 18(2):50–58PubMedCrossRefGoogle Scholar
  3. Akcaalan R, Mazur-Marzec H, Zalewska A, Albay M (2009) Phenotypic and toxicological characterization of toxic Nodularia spumigena from a freshwater lake in Turkey. Harmf Algae 8(2):273–278. doi: 10.1016/j.hal.2008.06.007 CrossRefGoogle Scholar
  4. Algermissen D, Mischke R, Seehusen F, Göbel J, Beineke A (2011) Lymphoid depletion in two dogs with nodularin intoxication. Vet Rec 169(1):15. doi: 10.1136/vr.d1019 (Epub 2011 Jun 7) PubMedCrossRefGoogle Scholar
  5. Alonso E, Alfonso A, Vieytes MR, Botana LM (2016) Evaluation of toxicity equivalent factors of Paralytic Shellfish Poisoning toxins in seven human sodium channels types by an automated high throughput electrophysiology system. Arch Toxicol 90:479. doi: 10.1007/s00204-014-1444-y PubMedCrossRefGoogle Scholar
  6. Al-Sammak MA, Hoagland KD, Cassada D, Snow DD (2014) Co-occurrence of the cyanotoxins BMAA, DABA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants. Toxins 6(2):488–508. doi: 10.3390/toxins6020488 PubMedPubMedCentralCrossRefGoogle Scholar
  7. AL-Tebrineh J, Merrick C, Ryan D, Humpage A, Bowling L, Neilan BA (2012) Community composition, toxigenicity, and environmental conditions during a cyanobacterial bloom occurring along 1,100 kilometers of the Murray River. Appl Environ Microbiol 78:263–272PubMedPubMedCentralCrossRefGoogle Scholar
  8. Amé MV, Galanti LN, Menone ML, Gerpe MS, Moreno VJ, Wunderlin DA (2010) Microcystin-LR, -RR, -YR and -LA in water samples and fishes from a shallow lake in Argentina. Harmful Algae 9(1):66–73. doi: 10.1016/j.hal.2009.08.001 CrossRefGoogle Scholar
  9. Araoz R, Molgò J, Tandeau de Marsac N (2010) Neurotoxic cyanobacterial toxins. Toxicon 56:813–828PubMedCrossRefGoogle Scholar
  10. Aronstam RS, Witkop B (1981) Anatoxin-a interactions with cholinergic synaptic molecules. Proc Natl Acad Sci USA 78:4639–4643PubMedPubMedCentralCrossRefGoogle Scholar
  11. Astrachan NB, Archer BG, Hilbelink DR (1980) Evaluation of the sub-acute toxicity and teratogenicity of anatoxin-a. Toxicon 18:684–688PubMedCrossRefGoogle Scholar
  12. Aune T (2001) Risk assessment of toxins associated with DSP, PSP and ASP in seafood. In: De Koe WJ, Samson RA, Van Egmond HP, Gilbert J, Sabino M (eds) Mycotoxins and phycotoxins in perspective at the turn of the millennium. Ponsen & Looyen Wageningen, The Netherlands, pp 515–526Google Scholar
  13. Azevedo SM, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181–182:441–446PubMedCrossRefGoogle Scholar
  14. Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109(1):33–44PubMedCrossRefGoogle Scholar
  15. Backer LC, Carmichael W, Kirkpatrick B, Williams C, Irvin M, Zhou Y, Johnson TB, Nierenberg K et al (2008) Recreational exposure to microcystins during a Microcystis aeruginosa bloom in a small lake. Mar Drugs 6:389–406PubMedPubMedCentralCrossRefGoogle Scholar
  16. Backer LC, McNeel SV, Barber T, Kirkpatrick B, Williams C, Irvin M, Zhou Y et al (2010) Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon 55:909–921PubMedCrossRefGoogle Scholar
  17. Bácsi I, Vasas G, Surányi G et al (2006) Alteration of cylindrospermopsin production in sulfate- or phosphate-starved cyanobacterium Aphanizomenon ovalisporum. FEMS Microbiol Lett 259(2):303–310. doi: 10.1111/j.1574-6968.2006.00282.x PubMedCrossRefGoogle Scholar
  18. Bagu JR, Sykes BD, Craig MM, Holmes CF (1997) A molecular basis for different interactions of marine toxins with protein phosphatase-1. Molecular models for bound motuporin, microcystins, okadaic acid, and calyculin A. J Biol Chem 272(8):5087–5097PubMedCrossRefGoogle Scholar
  19. Bain P, Shaw G, Patel B (2007) Induction of p53-regulated gene expression in human cell lines exposed to the cyanobacterial toxin cylindrospermopsin. J Toxicol Environ Health A 70:1687–1693PubMedCrossRefGoogle Scholar
  20. Bajpai R, Sharma NK, Lawton LA, Edwards C, Rai AK (2009) Microcystin producing cyanobacterium Nostoc sp. BHU001 from a pond in India. Toxicon 53(5):587–590PubMedCrossRefGoogle Scholar
  21. Ballot A, Krienitz L, Kotut K, Wiegand C, Metcalf JS, Codd GA, Pflugmacher S (2004) Cyanobacteria and cyanobacterial toxins in three alkaline Rift Valley lakes of Kenya—Lakes Bogoria, Nakuru and Elmenteita. J Plankton Res 26(8):925–935. doi: 10.1093/plankt/fbh084 CrossRefGoogle Scholar
  22. Ballot A, Fastner J, Lentz M, Wiedner C (2010) First report of anatoxin-a producing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany. Toxicon 56:964–971PubMedCrossRefGoogle Scholar
  23. Ballot A, Sandvik M, Rundberget T, Botha CJ, Miles CO (2014) Diversity of cyanobacteria and cyanotoxins in Hartbeespoort Dam, South Africa. Mar Freshw Res 65:175–189CrossRefGoogle Scholar
  24. Banack SA, Cox PA (2003) Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam. Neurology 61(3):387–389PubMedCrossRefGoogle Scholar
  25. Banack SA, Murch SJ, Cox PA (2006) Neurotoxic flying foxes as dietary items for the Chamorro people, Marianas Islands. J Ethnopharmacol 106(1):97–104PubMedCrossRefGoogle Scholar
  26. Banack SA, Caller TA, Stommel EW (2010) The cyanobacteria derived toxin Beta-N-methylamino-l-alanine and amyotrophic lateral sclerosis. Toxins 2(12):2837–2850PubMedPubMedCentralCrossRefGoogle Scholar
  27. Banack SA, Caller T, Henegan P, Haney J, Murby A, Metcalf JS et al (2015) Detection of cyanotoxins, beta-N-methylamino-l-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins 7(2):322–336. doi: 10.3390/toxins7020322 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Banker R, Carmeli S, Hadas O, Teltsch B, Porat R, Sukenik A (1997) Identification of cylindrospermopsin in Aphanizomenon ovalisporum (Cyanophyceae) isolated from Lake Kinneret, Israel. J Phycol 33(4):613–616. doi: 10.1111/j.0022-3646.1997.00613.x CrossRefGoogle Scholar
  29. Banker R, Carmeli S, Teltsch B, Sukenik A (2000) 7-epicylindrospermopsin, a toxic minor metabolite of the cyanobacterium Aphanizomenon ovalisporum from Lake Kinneret. Isr J Nat Prod 63:387–389CrossRefGoogle Scholar
  30. Bautista AC, Moore CE, Lin Y, Cline MG, Benitah N, Puschner B (2015) Hepatopathy following consumption of a commercially available blue-green algae dietary supplement in a dog. BMC Vet Res 11:136. doi: 10.1186/s12917-015-0453-2 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bazin E, Huet S, Jarry G, Le Hégarat L, Munday JS, Humpage AR, Fessard V (2010a) Cytotoxic and genotoxic effects of cylindrospermopsin in mice treated by gavage or intraperitoneal injection. Environ Toxicol 27(5):277–284PubMedCrossRefGoogle Scholar
  32. Bazin E, Mourot A, Humpage AR, Fessard V (2010b) Genotoxicity of a freshwater cyanotoxin, Cylindrospermopsin, in two human cell lines: Caco-2 and HepaRG. Environ Mol Mutag 51(3):251–259Google Scholar
  33. Beattie KA, Kaya K, Codd GA (2000) The cyanobacterium Nodularia PCC 7804, of freshwater origin, produces [L-Har2]nodularin. Phytochemistry 54(1):57–61. doi: 10.1016/S0031-9422(00)00045-5 PubMedCrossRefGoogle Scholar
  34. Beltran EC, Neilan BA (2000) Geographical segregation of the neurotoxin-producing cyanobacterium Anabaena circinalis. Appl Environ Microbiol 66(10):4468–4474PubMedPubMedCentralCrossRefGoogle Scholar
  35. Beltran E, Ibanez M, Sancho JV, Hernandez F (2012) Determination of six microcystins and nodularin in surface and drinking waters by on-line solid phase extraction-ultra high pressure liquid chromatography tandem mass spectrometry. J Chromatogr A 1266:61–68. doi: 10.1016/j.chroma.2012.10.017 PubMedCrossRefGoogle Scholar
  36. Belykh OI, Tikhonova IV, Kuzmin AV et al (2016) First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins. Toxicon 121:36–40. doi: 10.1016/j.toxicon.2016.08.015 PubMedCrossRefGoogle Scholar
  37. Benson JM, Hutt JA, Rein K, Boggs SE, Barr EB, Fleming LE (2005) The toxicity of microcystin LR in mice following 7 days of inhalation exposure. Toxicon 45(6):691–698PubMedPubMedCentralCrossRefGoogle Scholar
  38. Bernstein JA, Ghosh D, Levin LS, Zheng S, Charmichael W, Lummus Z, Bernstein IL (2011) Cyanobacteria: an unrecognized ubiquitous sensitizing allergen? Allergy Asthma Proc 32:106–110. doi: 10.2500/aap.2011.32.3434 PubMedCrossRefGoogle Scholar
  39. Berry JP, Lind O (2010) First evidence of “paralytic shellfish toxins” and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in “tegogolo” snails (Pomacea patula catemacensis). Toxicon 5:930–938. doi: 10.1016/j.toxicon.2009.07.035 CrossRefGoogle Scholar
  40. Berry JP, Jaja-Chimedza A, Davalos-Lind L, Lind O (2012) Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29(2):314–321. doi: 10.1080/19440049.2011.597785 PubMedCrossRefGoogle Scholar
  41. Beversdorf LJ, Chaston SD, Miller TR, McMahon KD (2015) Microcystin mcyA and mcyE gene abundances are not appropriate indicators of microcystin concentrations in Lakes. PLoS ONE 10(5):e0125353PubMedPubMedCentralCrossRefGoogle Scholar
  42. Bittencourt-Oliveira Mdo C, Cordeiro-Araujo MK, Chia MA, Arruda-Neto JD, Oliveira ET, Santos FD (2016) Lettuce irrigated with contaminated water: photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners. Ecotoxicol Environ Saf 128:83–90. doi: 10.1016/j.ecoenv.2016.02.014 PubMedCrossRefGoogle Scholar
  43. Blackburn SI, McCausland MA, Bolch CJS, Newman SJ, Jones GJ (1996) Effect of salinity on growth and toxin production in cultures of the bloom-forming cyanobacterium Nodularia spumigena from Australian waters. Phycologia 35(6):511–522. doi: 10.2216/i0031-8884-35-6-511.1 CrossRefGoogle Scholar
  44. Bláhová L, Babica P, Maršálková E, Maršálek B, Bláha L (2007) Concentrations and seasonal trends of extracellular microcystins in freshwaters of the Czech Republic—results of the national monitoring program. Clean Soil Air Water 35(4):348–354. doi: 10.1002/clen.200700010 CrossRefGoogle Scholar
  45. Borges HLF, Branco LHZ, Martins MD, Lima CS, Barbosa PT, Lira GAST et al (2015) Cyanotoxin production and phylogeny of benthic cyanobacterial strains isolated from the northeast of Brazil. Harmful Algae 43:46–57. doi: 10.1016/j.hal.2015.01.003 CrossRefGoogle Scholar
  46. Bormans M, Lengronne M, Brient L, Duval C (2014) Cylindrospermopsin accumulation and release by the benthic cyanobacterium Oscillatoria sp. PCC 6506 under different light conditions and growth phases. B Environ Contam Tox 92(2):243–247. doi: 10.1007/s00128-013-1144-y CrossRefGoogle Scholar
  47. Botha N, van de Venter M, Downing TG, Shephard EG, Gehringer MM (2004) The effect of intraperitoneally administered microcystin-LR on the gastrointestinal tract of Balb/c mice. Toxicon 43(3):251–254PubMedCrossRefGoogle Scholar
  48. Bouaïcha N, Maatouk I, Plessis MJ, Périn F (2005) Genotoxic potential of microcystin-LR and nodularin in vitro in primary cultured rat hepatocytes and in vivo in rat liver. Environ Toxicol 20(3):341–347PubMedCrossRefGoogle Scholar
  49. Bouhaddada R, Nelieu S, Nasri H, Delarue G, Bouaicha N (2016) High diversity of microcystins in a Microcystis bloom from an Algerian lake. Environ Pollut 216:836–844. doi: 10.1016/j.envpol.2016.06.055 PubMedCrossRefGoogle Scholar
  50. Bourke ATC, Hawes RB, Neilson A, Stallman ND (1983) An outbreak of hepato-enteritis (the Palm Island mystery disease) possibly caused by algal intoxication. Toxicon 21:45–48CrossRefGoogle Scholar
  51. Brenner ED, Stevenson DW, McCombie RW, Katari MS, Rudd SA, Mayer KFX, Palenchar PM et al (2003a) Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol 4:R78PubMedPubMedCentralCrossRefGoogle Scholar
  52. Brenner ED, Stevenson DW, McCombie RW, Katari MS, Rudd SA, Mayer KFX, Palenchar PM, Runko SJ, Twigg RW, Dai G, Martienssen RA, Benfey PN, Coruzzi GM (2003b) Expressed sequence tag analysis in Cycas, the most primitive living seed plant. Genome Biol 4(12):R78PubMedPubMedCentralCrossRefGoogle Scholar
  53. Briand JF, Jacquet S, Flinois C, Avois-Jacquet C, Maisonnette C, Leberre B, Humbert JF (2005) Variations in the microcystin production of Planktothrix rubescens (Cyanobacteria) assessed from a four-year survey of Lac du Bourget (France) and from laboratory experiments. Microbial Ecol 50:418–428CrossRefGoogle Scholar
  54. Briand E, Yéprémian C, Humbert J-F, Quiblier C (2008) Competition between microcystin- and non-microcystin-producing Planktothrix agardhii (cyanobacteria) strains under different environmental conditions. Environ Microbiol 10(12):3337–3348PubMedCrossRefGoogle Scholar
  55. Brutemark A, Engström-Öst J, Vehmaa A, Gorokhova E (2015a) Growth, toxicity and oxidative stress of a cultured cyanobacterium (Dolichospermum sp.) during different pH and temperature conditions. Phycological Res 63:56–63CrossRefGoogle Scholar
  56. Brutemark A, Vandelannoote A, Engström-Öst J, Suikkanen S (2015b) A less saline baltic sea promotes cyanobacterial growth, hampers intracellular microcystin production, and leads to strain-specific differences in allelopathy. PLoS ONE 10(6):e0128904. doi: 10.1371/journal.pone.0128904 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Buratti FM, Testai E (2015) Species- and congener-differences in microcystin-LR and -RR GSH conjugation in human, rat, and mouse hepatic cytosol. Toxicol Lett 232(1):133–140PubMedCrossRefGoogle Scholar
  58. Buratti FM, Scardala S, Funari E, Testai E (2011) Human glutathione transferases catalyzing the conjugation of the hepatoxin microcystin-LR. Chem Res Toxicol 24(6):926–933PubMedCrossRefGoogle Scholar
  59. Buratti FM, Scardala S, Funari E, Testai E (2013) The conjugation of microcystin-RR by human recombinant GSTs and hepatic cytosol. Toxicol Lett 219(3):231–238PubMedCrossRefGoogle Scholar
  60. Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF, Rangel LM et al (2016) Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44–53. doi: 10.1016/j.hal.2015.10.012 PubMedCrossRefGoogle Scholar
  61. Butler N, Carlisle J, Linville R (2012) Toxicological summary and suggested action levels to reduce potential adverse health effects of six cyanotoxins. Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento. 119 pagesGoogle Scholar
  62. Byth S (1980) Palm Island mystery disease. Med J Aust 2:40–42PubMedGoogle Scholar
  63. Cadel-Six S, Peyraud-Thomas C, Brient L, de Marsac NT, Rippka R, Mejean A (2007) Different genotypes of anatoxin-producing cyanobacteria coexist in the Tarn River, France. Appl Environ Microbiol 73(23):7605–7614. doi: 10.1128/aem.01225-07 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Cadel-Six S, Iteman I, Peyraud-Thomas C, Mann S, Ploux O, Mejean A (2009) Identification of a polyketide synthase coding sequence specific for anatoxin-a-producing Oscillatoria cyanobacteria. Appl Environ Microbiol 75(14):4909–4912PubMedPubMedCentralCrossRefGoogle Scholar
  65. Cai F, Liu J, Li C, Wang J (2015) Critical role of endoplasmic reticulum stress in cognitive impairment induced by Microcystin-LR. Int J Mol Sci 16(12):28077–28086. doi: 10.3390/ijms161226083 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Callieri C, Bertoni R, Contesini M, Bertoni F (2014) Lake level fluctuations boost toxic cyanobacterial “oligotrophic blooms”. PLoS ONE 9(10):e109526. doi: 10.1371/journal.pone.0109526 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Campbell HF, Edwards OE, Elder JW, Kolt RJ (1979) Total synthesis of DL-anatoxin-a and DL-isoanatoxin-a. Pol J Chem 53:27–37Google Scholar
  68. Campos A, Vasconcelos V (2010) Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 11(1):268–287. doi: 10.3390/ijms11010268 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Campos F, Durán R, Vidal L, Faro LRF, Alfonso M (2006) In vivo effects of the anatoxin-a on striatal dopamine release. Neuroch Res 31:491–501CrossRefGoogle Scholar
  70. Carmichael WW, Falconer IR (1993) Diseases related to freshwater algal blooms. In: Falconer IR (ed) Algal Toxins in Seafood and Drinking Water. Academic Press, London, pp 187–209CrossRefGoogle Scholar
  71. Carmichael WW, Biggs D, Gorham P (1975) Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science 187:542–544PubMedCrossRefGoogle Scholar
  72. Carmichael WW, Eschedor JT, Patterson GM, Moore RE (1988) Toxicity and partial structure of a hepatotoxic peptide produced by the cyanobacterium Nodularia spumigena Mertens emend. L575 from New Zealand. Appl Environ Microbiol 54(9):2257–2263PubMedPubMedCentralGoogle Scholar
  73. Carmichael WW, Mahmood NA, Hyde EG (1990) Natural toxins from cyanobacteria (blue-green algae). In: Hall S, Strichartz G (eds) Marine toxins: origins, structure and molecular pharmacology. American Chemical Society, Washington, pp 87–106CrossRefGoogle Scholar
  74. Carmichael WW, Evans WR, Yin QQ, Bell P, Moczydlowski E (1997) Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl Environ Microbiol 63:3104–3110PubMedPubMedCentralGoogle Scholar
  75. Carmichael WW, Azevedo SM, An JS, Molica RJ, Jochimsen EM, Lau S, Rinehart KL et al (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Persp 109(7):663–668CrossRefGoogle Scholar
  76. Carvalho GM, Oliveira VR, Casquilho NV, Araujo AC, Soares RM, Azevedo SM, Pires KM, Valença SS, Zin WA (2016) Pulmonary and hepatic injury after sub-chronic exposure to sublethal doses of microcystin-LR. Toxicon 112:51–58. doi: 10.1016/j.toxicon.2016.01.066 PubMedCrossRefGoogle Scholar
  77. Chatziefthimiou AD, Richer R, Rowles H, Powell JT, Metcalf JS (2014) Cyanotoxins as a potential cause of dog poisonings in desert environments. Vet Rec 174(19):484–485. doi: 10.1136/vr.g3176 PubMedCrossRefGoogle Scholar
  78. Chatziefthimiou AD, Metcalf JS, Glover WB, Banack SA, Dargham SR, Richer RA (2016) Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments. Toxicon 114:75–84. doi: 10.1016/j.toxicon.2016.02.016 PubMedCrossRefGoogle Scholar
  79. Chellappa NT, Chellappa SL, Chellappa S (2008) Harmful phytoplankton blooms and fish mortality in a eutrophicated reservoir of northeast Brazil Brazilian. Arch Biol Technol 51(4):831–844CrossRefGoogle Scholar
  80. Chen YM, Lee TH, Lee SJ, Huang HB, Huang R, Chou HN (2006) Comparison of protein phosphatase inhibition activities and mouse toxicities of microcystins. Toxicon 47(7):742–746PubMedCrossRefGoogle Scholar
  81. Chen J, Xie P, Li L, Xu J (2009) First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol Sci 108(1):81–89PubMedCrossRefGoogle Scholar
  82. Chen Y, Xu J, Li Y, Han X (2011) Decline of sperm quality and testicular function in male mice during chronic low-dose exposure to microcystin-LR. Reprod Toxicol 31(4):551–557PubMedCrossRefGoogle Scholar
  83. Chen J, Han FX, Wang F, Zhang H, Shi Z (2012) Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa). Ecotoxicol Environ Saf 76(2):193–199. doi: 10.1016/j.ecoenv.2011.09.022 PubMedCrossRefGoogle Scholar
  84. Chen L, Zhang X, Zhou W, Qiao Q, Liang H, Li G, Wang J, Cai F (2013a) The interactive effects of cytoskeleton disruption and mitochondria dysfunction lead to reproductive toxicity induced by microcystin-LR. PLoS ONE 8(1):e53949. doi: 10.1371/journal.pone.0053949 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Chen Y, Shen D, Fang D (2013b) Nodularins in poisoning. Clin Chim Acta 425:18–29. doi: 10.1016/j.cca.2013.07.005 PubMedCrossRefGoogle Scholar
  86. Chen L, Li S, Guo X, Xie P, Chen J (2016a) The role of GSH in microcystin-induced apoptosis in rat liver: involvement of oxidative stress and NF-κB. Environ Toxicol 31(5):552–560. doi: 10.1002/tox.22068 PubMedGoogle Scholar
  87. Chen Q, Christiansen G, Deng L, Kurmayer R (2016b) Emergence of nontoxic mutants as revealed by single filament analysis in bloom-forming cyanobacteria of the genus Planktothrix. BMC Microbiol. doi: 10.1186/s12866-016-0639-1 Google Scholar
  88. Chernoff N, Hunter ES 3rd, Hall LL, Rosen MB, Brownie CF, Malarkey D, Marr M, Herkovits J (2002) Lack of teratogenicity of microcystin-LR in the mouse and toad. J Appl Toxicol 22(1):13–17PubMedCrossRefGoogle Scholar
  89. Chernoff N, Rogers EH, Zehr RD, Gage MI, Malarkey DE, Bradfield CA, Liu Y et al (2011) Toxicity and recovery in the pregnant mouse after gestational exposure to the cyanobacterial toxin, cylindrospermopsin. J Appl Toxicol 31(3):242–254PubMedCrossRefGoogle Scholar
  90. Chernoff N, Rogers EH, Zehr RD, Gage MI, Travlos GS, Malarkey DE, Brix A et al (2014) The course of toxicity in the pregnant mouse after exposure to the cyanobacterial toxin cylindrospermopsin: clinical effects, serum chemistries, hematology, and histopathology. J Toxicol Environ Health Part A 77(17):1040–1060PubMedCrossRefGoogle Scholar
  91. Chiswell RK, Shaw GR, Eaglesham GK, Smith MJ, Norris RL, Seawright AA, Moore MR (1999) Stability of cylindrospermopsin, the toxin from the cyanobacterium Cylindrospermopsis raciborskii, effect of pH, temperature, and sunlight on decomposition. Environ Toxicol 14:155–165CrossRefGoogle Scholar
  92. Chong MWK, Wong BSF, Lam PKS, Shaw GR, Seawright AA (2002) Toxicity and uptake mechanism of cylindrospermopsin and lophyrotomin in primary rat hepatocytes. Toxicon 40:205–211PubMedCrossRefGoogle Scholar
  93. Chorus I (2012) Current approaches to Cyanotoxin risk assessment, risk management and regulations in different countries. Compiled and edited by Dr. Ingrid Chorus, published by the Federal Environment Agency (Umweltbundesamt) Germany, 151 pages.
  94. Chorus I, Bartram J (eds) (1999) Toxic cyanobacteria in water—a guide to their public health consequences, monitoring and management. E & FN Spon, LondonGoogle Scholar
  95. Christen V, Meili N, Fent K (2013) Microcystin-LR induces endoplasmatic reticulum stress and leads to induction of NFκB, interferon-alpha, and tumor necrosis factor-alpha. Environ Sci Technol 47(7):3378–3385. doi: 10.1021/es304886y PubMedGoogle Scholar
  96. Christiansen G, Fastner J, Erhard M, Börner T, Dittmann E (2003) Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol 185(2):564–572PubMedPubMedCentralCrossRefGoogle Scholar
  97. Christiansen G, Kurmayer R, Liu Q, Börner T (2006) Transposons inactivate biosynthesis of the nonribosomal peptide microcystin in naturally occurring Planktothrix spp. Appl Environ Microbiol 72(1):117–123PubMedPubMedCentralCrossRefGoogle Scholar
  98. Christiansen G, Yoshida W, Blom J, Portmann C, Gademann K, Hemscheidt T, Kurmayer R (2008) Isolation and structure determination of two microcystins and sequence comparisons of McyABC adenylation domains in Planktothrix pecies. J Nat Prod 71(11):1881–1886PubMedPubMedCentralCrossRefGoogle Scholar
  99. Cirés S, Ballot A (2016) A review of the phylogeny, ecology and toxin production of bloom-forming Planktothrix spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 54:21–43. doi: 10.1016/j.hal.2015.09.007 PubMedCrossRefGoogle Scholar
  100. Cirés S, Wörmer L, Timón Wiedner C, Quesada A (2011) Cylindrospermopsin production and release by the potentially invasive cyanobacterium Aphanizomenon ovalisporum under temperature and light gradients. Harmful Algae 10:668–675CrossRefGoogle Scholar
  101. Clemente Z, Busato RH, Oliveira Ribeiro CA et al (2010) Analyses of paralytic shellfish toxins and biomarkers in a southern Brazilian reservoir. Toxicon 55(2–3):396–406. doi: 10.1016/j.toxicon.2009.09.003 PubMedCrossRefGoogle Scholar
  102. Codd GA, Edwards C, Beattie KA, Barr WM, Gunn GJ (1992) Fatal attraction to cyanobacteria? Nature 359(6391):110–111PubMedCrossRefGoogle Scholar
  103. Combes A, El Abdellaoui S, Vial J, Lagrange E, Pichon V (2014) Development of an analytical procedure for quantifying the underivatized neurotoxin β-N-methylamino-l-alanine in brain tissues. BMAALS group. Anal Bioanal Chem 406(19):4627–4636PubMedCrossRefGoogle Scholar
  104. Cook WO, Beasley VR, Dahlem AM, Dellinger JA, Harlin KS, Carmichael WW (1988) Comparison of effects of anatoxin-a(s) and paraoxon, physostigmine and pyridostigmine mouse brain cholinesterase activity. Toxicon 26(8):750–753PubMedCrossRefGoogle Scholar
  105. Cook WO, Dellinger JA, Singh SS, Dahlem AM, Carmichael WW, Beasley VR (1989) Regional brain cholinesterase activity in rats injected intraperitoneally with anatoxin-a(s) or paraoxon. Toxicol Lett 49:29–34PubMedCrossRefGoogle Scholar
  106. Copp JN, Roberts AA, Marahiel MA, Neilan BA (2007) Characterization of PPTNs, a cyanobacterial phosphopantetheinyl transferase from Nodularia spumigena NSOR10. J Bacteriol 189(8):3133–3139PubMedPubMedCentralCrossRefGoogle Scholar
  107. Corbel S, Mougin C, Bouaïcha N (2014) Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 96:1–15. doi: 10.1016/j.chemosphere.2013.07.056 PubMedCrossRefGoogle Scholar
  108. Costa IAS, Azevedo SMFO, Senna PAC, Bernardo RR, Costa SM, Chellappa NT (2006) Occurrence of toxin-producing cyanobacteria blooms in a Brazilian semiarid reservoir. Braz J Biol 66:211–219PubMedCrossRefGoogle Scholar
  109. Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS et al (2005) Diverse taxa of cyanobacteria produce beta-Nmethylamino- l-alanine, a neurotoxic amino acid. Proc Natl Acad Sci USA 102:5074–5078PubMedPubMedCentralCrossRefGoogle Scholar
  110. Craig M, Luu HA, McCready TL, Williams D, Andersen RJ, Holmes CF (1996) Molecular mechanisms underlying he interaction of motuporin and microcystins with type-1 and type-2A protein phosphatases. Biochem Cell Biol 74:569–578PubMedCrossRefGoogle Scholar
  111. Cruz-Aguado R, Winkler D, Shaw CA (2006) Lack of behavioral and neuropathological effects of dietary beta-methylaminoalanine (BMAA) in mice. Pharmacol Biochem Behav 84:294–299PubMedCrossRefGoogle Scholar
  112. D’Agostino PM, Song X, Neilan BA, Moffitt MC (2016) Proteogenomics of a saxitoxin-producing and non-toxic strain of Anabaena circinalis (cyanobacteria) in response to extracellular NaCl and phosphate depletion. Environ Microbiol 18(2):461–476. doi: 10.1111/1462-2920.13131 PubMedCrossRefGoogle Scholar
  113. Davis TW, Orr PT, Boyer GL, Burford MA (2014) Investigating the production and release of cylindrospermopsin and deoxy-cylindrospermopsin by Cylindrospermopsis raciborskii over a natural growth cycle. Harmful Algae 31:18–25. doi: 10.1016/j.hal.2013.09.007 PubMedCrossRefGoogle Scholar
  114. de Almeida C, Costa de Arruda AC, Caldas de Queiroz E, de Lima Matias, Costa HT, Barbosa PF, Araújo Moura Lemos TM, Oliveira CN et al (2013) Oral exposure to cylindrospermopsin in pregnant rats: reproduction and foetal toxicity studies. Toxicon 74:127–129CrossRefGoogle Scholar
  115. De Pace R, Vita V, Bucci Maria S, Gallo P, Bruno M (2014) Microcystin contamination in Sea Mussel Farms from the Italian Southern Adriatic Coast following Cyanobacterial Blooms in an artificial reservoir. J Ecosyst 2014:11. doi: 10.1155/2014/374027 Google Scholar
  116. Deblois CP, Aranda-Rodriguez R, Giani A, Bird DF (2008) Microcystin accumulation in liver and muscle of tilapia in two large Brazilian hydroelectric reservoirs. Toxicon 51(3):435–448PubMedCrossRefGoogle Scholar
  117. Devlin JP, Edwards OE, Gorham PR, Hunter NR, Pike RK, Stavric B (1977) Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44 h. Can J Chem 55:1367–1371CrossRefGoogle Scholar
  118. Dias E, Louro H, Pinto M, Santos T, Antunes S, Pereira P, Silva MJ (2014) Genotoxicity of microcystin-LR in in vitro and in vivo experimental models. Biomed Res Int 2014:949521. doi: 10.1155/2014/949521 PubMedPubMedCentralGoogle Scholar
  119. Dietrich DR, Ernst B, De Koe WJ (2007) Human consumer death and algal supplement consumption: a post mortem assessment of potential microcystin-intoxication via microcystin immunohistochemical (MC-ICH) analyses. 7th International Conference on Toxic Cyanobacteria (ICTC), 1-132 BrazilGoogle Scholar
  120. Ding WX, Nam Ong C (2003) Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. FEMS Microbiol Lett 220(1):1–7PubMedCrossRefGoogle Scholar
  121. Ding WX, Shen HM, Zhu HG, Lee BL, Ong CN (1999) Genotoxicity of microcystic cyanobacteria extract of a water source in China. Mutat Res-Gen Tox En 442(2):69–77CrossRefGoogle Scholar
  122. Dittmann E, Wiegand C (2006) Cyanobacterial toxins—occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res 50(1):7–17PubMedCrossRefGoogle Scholar
  123. Dittmann E, Fewer DP, Neilan BA (2013) Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 37(1):23–43PubMedCrossRefGoogle Scholar
  124. Dong L, Zhang H, Duan L, Cheng X, Cui L (2008) Genotoxicity of testicle cell of mice induced by microcystin-LR. Life Sci J 5(1):43–45Google Scholar
  125. Doster E, Chislock MF, Roberts JF, Kottwitz JJ, Wilson AE (2014) Recognition of an important water quality issue at zoos: prevalence and potential threat of toxic cyanobacteria. J Zoo Wildl Med 45(1):165–168PubMedCrossRefGoogle Scholar
  126. Douglas P, Moorhead GB, Ye R, Lees-Miller SP (2001) Protein phosphatases regulate DNA-dependent protein kinase activity. J Biol Chem 276(22):18992–18998PubMedCrossRefGoogle Scholar
  127. Downing S, Banack SA, Metcalf JS, Cox PA, Downing TG (2011) Nitrogen starvation of cyanobacteria results in the production of b-N-methylamino-l-alanine. Toxicon 58:187–194PubMedCrossRefGoogle Scholar
  128. Draisci R, Ferretti E, Palleschi L, Marchiafava C (2001) Identification of anatoxins in blue-green algae food supplements using liquid chromatography-tandem mass spectrometry. Food Addit Contam 18(6):525–531. doi: 10.1080/02652030118558 PubMedCrossRefGoogle Scholar
  129. Dyble J, Tester PA, Litaker RW (2006) Effects of light intensity on cylindrospermopsin production in the cyanobacterial HAB species Cylindrospermopsis raciborskii. Afr J Marine Sci 28(2):309–312CrossRefGoogle Scholar
  130. Dziga D, Kokocinski M, Maksylewicz A, Czaja-Prokop U, Barylski J (2016) Cylindrospermopsin Biodegradation Abilities of Aeromonas sp. Isolated from Rusalka Lake. Toxins. doi: 10.3390/toxins8030055 Google Scholar
  131. EFSA (2009) Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on Marine Biotoxins in Shellfish—Saxitoxin. Group 1019:1–76Google Scholar
  132. Eguzozie K, Mavumengwana V, Nkosi D, Kayitesi E, Nnabuo-Eguzozie EC (2016) Bioaccumulation and quantitative variations of Microcystins in the swartspruit river, South Africa. Arch Environ Contam Toxicol 71:286–296. doi: 10.1007/s00244-016-0269-5 PubMedCrossRefGoogle Scholar
  133. Engström-Öst J, Repka S, Mikkonen M (2011) Interactions between plankton and cyanobacterium Anabaena with focus on salinity, growth and toxin production. Harmful Algae 10:530–535CrossRefGoogle Scholar
  134. Eriksson JE, Meriluoto JA, Kujari HP, Osterlund K, Fagerlund K, Hällbom L (1988) Preliminary characterization of a toxin isolated from the cyanobacterium Nodularia spumigena. Toxicon 26(2):161–166PubMedCrossRefGoogle Scholar
  135. Eriksson JE, Grönberg L, Nygård S, Slotte JP, Meriluoto JA (1990) Hepatocellular uptake of 3H-dihydromicrocystin-LR, a cyclic peptide toxin. Biochim Biophys Acta 1:60–66Google Scholar
  136. Faassen EJ (2014) Presence of the neurotoxin BMAA in aquatic ecosystems: what do we really know? Toxins 6(3):1109–1138. doi: 10.3390/toxins6031109 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Faassen EJ, Gillissen F, Lürling M (2012a) A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria. PLoS ONE 7(5):1–8CrossRefGoogle Scholar
  138. Faassen EJ, Harkema L, Begeman L, Lurling M (2012b) First report of (homo)anatoxin-a and dog neurotoxicosis after ingestion of benthic cyanobacteria in The Netherlands. Toxicon 60(3):378–384. doi: 10.1016/j.toxicon.2012.04.335 PubMedCrossRefGoogle Scholar
  139. Falconer IR (1989) Effects on human health of some toxic cyanobacteria (blue-green algae) in reservoirs, lakes and rivers. Tox Assess 4:175–184CrossRefGoogle Scholar
  140. Falconer IR (1994) Health problems from exposure to cyanobacteria and proposed safety guidelines for drinking and recreational water. In: Codd GA, Jefferies TM, Keevil CW, Potter E (eds) Detection methods for cyanobacterial toxins. Royal Society of Chemistry, London, pp 3–10CrossRefGoogle Scholar
  141. Falconer IR, Humpage AR (2001) Preliminary evidence for in vivo tumor initiation by oral administration of extracts of the blue-green alga Cylindrospermopsis raciborskii containing the toxin cylindrospermopsin. Environ Toxicol 16:192–195PubMedCrossRefGoogle Scholar
  142. Falconer IR, Beresford AM, Runnegar MTC (1983) Evidence of liver damage by toxin from a bloom of the blue-green alga, Microcystis aeruginosa. Med J Australia 1(11):511–514PubMedGoogle Scholar
  143. Falconer IR, Hardy SJ, Humpage AR, Froscio SM, Tozer GJ, Hawkins PR (1999) Hepatic and renal toxicity of the blue-green alga (cyanobacterium) Cylindrospermopsis raciborskii in male Swiss albino mice. Environ Toxicol 14(1):143–150CrossRefGoogle Scholar
  144. Faltermann S, Prétôt R, Pernthaler J, Fent K (2016) Comparative effects of nodularin and microcystin-LR in zebrafish: 1. Uptake by organic anion transporting polypeptide Oatp1d1 (Slco1d1). Aquat Toxicol 171:69–76. doi: 10.1016/j.aquatox.2015.11.016 PubMedCrossRefGoogle Scholar
  145. Farrer D, Counter M, Hillwig R, Cude C (2015) Health-based cyanotoxin guideline values allow for cyanotoxin-based monitoring and efficient public health response to cyanobacterial blooms. Toxicon 7(2):457–477Google Scholar
  146. Fastner J, Heinze R, Humpage AR, Mischke U, Eaglesham GK, Chorus I (2003) Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates. Toxicon 42(3):313–321. doi: 10.1016/S0041-0101(03)00150-8 PubMedCrossRefGoogle Scholar
  147. Fawell JK, Mitchell RE, Everett DJ, Hill RE (1999a) The toxicity of cyanobacterial toxins in the mouse: I. Microcystin–LR. Hum Exp Toxicol 18:162–167PubMedCrossRefGoogle Scholar
  148. Fawell JK, Mitchell RE, Hill RE, Everett DJ (1999b) The toxicity of cyanobacterial toxins in the mouse: II Anatoxin-a. Hum Exp Toxicol 18:168–173PubMedCrossRefGoogle Scholar
  149. Feng G, Li Y, Bai Y (2011) Induction of Fas receptor and Fas ligand by nodularin is mediated by NF-κB in HepG2 cells. Toxicol Appl Pharmacol 251(3):245–252. doi: 10.1016/j.taap.2011.01.009 PubMedCrossRefGoogle Scholar
  150. Fernández DA, Louzao MC, Vilariño N, Fraga M, Espiña B, Vieytes MR, Botana LM (2014) Evaluation of the intestinal permeability and cytotoxic effects of cylindrospermopsin. Toxicon 91:23–34. doi: 10.1016/j.toxicon.2014.08.072 PubMedCrossRefGoogle Scholar
  151. Fessard V, Bernard C (2003) Cell alterations but no DNA strand breaks induced in vitro by cylindrospermopsin in CHOK1 cells. Environ Toxicol 18(5):353–359PubMedCrossRefGoogle Scholar
  152. Fetscher AE, Howard MDA, Stancheva R et al (2015) Wadeable streams as widespread sources of benthic cyanotoxins in California, USA. Harmful Algae 49:105–116. doi: 10.1016/j.hal.2015.09.002 CrossRefGoogle Scholar
  153. Feurstein D, Holst K, Fischer A, Dietrich DR (2009) Oatp-associated uptake and toxicity of microcystins in primary murine whole brain cells. Toxicol Appl Pharmacol 234(2):247–255PubMedCrossRefGoogle Scholar
  154. Feurstein D, Stemmer K, Kleinteich J, Speicher T, Dietrich DR (2011) Microcystin congener– and concentration-dependent induction of murine neuron apoptosis and neurite degeneration. Toxicol Sci 124(2):424–431PubMedCrossRefGoogle Scholar
  155. Fewer DP, Koykka M, Halinen K, Jokela J, Lyra C, Sivonen K (2009) Culture-independent evidence for the persistent presence and genetic diversity of microcystin-producing Anabaena (Cyanobacteria) in the Gulf of Finland. Environ Microbiol 11(4):855–866PubMedCrossRefGoogle Scholar
  156. Filipič M, Žegura B, Sedmak B, Horvat-Žnidaršic I, Milutinovič A, Šuput D (2007) Subchronic exposure of rats to sublethal dose of microcystin-YR induces DNA damage in multiple organs. Radiol Oncol 41(1):15–22CrossRefGoogle Scholar
  157. Fischer WJ, Altheimer S, Cattori V, Meier PJ, Dietrich DR, Hagenbuch B (2005) Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol 203(3):257–263PubMedCrossRefGoogle Scholar
  158. Fischer A, Hoeger SJ, Stemmer K, Feurstein DJ, Knobeloch D, Nussler A, Dietrich DR (2010) The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of different microcystin congeners in vitro: a comparison of primary human hepatocytes and OATP-transfected HEK293 cells. Toxicol Appl Pharmacol 245(1):9–20PubMedCrossRefGoogle Scholar
  159. Fitzgeorge RB, Clark SA, Keevil CW (1994) Routes of intoxication. In: Codd GA, Jefferies TM, Keevil CW, Potter E (eds) Detection methods for cyanobacterial toxins. Royal Soc Chem, Cambridge, pp 69–74CrossRefGoogle Scholar
  160. Fleming LE, Rivero C, Stephan WB, Burns J, and Williams C (2001) Blue green algal exposure, drinking water and colorectal cancer study. The Florida Harmful Algal Bloom Taskforce Final Report, 1-44. St. Petersburg, FloridaGoogle Scholar
  161. Fleming LE, Rivero C, Burns J, William C, Bean JA, Shea KA, Stinn J (2002) Blue green algal (cyanobacterial) toxins, surface drinking water, and liver cancer in Florida. Harmful Algae 1(2):157–168CrossRefGoogle Scholar
  162. Foss AJ, Phlips EJ, Yilmaz M, Chapman A (2012) Characterization of paralytic shellfish toxins from Lyngbya wollei dominated mats collected from two Florida springs. Harmful Algae 16:98–107. doi: 10.1016/j.hal.2012.02.004 CrossRefGoogle Scholar
  163. Freitas M, Azevedo J, Pinto E, Neves J, Campos A, Vasconcelos V (2015) Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.). Ecotoxicol Environ Safety 116:59–67. doi: 10.1016/j.ecoenv.2015.02.002 PubMedCrossRefGoogle Scholar
  164. Fromme H, Koehler A, Krause R, Fuehrling D (2000) Occurrence of cyanobacterial toxins—microcystins and anatoxin-a—in Berlin water bodies with implications to human health and regulation. Environ Toxicol 15:120–130CrossRefGoogle Scholar
  165. Froscio SM, Humpage AR, Burcham PC, Falconer IR (2003) Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environ Toxicol 18:243–251PubMedCrossRefGoogle Scholar
  166. Froscio SM, Cannon E, Lau HM, Humpage AR (2009a) Limited uptake of the cyanobacterial toxin cylindrospermopsin by Vero cells. Toxicon 54(6):862–868. doi: 10.1016/j.toxicon.2009.06.019 PubMedCrossRefGoogle Scholar
  167. Froscio SM, Fanok S, Humpage AR (2009b) Cytotoxicity screening for the cyanobacterial toxin cylindrospermopsin. J Toxicol Environ Health A 72:345–349PubMedCrossRefGoogle Scholar
  168. Fu WY, Chen JP, Wang XM, Xu LH (2005) Altered expression of p53, Bcl-2 and Bax induced by microcystin-LR in vivo and in vitro. Toxicon 46:171–177PubMedCrossRefGoogle Scholar
  169. Fujiki H, Suganuma M (2011) Tumor promoters–microcystin-LR, nodularin and TNF-α and human cancer development. Anticancer Agents Med Chem 11(1):4–18 Review PubMedCrossRefGoogle Scholar
  170. Funari E, Testai E (2008) Human health risk assessment related to cyanotoxins exposure. Crit Rev Toxicol 38(2):97–125PubMedCrossRefGoogle Scholar
  171. Funari E, Manganelli M, Sinisi L (2012) Impact of climate change on waterborne diseases. Ann Ist Super Sanità 48(4):473–487. doi: 10.4415/ANN_12_04_12 PubMedCrossRefGoogle Scholar
  172. Galvao JA, Oetterer M, Bittencourt-Oliveira Mdo C et al (2009) Saxitoxins accumulation by freshwater tilapia (Oreochromis niloticus) for human consumption. Toxicon 54(6):891–894. doi: 10.1016/j.toxicon.2009.06.021 PubMedCrossRefGoogle Scholar
  173. Gantar M, Sekar R, Richardson LL (2009) Cyanotoxins from black band disease of corals and from other coral reef environments. Microb Ecol 58(4):856–864PubMedPubMedCentralCrossRefGoogle Scholar
  174. Garcia C, del Carmen Bravo M, Lagos M, Lagos N (2004) Paralytic shellfish poisoning: post-mortem analysis of tissue and body fluid samples from human victims in the Patagonia fjords. Toxicon 43:149–158PubMedCrossRefGoogle Scholar
  175. Gaudin J, Huet S, Jarry G, Fessard V (2008) In vivo DNA damage induced by the cyanotoxin microcystin-LR: comparison of intra-peritoneal and oral administrations by use of the comet assay. Mutat Res-Gen Tox En 652(1):65–71CrossRefGoogle Scholar
  176. Geh EN, Ghosh D, McKell M, de la Cruz AA, Stelma G, Bernstein JA (2015) Identification of Microcystis aeruginosa peptides responsible for allergic sensitization and characterization of functional interactions between cyanobacterial toxins and immunogenic peptides. Environ Health Perspect 123(11):1159–1166. doi: 10.1289/ehp.1409065 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Gehringer MM (2004) Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response. FEBS Lett 557(1–3):1–8PubMedCrossRefGoogle Scholar
  178. Gehringer MM, Adler L, Roberts AA, et al. (2012) Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp. ISME J.
  179. Giannuzzi L, Sedan D, Echenique R, Andrinolo D (2011) An acute case of intoxication with cyanobacteria and cyanotoxins in recreational water in Salto Grande Dam, Argentina. Mar Drugs 9:2164–2175PubMedPubMedCentralCrossRefGoogle Scholar
  180. Gkelis S, Zaoutsos N (2014) Cyanotoxin occurrence and potentially toxin producing cyanobacteria in freshwaters of Greece: a multi-disciplinary approach. Toxicon 78:1–9. doi: 10.1016/j.toxicon.2013.11.010 PubMedCrossRefGoogle Scholar
  181. Glover WB, Mash DC, Murch SJ (2014) The natural non-protein amino acid N-β-methylamino-l-alanine (BMAA) is incorporated into protein during synthesis. Amino Acids 46(11):2553–2559. doi: 10.1007/s00726-014-1812-1 PubMedCrossRefGoogle Scholar
  182. Gorokhova E, Engstrom-Ost J (2009) Toxin concentration in Nodularia spumigena is modulated by mesozooplankton grazers. J Plankt Res 31(10):1235–1247. doi: 10.1093/plankt/fbp060 CrossRefGoogle Scholar
  183. Graham J, Loftin K, Meyer M, Ziegler A (2010) Cyanotoxin mixtures and taste-and-odor-compounds in cyanobacterial blooms from the midwestern United States. Environ Sci Technol 44:7361–7368PubMedCrossRefGoogle Scholar
  184. Gugger M, Lenoir S, Berger C et al (2005) First report in a river in France of the benthic cyanobacterium Phormidium favosum producing anatoxin-a associated with dog neurotoxicosis. Toxicon 45(7):919–928. doi: 10.1016/j.toxicon.2005.02.031 PubMedCrossRefGoogle Scholar
  185. Gupta N, Pant SC, Vijayaraghavan R, Rao PV (2003) Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology 188(2–3):285–296PubMedCrossRefGoogle Scholar
  186. Gurbuz F, Uzunmehmetoglu OY, Diler O, Metcalf JS, Codd GA (2016) Occurrence of microcystins in water, bloom, sediment and fish from a public water supply. Sci Tot Environ 562:860–868. doi: 10.1016/j.scitotenv.2016.04.027 CrossRefGoogle Scholar
  187. Gutierrez-Praena D, Campos A, Azevedo J, Neves J, Freitas M, Guzmán-Guillén R, Cameán AM et al (2014) Exposure of lycopersicon esculentum to microcystin-LR: effects in the leaf proteome and toxin translocation from water to leaves and fruits. Toxins 6(6):1837–1854. doi: 10.3390/toxins6061837 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Gutiérrez-Praena D, Pichardo S, Jos A, Moreno FJ, Cameán AM (2012a) Biochemical and pathological toxic effects induced by the cyanotoxin Cylindrospermopsin on the human cell line Caco-2. Water Res 46(5):1566–1575. doi: 10.1016/j.watres.2011.12.044 PubMedCrossRefGoogle Scholar
  189. Gutiérrez-Praena D, Pichardo S, Jos Á, Moreno FJ, Cameán AM (2012b) Alterations observed in the endothelial HUVEC cell line exposed to pure cylindrospermopsin. Chemosphere 89(9):1151–1160. doi: 10.1016/j.chemosphere.2012.06.023 PubMedCrossRefGoogle Scholar
  190. Guzman RE, Solter PF (1999) Hepatic oxidative stress following prolonged sublethal microcystin LR exposure. Toxicol Pathol 27(5):582–588PubMedCrossRefGoogle Scholar
  191. Guzman-Guillen R, Prieto AI, Moreno I, Eugenia Soria M, Camean AM (2011) Effects of thermal treatments during cooking, microwave oven and boiling, on the unconjugated microcystin concentration in muscle of fish (Oreochromis niloticus). Food Chem Toxicol 49(9):2060–2067. doi: 10.1016/j.fct.2011.05.018 PubMedCrossRefGoogle Scholar
  192. Hackett JD, Wisecarver JH, Brosnahan ML, Kulis DM, Anderson DM, Bhattacharya D, Plumley FG, Erdner DL (2013) Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Mol Biol Evol 30:70–78PubMedCrossRefGoogle Scholar
  193. Haddix PL, Hughley CJ, LeChevallier MW (2007) Occurrence of microcystins in 33 US water supplies. J Am Water Works Assoc 99(9):118–125+10Google Scholar
  194. Halinen K, Jokela J, Fewer DP, Wahlsten M, Sivonen K (2007) Direct evidence for production of microcystins by Anabaena strains from the Baltic Sea. Appl Environ Microbiol 73(20):6543–6550. doi: 10.1128/aem.01377-07 PubMedPubMedCentralCrossRefGoogle Scholar
  195. Handeland K, Østensvik Ø (2010) Microcystin poisoning in roe deer (Capreolus capreolus). Toxicon 56(6):1076–1078. doi: 10.1016/j.toxicon.2010.06.023 PubMedCrossRefGoogle Scholar
  196. Harada K, Matsuura K, Suzuki M, Watanabe MF, Oishi S, Dahlem AM, Beasley VR, Carmichael WW (1990) Isolation and characterization of the minor components associated with microcystins LR and RR in the cyanobacterium (blue-green algae). Toxicon 28(1):55–64PubMedCrossRefGoogle Scholar
  197. Harada KI, Ohtani I, Iwamoto K, Suzuki M, Watanabe MF, Watanabe M, Terao K (1994) Isolation of cylindrospermopsin from a cyanobacterium Umezakia natans and its screening method. Toxicon 32(1):73–84. doi: 10.1016/0041-0101(94)90023-X PubMedCrossRefGoogle Scholar
  198. Harada K, Imanishi S, Kato H, Mizuno M, Ito E, Tsuji K (2004) Isolation of Adda from microcystin-LR by microbial degradation. Toxicon 44(1):107–109PubMedCrossRefGoogle Scholar
  199. Harke MJ, Steffen MM, Gobler CJ et al (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20. doi: 10.1016/j.hal.2015.12.007 PubMedCrossRefGoogle Scholar
  200. Hawkins PR, Runnegar MTC, Jackson ARB, Falconer IR (1985) Severe hepatotoxicity caused by the tropical cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic water supply reservoir. Appl Environ Microbiol 50:1292–1295PubMedPubMedCentralGoogle Scholar
  201. Hayman J (1992) Beyond the Barcoo–probable human tropical cyanobacterial poisoning in outback Australia. Med J Aust 157(11–12):794–796PubMedGoogle Scholar
  202. He J, Chen J, Wu L, Li G, Xie P (2012a) Metabolic response to oral microcystin-LR exposure in the rat by NMR-based metabonomic study. J Proteome Res 11(12):5934–5946. doi: 10.1021/pr300685g PubMedGoogle Scholar
  203. He J, Chen J, Xie P, Zhang D, Li G, Wu L, Zhang W, Guo X, Li S (2012b) Quantitatively evaluating detoxification of the hepatotoxic microcystins through the glutathione and cysteine pathway in the cyanobacteria-eating bighead carp. Aquat Toxicol 116–117:61–68PubMedCrossRefGoogle Scholar
  204. Heath MW, Wood SA, Ryan KG (2010) Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiol Ecol 73(1):95–109. doi: 10.1111/j.1574-6941.2010.00867.x PubMedGoogle Scholar
  205. Heath M, Wood SA, Young RG, Ryan KG (2016) The role of nitrogen and phosphorus in regulating Phormidium sp. (cyanobacteria) growth and anatoxin production. FEMS Microbiol Ecol. doi: 10.1093/femsec/fiw021 PubMedGoogle Scholar
  206. Heinze R (1999) Toxicity of the cyanobacterial toxin microcystin-LR to rats after 28 days intake with the drinking water. Environ Toxicol 14(1):57–60CrossRefGoogle Scholar
  207. Helbling EW, Banaszak AT, Villafañe VE (2015) Global change feed-back inhibits cyanobacterial photosynthesis. Sci Rep 5:14514. doi: 10.1038/srep14514 CrossRefGoogle Scholar
  208. Hemscheidt T, Burgoyne DL, Moore RE (1995) Biosynthesis of anatoxin-a(s), (2S,4S)-4-hydroxyarginine as an intermediate. J Chem Soc Chem Commun. doi: 10.1039/C39950000205 Google Scholar
  209. Henriksen P, Carmichael WW, An J, Moestrup Ø (1997) Detection of an anatoxin-a(s)-like anticholinesterase in natural blooms and cultures of cyanobacteria/blue-green algae from danish lakes and in the stomach contents of poisoned birds. Toxicon 35(6):901–913. doi: 10.1016/S0041-0101(96)00190-0 PubMedCrossRefGoogle Scholar
  210. Hereman TC, Bittencourt-Oliveira MDC (2012) Bioaccumulation Of Microcystins In Lettuce. J Phycol 48(6):1535–1537. doi: 10.1111/jpy.12006 PubMedCrossRefGoogle Scholar
  211. Heresztyn T, Nicholson BC (1997) Nodularin concentrations in Lakes Alexandrina and Albert, South Australia, during a bloom of the cyanobacterium (blue-green alga) Nodularia spumigena and degradation of the toxin. Environ Toxicol Water Quality 12(4):273–282. doi: 10.1002/(sici)1098-2256 CrossRefGoogle Scholar
  212. Heussner AH, Mazija L, Fastner J, Dietrich DR (2012) Toxin content and cytotoxicity of algal dietary supplements. Toxicol Appl Pharmacol 265(2):263–271. doi: 10.1016/j.taap.2012.10.005 PubMedCrossRefGoogle Scholar
  213. Hilborn ED, Ward RA (2016) The risk of cyanobacterial toxins in dialysate: what do we know? Semin Dial 29(1):15–18. doi: 10.1111/sdi.12420 PubMedCrossRefGoogle Scholar
  214. Hilborn ED, Carmichael WW, Soares RM, Yuan M, Servaites JC, Barton HA, Azevedo SMFO (2007) Serologic evaluation of human microcystin exposure. Environ Toxicol 22:459–463PubMedCrossRefGoogle Scholar
  215. Hilborn ED, Soares RM, Servaites JC, Delgado AG, Magalhães VF, Carmichael WW, Azevedo SM (2013) Sublethal microcystin exposure and biochemical outcomes among hemodialysis patients. PLoS ONE 8(7):1–9CrossRefGoogle Scholar
  216. Hilborn ED, Roberts VA, Backer L, Deconno E, Egan JS, Hyde JB, Nicholas DC et al (2014) Algal bloom-associated disease outbreaks among users of freshwater lakes–United States, 2009–2010. Centers for Disease Control and Prevention (CDC). MMWR Morb Mortal Wkly Rep 63(1):11–15PubMedGoogle Scholar
  217. H-j Zhang, J-y Zhang, Hong Y, Y-x Chen (2007) Evaluation of organ distribution of microcystins in the freshwater phytoplanktivorous fish Hypophthalmichthys molitrix. J Zhejiang Univ Sci B 8(2):116–120. doi: 10.1631/jzus.2007.B0116 CrossRefGoogle Scholar
  218. Hjørnevik LV, Fismen L, Young FM, Solstad T, Fladmark KE (2012) Nodularin exposure induces SOD1 phosphorylation and disrupts SOD1 co-localization with actin filaments. Toxins (Basel) 4(12):1482–1499. doi: 10.3390/toxins4121482 CrossRefGoogle Scholar
  219. Hobson P, Fallowfield H (2001) Effect of salinity on photosynthetic activity of Nodularia spumigena. J App Phycol 13:493–499CrossRefGoogle Scholar
  220. Hoeger SJ, Schmid D, Blom JF, Ernst B, Dietrich DR (2007) Analytical and functional characterization of microcystins [Asp(3)]MC-RR and [Asp(3), Dhb(7)]MC-RR: consequences for risk assessment? Environ Sci Technol 41(7):2609–2616PubMedCrossRefGoogle Scholar
  221. Holtcamp W (2012) The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease? Environ Health Perspect 120(A110–116):57Google Scholar
  222. Hooser SB, Kuhlenschmidt MS, Dahlem AM, Beasley VR, Carmichael WW, Haschek WM (1991) Uptake and subcellular localization of tritiated dihydro-microcystin-LR in rat liver. Toxicon 29(6):589–601PubMedCrossRefGoogle Scholar
  223. Horne AJ, Galat DL (1985) Nitrogen fixation in an oligotrophic, saline desert lake: pyramid Lake, Nevada. Limn Oceanogr 30(6):1229–1239CrossRefGoogle Scholar
  224. Horst GP, Sarnellea O, Whitea JD, Hamiltonb SK, Kaula RB, Bressiec JD (2014) Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res 54:188–198PubMedCrossRefGoogle Scholar
  225. Hu C, Rea C, Yu Z, Lee J (2016) Relative importance of Microcystis abundance and diversity in determining microcystin dynamics in Lake Erie coastal wetland and downstream beach water. J Appl Microbiol 120(1):138–151. doi: 10.1111/jam.12983 PubMedCrossRefGoogle Scholar
  226. Huang WM, Xing W, Li DH, Liu YD (2008) The role of glutathione metabolism in tolerance of tobacco BY-2 suspension cells to microcystin-RR. Bull Environ l Contam Toxicol 80:215–219CrossRefGoogle Scholar
  227. Huang P, Zheng Q, Xu LH (2011) The apoptotic effect of oral administration of microcystin-RR on mice liver. Environ Toxicol 26(5):443–452. doi: 10.1002/tox.20570 PubMedCrossRefGoogle Scholar
  228. Huang X, Zhang Y, Xiao W, Ye X, Zhong Q, Gu K (2013) Comparison of response indices to toxic microcystin-LR in blood of mice. Chemosphere 92(5):563–569PubMedCrossRefGoogle Scholar
  229. Huang W, Bi Y, Hu Z (2014) Effects of fertilizer-urea on growth, photosynthetic activity and microcystins production of Microcystis aeruginosa isolated from Dianchi Lake. Bull Environ Contam Toxicol 92:514–519PubMedCrossRefGoogle Scholar
  230. Huang B, Xu S, Miao A-J, Xiao L, Yang L-Y (2015) Cadmium toxicity to Microcystis aeruginosa PCC 7806 and its microcystin-lacking mutant. PLoS ONE. doi: 10.1371/journal.pone.0116659 Google Scholar
  231. Huang P, Wang B, Wang X, Xing M, Guo Z, Xu L (2016) HEK293 cells exposed to microcystin-LR show reduced protein phosphatase 2A activity and more stable cytoskeletal structure when overexpressing α4 protein. Environ Toxicol. doi: 10.1002/tox.22230 Google Scholar
  232. Huber AL (1984) Nodularia (Cyanobacteriaceae) Akinetes in the Sediments of the Peel-Harvey Estuary, Western Australia: potential Inoculum Source for Nodularia Blooms. Appl Environ Microbiol 47(2):234–238PubMedPubMedCentralGoogle Scholar
  233. Huguet A, Henri J, Petitpas M, Hogeveen K, Fessard V (2013) Comparative cytotoxicity, oxidative stress, and cytokine secretion induced by two cyanotoxin variants, microcystin LR and RR, in human intestinal Caco-2 cells. J Biochem Mol Toxicol 27(5):253–258. doi: 10.1002/jbt.21482 PubMedCrossRefGoogle Scholar
  234. Huguet A, Hatton A, Villot R, Quenault H, Blanchard Y, Fessard V (2014) Modulation of chromatin remodelling induced by the freshwater cyanotoxin cylindrospermopsin in human intestinal caco-2 cells. PLoS ONE 9(6):e99121. doi: 10.1371/journal.pone.0099121 PubMedPubMedCentralCrossRefGoogle Scholar
  235. Humpage AR, Falconer IR (2003) Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss Albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environ Toxicol 18:94–103PubMedCrossRefGoogle Scholar
  236. Humpage AR, Fontaine F, Froscio S, Burcham P, Falconer IR (2005) Cylindrospermopsin genotoxicity and cytotoxicity: role of cytochrome P450 and oxidative stress. J Toxicol Environ Health Part A 68:739–753PubMedCrossRefGoogle Scholar
  237. IARC (2010) Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 94 v-vii, 1-412Google Scholar
  238. Ibelings BW, Backer LC, Kardinaal WE, Chorus I (2015) Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae 49:63–74. doi: 10.1016/j.hal.2014.10.002 PubMedPubMedCentralGoogle Scholar
  239. Ikehara T, Nakashima J, Nakashima S, Yasumoto T (2015) Different responses of primary normal human hepatocytes and human hepatoma cells toward cyanobacterial hepatotoxin microcystin-LR. Toxicon 105:4–9. doi: 10.1016/j.toxicon.2015.08.025 PubMedCrossRefGoogle Scholar
  240. Illinois Environmental Protection Agency (2012) Algal toxins in fish–Fish consumption guidance memo (Tom Hornshaw). 2 pages.
  241. Ito E, Kondo F, Terao K, Harada K (1997) Neoplastic nodular formation in mouse liver induced by repeated intraperitoneal injections of microcystin-LR. Toxicon 35(9):1453–1457PubMedCrossRefGoogle Scholar
  242. Jackson AR, McInnes A, Falconer IR, Runnegar MT (1984) Clinical and pathological changes in sheep experimentally poisoned by the blue-green alga Microcystis aeruginosa. Vet Pathol 21(1):102–113PubMedCrossRefGoogle Scholar
  243. Jarvenpaa S, Lundberg-Niinisto C, Spoof L, Sjovall O, Tyystjarvi E, Meriluoto J (2007) Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography-mass spectrometry. Toxicon 49(6):865–874. doi: 10.1016/j.toxicon.2006.12.008 PubMedCrossRefGoogle Scholar
  244. Jia J, Chen Q, Lauridsen TL (2016) A systematic investigation into the environmental fate of microcystins and the potential risk: study in lake Taihu. Toxins. doi: 10.3390/toxins8060170 Google Scholar
  245. Jiang Y, Xie P, Chen J, Liang G (2008) Detection of the hepatotoxic microcystins in 36 kinds of cyanobacteria Spirulina food products in China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25(7):885–894. doi: 10.1080/02652030701822045 PubMedCrossRefGoogle Scholar
  246. Jiang Y, Xiao P, Yu G, Sano T, Pan Q, Li R (2012) Molecular basis and phylogenetic implications for deoxy-cylindrospermopsin biosynthesis in Raphidiopsis curvata (cyanobacteria). Appl Environ Microbiol 78(7):2256–2263PubMedPubMedCentralCrossRefGoogle Scholar
  247. Jiang L, Eriksson J, Lage S, Jonasson S, Shams S, Mehine M, Ilag LL, Rasmussen U (2014a) Diatoms: a novel source for the neurotoxin BMAA in aquatic environments. PLoS ONE 9(1):e84578. doi: 10.1371/journal.pone.0084578 PubMedPubMedCentralCrossRefGoogle Scholar
  248. Jiang L, Kiselova N, Rosén J, Ilag LL (2014b) Quantification of neurotoxin BMAA (β-N-methylamino-l-alanine) in seafood from Swedish markets. Sci Rep 4:6931PubMedCrossRefGoogle Scholar
  249. Jiao Y, Chen Q, Chen X, Wang X, Liao X, Jiang L, Wu J, Yang L (2014) Occurrence and transfer of a cyanobacterial neurotoxin β-methylamino-l-alanine within the aquatic food webs of Gonghu Bay (Lake Taihu, China) to evaluate the potential human health risk. Sci Total Environ 468–469:457–463PubMedCrossRefGoogle Scholar
  250. Jochimsen EM, Carmichael WW, An J, Cardo DM, Cookson ST, Holmes CEM, DeC Antunes MB et al (1998) Liver failure and death after exposure to Microcystin at a hemodialysis center in Brazil. N Engl J Med 338:873–878PubMedCrossRefGoogle Scholar
  251. Jonasson S, Vintila S, Sivonen K, El-Shehawy R (2008) Expression of the nodularin synthetase genes in the Baltic Sea bloom-former cyanobacterium Nodularia spumigena strain AV1. FEMS Microbiol Ecol 65:31–39PubMedCrossRefGoogle Scholar
  252. Jones GJ, Blackburn SI, Parker NS (1994) A Toxic Bloom of Nodularia spumigena Mertens in Orielton Lagoon, Tasmania. Aust J Mar Freshw Res 45:787–800CrossRefGoogle Scholar
  253. Kankaanpää HT, Sjövall O, Huttunen M et al (2009) Production and sedimentation of peptide toxins nodularin-R and microcystin-LR in the northern Baltic Sea. Environ Pollut 157(4):1301–1309. doi: 10.1016/j.envpol.2008.11.044 PubMedCrossRefGoogle Scholar
  254. Kao CY (1993) Paralytic shellfish poisoning. In: Falconer IR (ed) Algal toxins in seafood and drinking water. CA Academic Press, San Diego, pp 75–86CrossRefGoogle Scholar
  255. Karamyan VT, Speth RC (2008) Animal models of BMAA neurotoxicity: a critical review. Life Sci 82(5–6):233–246PubMedCrossRefGoogle Scholar
  256. Karjalainen M, Reinikainen M, Spoof L, Meriluoto JAO, Sivonen K, Viitasalo M (2005) Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: consequences for pike larvae and mysid shrimps. Environ Toxicol 20(3):354–362. doi: 10.1002/tox.20112 PubMedCrossRefGoogle Scholar
  257. Karlsson O, Berg C, Brittebo EB, Lindquist NG (2009a) Retention of the cyanobacterial neurotoxin beta-N-methylamino-l-alanine in melanin and neuromelanin-containing cells—a possible link between Parkinson-dementia complex and pigmentary retinopathy. Pigment Cell Melanoma Res 22:120–130. doi: 10.1111/j.1755-148X.2008.00508.x PubMedCrossRefGoogle Scholar
  258. Karlsson O, Lindquist NG, Brittebo EB, Roman E (2009b) Selective brain uptake and behavioral effects of the cyanobacterial toxin BMAA (beta-Nmethylamino-l-alanine) following neonatal administration to rodents. Toxicol Sci 109:286–295PubMedCrossRefGoogle Scholar
  259. Kellmann R, Kaan Mihali T, Jae Jeon Y, Pickford R, Pomati F, Neilan BA (2008) Biosynthetic intermediate analysis and functional homology reveal a Saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 74:4044–4053PubMedPubMedCentralCrossRefGoogle Scholar
  260. Kellmann R, Ploux O, Neilan BA (2013) Neurotoxic Alkaloids from Cyanobacteria. In: Ramawat KG, Mérillon JM (eds) Natural Products. Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. Springer, pp 39–83CrossRefGoogle Scholar
  261. Kerbrat AS, Darius HT, Pauillac S, Chinain M, Laurent D (2010) Detection of ciguatoxin-like and paralysing toxins in Trichodesmium spp. from New Caledonia lagoon. Mar Pollut Bull 61:360–366PubMedCrossRefGoogle Scholar
  262. Kim J, Kottuparambil S, Moh S et al (2014) Potential applications of nuisance microalgae blooms. J Appl Phycol. doi: 10.1007/s10811-014-0410-7 Google Scholar
  263. Kittler K, Schreiner M, Krumbein A et al (2012) Uptake of the cyanobacterial toxin cylindrospermopsin in Brassica vegetables. Food Chem 133(3):875–879. doi: 10.1016/j.foodchem.2012.01.107 CrossRefGoogle Scholar
  264. Kittler K, Hurtaud-Pessel D, Maul R, Kolrep F, Fessard V (2016) In vitro metabolism of the cyanotoxin cylindrospermopsin in HepaRGcells and liver tissue fractions. Toxicon 110:47–50PubMedCrossRefGoogle Scholar
  265. Kiviranta J, Namikoshi M, Sivonen K, Evans WR, Carmichael WW, Rinehart KL (1992) Structure determination and toxicity of a new microcystin from Microcystis aeruginosa strain 205. Toxicon 30(9):1093–1098PubMedCrossRefGoogle Scholar
  266. Kleppe R, Herfindal L, Døskeland SO (2015) Cell death inducing microbial protein phosphatase inhibitors–mechanisms of action. Mar Drugs 13(10):6505–6520. doi: 10.3390/md13106505 PubMedPubMedCentralCrossRefGoogle Scholar
  267. Kokociński M, Mankiewicz-Boczek J, Jurczak T et al (2013) Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environ Sci Pollut Res 20(8):5243–5264. doi: 10.1007/s11356-012-1426-7 CrossRefGoogle Scholar
  268. Kondo F, Ikai Y, Oka H, Okumura M, Ishikawa N, Harada K, Matsuura K, Murata H, Suzuki M (1992) Formation, characterization, and toxicity of the glutathione and cysteine conjugates of toxic heptapeptide microcystins. Chem Res Toxicol 5(5):591–596PubMedCrossRefGoogle Scholar
  269. Kondo F, Matsumoto H, Yamada S, Ishikawa N, Ito E, Nagata S, Ueno Y, Suzuki M, Harada K (1996) Detection and identification of metabolites of microcystins formed in vivo in mouse and rat livers. Chem Res Toxicol 9(8):1355–1359PubMedCrossRefGoogle Scholar
  270. Koskenniemi K, Lyra C, Rajaniemi-Wacklin P, Jokela J, Sivonen K (2007) Quantitative real-time pcr detection of toxic Nodularia cyanobacteria in the Baltic Sea. Appl Environ Microbiol 73(7):2173–2179PubMedPubMedCentralCrossRefGoogle Scholar
  271. Kosol S, Schmidt J, Kurmayer R (2009) Variation in peptide net production and growth among strains of the toxic cyanobacterium Planktothrix spp. Eur J Phycol 44(1):49–62. doi: 10.1080/09670260802158659 CrossRefGoogle Scholar
  272. Kounnis V, Chondrogiannis G, Mantzaris MD, Tzakos AG, Fokas D, Papanikolaou NA, Galani V, Sainis I, Briasoulis E (2015) microcystin lr shows cytotoxic activity against pancreatic cancer cells expressing the membrane OATP1B1 and OATP1B3 transporters. Anticancer Res 35(11):5857–5865PubMedGoogle Scholar
  273. Kozdęba M, Borowczyk J, Zimoląg E, Wasylewski M, Dziga D, Madeja Z, Drukala J (2014) Microcystin-LR affects properties of human epidermal skin cells crucial for regenerative processes. Toxicon 80:38–46. doi: 10.1016/j.toxicon.2014.01.003 PubMedCrossRefGoogle Scholar
  274. Krishnamurthy T, Carmichael WW, Sarver EW (1986) Toxic peptides from freshwater cyanobacteria (blue-green algae). I. Isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flos-aquae. Toxicon 24(9):865–873. doi: 10.1016/0041-0101(86)90087-5 PubMedCrossRefGoogle Scholar
  275. Krüger T, Hölzel N, Luckas B (2012) Influence of cultivation parameters on growth and microcystin production of Microcystis aeruginosa (Cyanophyceae) isolated from Lake Chao (China). Microb Ecol 63:199–209PubMedCrossRefGoogle Scholar
  276. Krzton W, Pudas K, Pociecha A, Strzesak M, Kosiba J, Walusiak E, Szarek-Gwiazda E, Wilk-Woźniak E (2016) Microcystins affect zooplankton biodiversity in oxbow lakes. Environ Toxicol Chem. doi: 10.1002/etc.3519 PubMedGoogle Scholar
  277. Kujbida P, Hatanaka E, Vinolo MA, Waismam K, Cavalcanti DM, Curi R, Farsky SH, Pinto E (2009) Microcystins -LA, -YR, and -LR action on neutrophil migration. Biochem Biophys Res Commun 382(1):9–14. doi: 10.1016/j.bbrc.2009.02.009 PubMedCrossRefGoogle Scholar
  278. Kurland LT, Mulder DW (1954) Epidemiologic investigations of amyotrophic lateral sclerosis. I. Preliminary report on geographic distribution and special reference to the Mariana Islands, including clinical and pathologic observations. Neurology 4(6):438–448PubMedCrossRefGoogle Scholar
  279. Kurmayer R (2011) The toxic cyanobacterium Nostoc sp. strain 152 produces highest amounts of microcystin and nostophycin under stress conditions. J Phycol 47:200–207PubMedPubMedCentralCrossRefGoogle Scholar
  280. Kurmayer R, Kutzenberger T (2003) Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl Environ Microbiol 69:6723–6730PubMedPubMedCentralCrossRefGoogle Scholar
  281. Kurmayer R, Christiansen G, Fastner J, Börner T (2004) Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ Microbiol 6(8):831–841PubMedCrossRefGoogle Scholar
  282. Kurmayer R, Christiansen G, Gumpenberger M, Fastner J (2005) Genetic identification of microcystin ecotypes in toxic cyanobacteria of the genus Planktothrix. Microbiol 151(5):1525–1533CrossRefGoogle Scholar
  283. Kurmayer R, Deng L, Entfellner E (2016) Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54:69–86. doi: 10.1016/j.hal.2016.01.004 PubMedPubMedCentralCrossRefGoogle Scholar
  284. Kushnir MM, Bergquist J (2009) Beta-methylamino-l-alanine analysis by liquid chromatography tandem mass spectrometry with iTRAQ as the derivative. Eur J Mass Spectrom (Chichester) 15(3):439–443CrossRefGoogle Scholar
  285. Labine M, Minuk GY (2014) Long-term, low-dose exposure to microcystin toxin does not increase the risk of liver tumor development or growth in mice. Hepatol Res 45(6):683–692PubMedCrossRefGoogle Scholar
  286. Labine MA, Green C, Mak G, Xue L, Nowatzki J, Griffith J, Minuk GY (2015) The geographic distribution of liver cancer in Canada does not associate with cyanobacterial toxin exposure. Int J Environ Res Public Health 12(12):15143–15153. doi: 10.3390/ijerph121214969 PubMedPubMedCentralCrossRefGoogle Scholar
  287. Lage S, Costa PR, Moita T, Eriksson J, Rasmussen U, Rydberg SJ (2014) BMAA in shellfish from two Portuguese transitional water bodies suggests the marine dinoflagellate Gymnodinium catenatum as a potential BMAA source. Aquat Toxicol 152:131–138PubMedCrossRefGoogle Scholar
  288. Lage S, Annadotter H, Rasmussen U, Rydberg S (2015) Biotransfer of beta-N-methylamino-l-alanine (BMAA) in a eutrophicated freshwater lake. Mar Drugs 13(3):1185–1201. doi: 10.3390/md13031185 PubMedPubMedCentralCrossRefGoogle Scholar
  289. Lagos N, Onodera H, Zagatto P, Andrinolo D, Azevedo S, Oshima Y (1999) The first evidence of paralytic shellfish toxins in the fresh water cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 37:1359–1373PubMedCrossRefGoogle Scholar
  290. Lajeunesse A, Segura PA, Gelinas M et al (2012) Detection and confirmation of saxitoxin analogues in freshwater benthic Lyngbya wollei algae collected in the St. Lawrence River (Canada) by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1219:93–103. doi: 10.1016/j.chroma.2011.10.092 PubMedCrossRefGoogle Scholar
  291. Lankoff A, Kolataj A (2000) Influence of microcystine-YR and nodularin on the activity of some glucosidases in mouse liver. Toxicology 146(2–3):177–185PubMedCrossRefGoogle Scholar
  292. Lankoff A, Kolataj A (2001) Influence of microcystin-YR and nodularin on the activity of some proteolytic enzymes in mouse liver. Toxicon 39(2–3):419–423PubMedCrossRefGoogle Scholar
  293. Lankoff A, Wojcik A, Fessard V, Meriluoto J (2006) Nodularin-induced genotoxicity following oxidative DNA damage and aneuploidy in HepG2 cells. Toxicol Lett 164(3):239–248PubMedCrossRefGoogle Scholar
  294. Lankoff A, Wojcik A, Lisowska H, Bialczyk J, Dziga D, Carmichael WW (2007) No induction of structural chromosomal aberrations in cylindrospermopsin-treated CHO-K1 cells without and with metabolic activation. Toxicon 50(8):1105–1115PubMedCrossRefGoogle Scholar
  295. Lankoff A, Sochacki J, Spoof L, Meriluoto J, Wojcik A, Wegierek A, Verschaeve L (2008) Nucleotide excision repair impairment by nodularin in CHO cell lines due to ERCC1/XPF inactivation. Toxicol Lett 179(2):101–107. doi: 10.1016/j.toxlet.2008.04.008 PubMedCrossRefGoogle Scholar
  296. Lau N-S, Matsui M, Abdullah AA-A (2015) Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. BioMed Res Int 2015:9. doi: 10.1155/2015/754934 Google Scholar
  297. Laurent D, Kerbrat AS, Darius HT, Girard E, Golubic S, Benoit E, Sauvial M-P et al (2008) Are cyanobacteria involved in ciguatera fish poisoning-like outbreaks in New Caledonia? Harmful Algae 7:827–838CrossRefGoogle Scholar
  298. LeBlanc Renaud S, Pick FR, Forti N (2011) Effect of light intensity on the relative dominance of toxigenic and non toxigenic strains of Microcystis aeruginosa. Appl Environ Microbiol 19:7016–7022CrossRefGoogle Scholar
  299. Lehtimäki J, Sivonen K, Luukkainen R, Niemilä SI (1994) The effects of incubation time, temperature, light, salinity and phosphorus on growth and hepatoxin production by Nodularia strains. Arch Hydrobiol 130:269–282Google Scholar
  300. Lehtimäki J, Moisander P, Sivonen K, Kononen K (1997) Growth, nitrogen fixation and nodularin production by two Baltic Sea cyanobacteria. Appl Environ Microbiol 63:1647–1656PubMedPubMedCentralGoogle Scholar
  301. Lehtimäki N, Shunmugam S, Jokela J, Wahlsten M, Carmel D, Keränen M, Sivonen K, Aro EM, Allahverdiyeva Y, Mulo P (2011) Nodularin uptake and induction of oxidative stress in spinach (Spinachia oleracea). J Plant Physiol 168(6):594–600. doi: 10.1016/j.jplph.2010.09.013 PubMedCrossRefGoogle Scholar
  302. Lei L, Peng L, Huang X, Han BP (2014) Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China. Environ Monit Assess 186(5):3079–3090. doi: 10.1007/s10661-013-3602-8 PubMedCrossRefGoogle Scholar
  303. Lévesque B, Gervais MC, Chevalier P, Gauvin D, Anassour-Laouan-Sidi E, Gingras S, Fortin N et al (2014) Prospective study of acute health effects in relation to exposure to cyanobacteria. Sci Total Environ 466–467:397–403PubMedCrossRefGoogle Scholar
  304. Li R, Carmichael W, Brittain S et al (2001) First report of the cyanotoxins cylindrospermopsin and deoxycylindrospermopsin from Raphidiopsis curvata Cyanobacteria). J Phycol 37:1–6CrossRefGoogle Scholar
  305. Li Y, Sheng J, Sha J, Han X (2008) The toxic effects of microcystin-LR on the reproductive system of male rats in vivo and in vitro. Reprod Toxicol 26(3–4):239–245PubMedCrossRefGoogle Scholar
  306. Li H, Xie P, Li G, Hao L, Xiong Q (2009) In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun and c-myc) in liver, kidney and testis of male Wistar rats injected i.v. with toxins. Toxicon 53(1):169–175. doi: 10.1016/j.toxicon.2008.10.027 PubMedCrossRefGoogle Scholar
  307. Li GY, Xie P, Li HY, Hao L, Xiong Q, Qiu T (2011a) Involment of p53, Bax, and Bcl-2 pathway in microcystins-induced apoptosis in rat testis. Environ Toxicol 26(2):111–117. doi: 10.1002/tox.20532 PubMedCrossRefGoogle Scholar
  308. Li Y, Chen JA, Zhao Q, Pu C, Qiu Z, Zhang R, Shu W (2011b) A cross-sectional investigation of chronic exposure to microcystin in relationship to childhood liver damage in the three Gorges reservoir region, China. Environ Health Persp 119(10):1483–1488CrossRefGoogle Scholar
  309. Li G, Cai F, Yan W, Li C, Wang J (2012a) A proteomic analysis of MC-LR-induced neurotoxicity: implications for Alzheimer’s disease. Toxicol Sci 127(2):485–495PubMedCrossRefGoogle Scholar
  310. Li G, Yan W, Cai F, Li C, Chen N, Wang J (2012b) Spatial learning and memory impairment and pathological change in rats induced by acute exposure to microcystin-LR. Environ Toxicol 29(3):261–268PubMedCrossRefGoogle Scholar
  311. Li G, Yan W, Qiao Q, Chen J, Cai F, He Y, Zhang X (2012c) Global effects of subchronic treatment of microcystin-LR on rat splenetic protein levels. J Proteomics 77:383–393PubMedCrossRefGoogle Scholar
  312. Li L, Xie P, Lei H, Zhang X (2013) Renal accumulation and effects of intraperitoneal injection of extracted microcystins in omnivorous crucian carp (Carassius auratus). Toxicon 70:62–69. doi: 10.1016/j.toxicon.2013.03.022 PubMedCrossRefGoogle Scholar
  313. Li YW, Zhan XJ, Xiang L, Deng ZS, Huang BH, Wen HF, Sun TF et al (2014) Analysis of trace microcystins in vegetables using solid-phase extraction followed by high performance liquid chromatography triple-quadrupole mass spectrometry. J Agric Food Chem 62(49):11831–11839. doi: 10.1021/jf5033075 PubMedCrossRefGoogle Scholar
  314. Li S, Chen J, Xie P, Guo X, Fan H, Yu D, Zeng C, Chen L (2015a) The role of glutathione detoxification pathway in MCLR-induced hepatotoxicity in SD rats. Environ Toxicol 30(12):1470–1480. doi: 10.1002/tox.22017 PubMedCrossRefGoogle Scholar
  315. Li X, Zhang X, Ju J, Li Y, Yin L, Pu Y (2015b) Maternal repeated oral exposure to microcystin-LR affects neurobehaviors in developing rats. Environ Toxicol Chem 34(1):64–69. doi: 10.1002/etc.2765 PubMedCrossRefGoogle Scholar
  316. Li X, Zhao Q, Zhou W, Xu L, Wang Y (2015c) Effects of chronic exposure to microcystin-LR on hepatocyte mitochondrial DNA replication in mice. Environ Sci Technol 49(7):4665–4672. doi: 10.1021/es5059132 PubMedCrossRefGoogle Scholar
  317. Li X, Dreher TW, Li R (2016a) An overview of diversity, occurrence, genetics and toxin production of bloom-forming Dolichospermum (Anabaena) species. Harmful Algae 54:54–68. doi: 10.1016/j.hal.2015.10.015 PubMedCrossRefGoogle Scholar
  318. Li X, Xu L, Zhou W, Zhao Q, Wang Y (2016b) Chronic exposure to microcystin-LR affected mitochondrial DNA maintenance and caused pathological changes of lung tissue in mice. Environ Pollut 210:48–56. doi: 10.1016/j.envpol.2015.12.001 PubMedCrossRefGoogle Scholar
  319. Lian M, Liu Y, Yu SZ, Qian GS, Wan SG, Dixon KR (2006) Hepatitis B virus x gene and cyanobacterial toxins promote aflatoxin B-1-induced hepatotumorigenesis in mice. World J Gastroentero 12(19):3065–3072CrossRefGoogle Scholar
  320. Liang G, Xie P, Chen J, Yu T (2011) Comparative studies on the pH dependence of DOW of microcystin-RR and -LR using LC-MS. Sci World J 11:20–26. doi: 10.1100/tsw.2011.17 CrossRefGoogle Scholar
  321. Liebel S, de Oliveira Ribeiro CA, de Magalhães VF, da Silva Rde C, Rossi SC, Randi MA, Filipak Neto F (2015) Low concentrations of cylindrospermopsin induce increases of reactive oxygen species levels, metabolism and proliferation in human hepatoma cells (HepG2). Toxicol In Vitro 29(3):479–488. doi: 10.1016/j.tiv.2014.12.022 PubMedCrossRefGoogle Scholar
  322. Lin H, Liu W, Zeng H, Pu C, Zhang R, Qiu Z, Chen JA et al (2016) Determination of environmental exposure to microcystin and aflatoxin as a risk for renal function based on 5493 rural people in Southwest China. Environ Sci Technol 50(10):5346–5356. doi: 10.1021/acs.est.6b01062 PubMedCrossRefGoogle Scholar
  323. Liu H, Scott PM (2011) Determination of the cyanobacterial toxin cylindrospermopsin in algal food supplements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28(6):786–790. doi: 10.1080/19440049.2010.501824 PubMedPubMedCentralCrossRefGoogle Scholar
  324. Liu J, Sun Y (2015) The role of PP2A-associated proteins and signal pathways in microcystin-LR toxicity. Toxicol Lett 236(1):1–7. doi: 10.1016/j.toxlet.2015.04.010 PubMedCrossRefGoogle Scholar
  325. Liu XQ, Rush T, Ciske J, Lobner D (2010) Selective death of cholinergic neurons induced by beta-methylamino-l-alanine. NeuroReport 21(1):55–58PubMedCrossRefGoogle Scholar
  326. Liu Y, Zhang J, Gao B, Fen S (2014) Combined effects of two antibiotic contaminants on Microcystis aeruginosa. J Hazard Mater 279:148–155PubMedCrossRefGoogle Scholar
  327. Liu J, Wang H, Wang B, Chen T, Wang X, Huang P, Xu L, Guo Z (2016) Microcystin-LR promotes proliferation by activating Akt/S6K1 pathway and disordering apoptosis and cell cycle associated proteins phosphorylation in HL7702 cells. Toxicol Lett 240(1):214–225. doi: 10.1016/j.toxlet.2015.10.015 PubMedCrossRefGoogle Scholar
  328. Llewellyn LE (2006) Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat Prod Rep 23:200–222PubMedCrossRefGoogle Scholar
  329. Lobner D, Piana PMT, Salous AK, and Peoples RW (2007) β-N-Methylamino-L-alanine enhances neurotoxicity through multiple mechanisms. Neurobiol Dis 25:360–366CrossRefGoogle Scholar
  330. Loftin KA, Clark JM, Journey CA, Kolpin DW, Van Metre PC, Bradley PM (2016a) Spatial and temporal variation in microcystins occurrence in wadeable streams in the southeastern USA. Environ Toxicol Chem. doi: 10.1002/etc.3391 PubMedGoogle Scholar
  331. Loftin KA, Graham JL, Hilborn ED et al (2016b) Cyanotoxins in inland lakes of the United States: occurrence and potential recreational health risks in the EPA National Lakes Assessment 2007. Harmful Algae 56:77–90. doi: 10.1016/j.hal.2016.04.001 PubMedCrossRefGoogle Scholar
  332. Lone Y, Bhide M, Koiri RK (2016) Microcystin-LR induced immunotoxicity in mammals. J Toxicol 2016:8048125. doi: 10.1155/2016/8048125 PubMedPubMedCentralCrossRefGoogle Scholar
  333. Lopez-Alonso H, Rubiolo JA, Vega F, Vieytes MR, Botana LM (2013) Protein synthesis inhibition and oxidative stress induced by cylindrospermopsin elicit apoptosis in primary rat hepatocytes. Chem Res Toxicol 26:203–212PubMedCrossRefGoogle Scholar
  334. Lopez-Rodas V, Costas E (1999) Preference of mice to consume Microcystis aeruginosa (toxin–producing cyanobacteria): a possible explanation for numerous fatalities of livestock and wildlife. Res Vet Sci 67(1):107–110PubMedCrossRefGoogle Scholar
  335. Lopez-Rodas V, Maneiro E, Lanzarot MP, Perdigones N, Costas E (2008) Mass wildlife mortality due to cyanobacteria in the Donana National Park, Spain. Vet Rec 162(10):317–318PubMedCrossRefGoogle Scholar
  336. Lovell RA, Schaeffer DJ, Hooser SB, Haschek WM, Dahlem AM, Carmichael WW, Beasley VR (1989) Toxicity of intraperitoneal doses of microcystin-LR in two strains of male mice. J Environ Pathol Toxicol Oncol 9(3):221–237PubMedGoogle Scholar
  337. Lu H, Choudhuri S, Ogura K, Csanaky IL, Lei X, Cheng X, Song PZ, Klaassen CD (2008) Characterization of organic anion transporting polypeptide 1b2-null mice: essential role in hepatic uptake/toxicity of phalloidin and microcystin-LR. Toxicol Sci 103(1):35–45. doi: 10.1093/toxsci/kfn038 PubMedPubMedCentralCrossRefGoogle Scholar
  338. Lundren V, Granéli E, Pflugmacher S (2012) Influence of Acartia cf. bifilosa (Copepoda) on morphology and toxicity of Nodularia spumigena (Cyanophyceae). Harmuf Algae 18:35–46CrossRefGoogle Scholar
  339. Lürling M, Faassen EJ (2013) Dog poisonings associated with a Microcystis aeruginosa bloom in the Netherlands. Toxins (Basel) 5(3):556–567. doi: 10.3390/toxins5030556 CrossRefGoogle Scholar
  340. Maatouk I, Bouaïcha N, Plessis MJ, Périn F (2004) Detection by 32P-postlabelling of 8-oxo-7,8-dihydro-2’-deoxyguanosine in DNA as biomarker of microcystin-LR- and nodularin-induced DNA damage in vitro in primary cultured rat hepatocytes and in vivo in rat liver. Mutat Res 564(1):9–20PubMedCrossRefGoogle Scholar
  341. MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192PubMedCrossRefGoogle Scholar
  342. Maejima K, Muraoka T, Park H-D (2014) Accumulation and inhibitory effects of microcystin on the growth of rice and broccoli. Korean J Ecol Environ 47:19–30Google Scholar
  343. Mahmood WA, Carmichael WW (1987) Anatoxin-a(s), an anticholinesterase from the cyanobacterium Anabaena flos-aquae NRC-525-17. Toxicon 25:1211–1227CrossRefGoogle Scholar
  344. Maire MA, Bazin E, Fessard V, Rast C, Humpage AR, Vasseur P (2010) Morphological cell transformation of Syrian hamster embryo (SHE) cells by the cyanotoxin, cylindrospermopsin. Toxicon 55(7):1317–1322PubMedCrossRefGoogle Scholar
  345. Manganelli M, Scardala S, Stefanelli M, Vichi S, Mattei D, Bogialli S, Ceccarelli P, Corradetti E, Petrucci I, Gemma S, Testai E, Funari E (2010) Health risk evaluation associated to Planktothrix rubescens: an integrated approach to design tailored monitoring programs for human exposure to cyanotoxins. Water Res 44(5):1297–1306PubMedCrossRefGoogle Scholar
  346. Manganelli M, Scardala S, Stefanelli M et al (2012) Emerging health issues of cyanobacterial blooms. Ann Ist Super Sanità 48(4):415–428PubMedCrossRefGoogle Scholar
  347. Manganelli M, Stefanelli M, Vichi S, Andreani P, Nascetti G, Scialanca F, Scardala S, Testai E, Funari E (2016) Cyanobacteria biennal dynamic in a volcanic mesotrophic lake in central Italy: strategies to prevent dangerous human exposures to cyanotoxins. Toxicon 115:28–40. doi: 10.1016/j.toxicon.2016.03.004 PubMedCrossRefGoogle Scholar
  348. Mankiewicz J, Walter Z, Tarczynska M, Palyvoda O, Wojtysiak-Staniaszczyk M, Zalewski M (2002) Genotoxicity of cyanobacterial extracts containing microcystins from Polish water reservoirs as determined by SOS chromotest and comet assay. Environ Toxicol 17(4):341–350PubMedCrossRefGoogle Scholar
  349. Mann S, Lombard B, Loew D, Mejean A, Ploux O (2011) Insights into the reaction mechanism of the 1748 prolyl-acyl carrier protein oxidase involved in anatoxin-a and homoanatoxin-a biosynthesis. Biochemistry 50(33):7184–7197. doi: 10.1021/bi200892a PubMedCrossRefGoogle Scholar
  350. Marler TE, Snyder LR, Shaw CA (2010) Cycas micronesica (Cycadales) plants devoid of endophytic cyanobacteria increase in beta-methylamino-L-alanine. Toxicon 56(4):563–568PubMedCrossRefGoogle Scholar
  351. Masango MG, Myburgh JG, Labuschagne L, Govender D, Bengis RG, Naicker D (2010) Assessment of Microcystis bloom toxicity associated with wildlife mortality in the kruger national park, South Africa. J Wildl Dis 46(1):95–102PubMedCrossRefGoogle Scholar
  352. Mazur H, Pliński M (2003) Nodularia spumigena blooms and the occurrence of hepatotoxin in the Gulf of Gdańsk. Oceanologia 45(1):305–316Google Scholar
  353. Mazur-Marzec H, Zeglínska L, Plínski M (2005) The effect of salinity on the growth, toxin production and morphology of Nodularia spumigena isolated from the Gulf of Gdánsk, southern Baltic Sea. J Appl Phycol 17:171–179CrossRefGoogle Scholar
  354. Mazur-Marzec H, Meriluoto J, Pliński M (2006a) The degradation of the cyanobacterial hepatotoxin nodularin (NOD) by UV radiation. Chemosphere 65(8):1388–1395. doi: 10.1016/j.chemosphere.2006.03.072 PubMedCrossRefGoogle Scholar
  355. Mazur-Marzec H, Meriluoto J, Pliński M, Szafranek J (2006b) Characterization of nodularin variants in Nodularia spumigena from the Baltic Sea using liquid chromatography/mass spectrometry/mass spectrometry. Rapid Commun Mass Spectrom 20(13):2023–2032PubMedCrossRefGoogle Scholar
  356. Mazur-Marzec H, Toruńska A, Błońska MJ, Moskot M, Plinski M, Jakobkiewicz-Banecka J et al (2009) Biodegradation of nodularin and effects of the toxin on bacterial isolates from the Gulf of Gdańsk. Water Res 43(11):2801–2810. doi: 10.1016/j.watres.2009.03.042 PubMedCrossRefGoogle Scholar
  357. Mazur-Marzec H, Browarczyk-Matusiak G, Forycka K, Kobos G, Pliński M (2010) Morphological genetic chemical and ecophysiological characterisation of two Microcystis aeruginosa isolates from the Vistula Lagoon, southern Baltic. Oceanologia 52(1):127–146CrossRefGoogle Scholar
  358. Mazur-Marzec H, Sutryk K, Kobos J, Hebel A, Hohlfeld N, Blaszczyk A et al (2013) Occurrence of cyanobacteria and cyanotoxin in the Southern Baltic Proper. Filamentous cyanobacteria versus single-celled picocyanobacteria. Hydrobiologia 701(1):235–252. doi: 10.1007/s10750-012-1278-7 CrossRefGoogle Scholar
  359. Mazur-Marzec H, Sutryk K, Hebel A, Hohlfeld N, Pietrasik A, Błaszczyk A (2015) Nodularia spumigena Peptides-Accumulation and Effect on Aquatic Invertebrates. Toxins 7(11):4404PubMedPubMedCentralCrossRefGoogle Scholar
  360. Mbukwa E, Msagati TAM, Mamba BB, Boussiba S, Wepener V, Leu S, Kaye Y (2015) Toxic Microcystis novacekii T20-3 from Phakalane ponds, Botswana: pCR amplifications of microcystin synthetase (mcy) genes, extraction and LCESI-MS identification of Microcystins. J Environ Anal Toxicol S7:010. doi: 10.4172/2161-0525.S7-010 Google Scholar
  361. McAllister TG, Wood SA, Hawes I (2016) The rise of toxic benthic Phormidium proliferations: a review of their taxonomy, distribution, toxin content and factors regulating prevalence and increased severity. Harmful Algae 55:282–294. doi: 10.1016/j.hal.2016.04.002 PubMedCrossRefGoogle Scholar
  362. McGregor GB, Sendall BC (2015) Phylogeny and toxicology of Lyngbya wollei (Cyanobacteria, Oscillatoriales) from north-eastern Australia, with a description of Microseira gen. nov. J Phycol 51(1):109–119. doi: 10.1111/jpy.12256 PubMedCrossRefGoogle Scholar
  363. McGregor GB, Stewart I, Sendall BC, Sadler R, Reardon K, Carter S, Wruck D, Wickramasinghe W (2012) First report of a toxic Nodularia spumigena (Nostocales/Cyanobacteria) bloom in sub-tropical Australia. I. Phycological and public health investigations. Int J Environ Res Public Health 9(7):2396–2411. doi: 10.3390/ijerph9072396 PubMedPubMedCentralCrossRefGoogle Scholar
  364. MDH Minnesota Department of Health (2015) Health Based Guidance for Water Toxicological Summary for: Microcystin-LR.
  365. Meili N, Christen V, Fent K (2016) Nodularin induces tumor necrosis factor-alpha and mitogen-activated protein kinases (MAPK) and leads to induction of endoplasmic reticulum stress. Toxicol Appl Pharmacol 300:25–33. doi: 10.1016/j.taap.2016.03.014 PubMedCrossRefGoogle Scholar
  366. Mejean A, Mann S, Maldiney T, Vassiliadis G, Lequin O, Ploux O (2009) Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium Oscillatoria PCC 6506 occurs on a modular polyketide synthase initiated by l-proline. J Am Chem Soc 131(22):7512–7513PubMedCrossRefGoogle Scholar
  367. Mejean A, Mann S, Vassiliadis G, Lombard B, Loew D, Ploux O (2010a) In vitro reconstitution of the first steps of anatoxin-a biosynthesis in Oscillatoria PCC 6506: from free L-proline to acyl carrier protein bound dehydroproline. Biochemistry 49(1):103–113PubMedCrossRefGoogle Scholar
  368. Mejean A, Mazmouz R, Mann S, Calteau A, Medigue C, Ploux O (2010b) The genome sequence of the cyanobacterium Oscillatoria sp. PCC 6506 reveals several gene clusters responsible for the biosynthesis of toxins and secondary metabolites. J Bacteriol 192:5264–5265PubMedPubMedCentralCrossRefGoogle Scholar
  369. Mejean A, Paci G, Gautier V, Ploux O (2014) Biosynthesis of anatoxin-a and analogues (anatoxins) in cyanobacteria. Toxicon 91:15–22PubMedCrossRefGoogle Scholar
  370. Méjean A, Peyraud-Thomas C, Kerbrat AS et al (2010) First identification of the neurotoxin homoanatoxin-a from mats of Hydrocoleum lyngbyaceum (marine cyanobacterium) possibly linked to giant clam poisoning in New Caledonia. Toxicon 56(5):829–835. doi: 10.1016/j.toxicon.2009.10.029 PubMedCrossRefGoogle Scholar
  371. Meng G, Liu J, Lin S, Guo Z, Xu L (2015) Microcystin-LR-caused ROS generation involved in p38 activation and tau hyperphosphorylation in neuroendocrine (PC12) cells. Environ Toxicol 30(3):366–374. doi: 10.1002/tox.21914 PubMedCrossRefGoogle Scholar
  372. Merel S, Villarín MC, Chung K, Snyder S (2013a) Spatial and thematic distribution of research on cyanotoxins. Toxicon 76:118–131. doi: 10.1016/j.toxicon.2013.09.008 PubMedCrossRefGoogle Scholar
  373. Merel S, Walker D, Chicana R, Snyder S, Baures E, Thomas O (2013b) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327. doi: 10.1016/j.envint.2013.06.013 PubMedCrossRefGoogle Scholar
  374. Meriluoto JAO, Sandström A, Eriksson JE, Remaud G, Craig AG, Chattopadhyaya J (1989) Structure and toxicity of a peptide hepatotoxin from the cyanobacterium Oscillatoria agardhii. Toxicon 27(9):1021–1034PubMedCrossRefGoogle Scholar
  375. Meriluoto JAO, Nygard S, Dahlelm AM, Eriksson JE (1990) Synthesis, organotropism and hepatocellular uptake of two tritium-labeled epimers of dihydro-microcystin-LR, a cyanobacterial peptide toxin analog. Toxicon 29:1439–1446CrossRefGoogle Scholar
  376. Metcalf J, Codd G (2012) Cyanotoxins. In: Whitton B (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht, pp 651–675CrossRefGoogle Scholar
  377. Metcalf JS, Richer R, Cox PA, Codd GA (2012) Cyanotoxins in desert environments may present a risk to human health. Sci Total Environ 421–422:118–123. doi: 10.1016/j.scitotenv.2012.01.053 PubMedCrossRefGoogle Scholar
  378. Mez K, Beattie KA, Codd GA, Hanselmann K, Hauser B, Naegeli H, Preisig HR (1997) Identification of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland. Eur J Phycol 32:111–117CrossRefGoogle Scholar
  379. Mihali TK, Kellmann R, Muenchhoff J, Barrow KD, Neilan BA (2008) Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl Environ Microbiol 74(3):716–722PubMedCrossRefGoogle Scholar
  380. Mihali TK, Kellmann R, Neilan BA (2009) Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochem. doi: 10.1186/1471-2091-10-8 PubMedPubMedCentralGoogle Scholar
  381. Miller MA, Kudela RM, Mekebri A, Crane D, Oates SC, Tinker MT, Staedler M et al (2010) Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to sea otters. PLoS ONE. doi: 10.1371/journal.pone.0012576 Google Scholar
  382. Milutinović A, Zivin M, Zorc-Pleskovic R, Sedmak B, Suput D (2003) Nephrotoxic effects of chronic administration of microcystins -LR and -YR. Toxicon 42(3):281–288PubMedCrossRefGoogle Scholar
  383. Miura GA, Robinson NA, Lawrence WB, Pace JG (1991) Hepatotoxicity of microcystin-LR in fed and fasted rats. Toxicon 29(3):337–346PubMedCrossRefGoogle Scholar
  384. Moffitt MC, Neilan BA (2004) Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70(11):6353–6362PubMedPubMedCentralCrossRefGoogle Scholar
  385. Møgelhøj MK, Hansen PJ, Peter H, Lundholm N (2006) High pH and not allelopathy may be responsible for negative effects of Nodularia spumigena on other algae. Aquat Microb Ecol 43(1):43–54CrossRefGoogle Scholar
  386. Mohamed ZA (2008) Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia. Toxicon 51(1):17–27. doi: 10.1016/j.toxicon.2007.07.007 PubMedCrossRefGoogle Scholar
  387. Mohamed ZA, Al Shehri AM (2007) Cyanobacteria and their toxins in treated-water storage reservoirs in Abha city, Saudi Arabia. Toxicon 50(1):75–84. doi: 10.1016/j.toxicon.2007.02.021 PubMedCrossRefGoogle Scholar
  388. Mohamed ZA, Al Shehri AM (2009) Microcystin-producing blooms of Anabaenopsis arnoldi in a potable mountain lake in Saudi Arabia. FEMS Microbiol Ecol 69(1):98–105. doi: 10.1111/j.1574-6941.2009.00683.x PubMedCrossRefGoogle Scholar
  389. Mohamed ZA, Al-Shehri AM (2013) Assessment of cylindrospermopsin toxin in an arid Saudi lake containing dense cyanobacterial bloom. Environ Monit Assess 185(3):2157–2166. doi: 10.1007/s10661-012-2696-8 PubMedCrossRefGoogle Scholar
  390. Mohamed ZA, Al-Shehri AM (2015) Biodiversity and toxin production of cyanobacteria in mangrove swamps in the Red Sea off the southern coast of Saudi Arabia. Bot Mar 58(1):23–34. doi: 10.1515/bot-2014-0055 CrossRefGoogle Scholar
  391. Mohamed ZA, Deyab MA, Abou-Dobara MI, El-Raghi WM (2016) Occurrence of toxic cyanobacteria and microcystin toxin in domestic water storage reservoirs, Egypt. J Water Supply Res Technol Aqua. doi: 10.2166/aqua.2016.115 Google Scholar
  392. Monks NR, Liu S, Xu Y, Yu H, Bendelow AS, Moscow JA (2007) Potent cytotoxicity of the phosphatase inhibitor microcystin LR and microcystin analogues in OATP1B1- and OATP1B3-expressing HeLa cells. Mol Cancer Ther 6(2):587–598PubMedCrossRefGoogle Scholar
  393. Mons MN, Van Egmond HP and Speijers GJA (1998) Paralytic shellfish poisoning: A review. Report 388802 005. RIVM.
  394. Montine TJ, Li K, Perl DP, Galasko D (2005) Lack of β-methylamino-l-alanine in brain from controls, AD, or Chamorros with PDC. Neurology 65:768–769PubMedCrossRefGoogle Scholar
  395. Moore BS, Ohtani I, Moore RE, Carmichael WW (1992) Biosynthesis of anatoxin-a (s): origin of the carbons. Tetrahed Lett 33:6595–6598CrossRefGoogle Scholar
  396. Moreno I, Pichardo S, Jos A, Gómez-Amores L, Mate A, Vazquez CM, Cameán AM (2005) Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally. Toxicon 45(4):395–402PubMedCrossRefGoogle Scholar
  397. Moreno-Gonzalez I, Soto C (2011) Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin Cell Dev Biol 22:482–487PubMedPubMedCentralCrossRefGoogle Scholar
  398. Mowe M, Mitrovic S, Lim R, Furey A, Yeo D (2015) Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors. J Limnol 74(2):205–224. doi: 10.4081/jlimnol.2014.1005 Google Scholar
  399. Mulvenna V, Dale K, Priestly B, Mueller U, Humpage A, Shaw G, Allinson G, Falconer I (2012) Health risk assessment for cyanobacterial toxins in seafood. Int J Environ Res Public Health 9:807–820PubMedPubMedCentralCrossRefGoogle Scholar
  400. Munday R, Thomas K, Gibbs R, Murphy C, Quilliam MA (2013) Acute toxicities of saxitoxin, neosaxitoxin, decarbamoyl saxitoxin and gonyautoxins 1&4 and 2&3 to mice by various routes of administration. Toxicon 76:77–83PubMedCrossRefGoogle Scholar
  401. Murch SJ, Cox PA, Banack SA, Steele JC, Sacks OW (2004) Occurrence of beta-methylamino-l-alanine (BMAA) in ALS/PDC patients from Guam. Acta Neurol Scand 110:267–269PubMedCrossRefGoogle Scholar
  402. Namikoshi M, Choi BW, Sun F, Rinehart KL, Evans WR, Carmichael WW (1993) Chemical characterization and toxicity of dihydro derivatives of nodularin and microcystin-LR, potent cyanobacterial cyclic peptide hepatotoxins. Chem Res Toxicol 6(2):151–158PubMedCrossRefGoogle Scholar
  403. Naselli-Flores L, Barone R, Chorus I, Kurmayer R (2007) Toxic cyanobacterial blooms in reservoirs under a semiarid mediterranean climate: the magnification of a problem. Environ Toxicol 22(4):399–404PubMedPubMedCentralCrossRefGoogle Scholar
  404. Nasri H, El Herry S, Bouaicha N (2008) First reported case of turtle deaths during a toxic Microcystis spp. bloom in Lake Oubeira, Algeria. Ecotoxicol Environ Saf 71(2):535–544. doi: 10.1016/j.ecoenv.2007.12.009 PubMedCrossRefGoogle Scholar
  405. Nehring S (1993) Mortality of dogs associated with a mass development of Nodularia spumigena (Cyanophyceae) in a brackish lake at the German North Sea coast. J Plankton Res 15(7):867–872. doi: 10.1093/plankt/15.7.867 CrossRefGoogle Scholar
  406. Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E (2012) Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol 15:1239–1253PubMedCrossRefGoogle Scholar
  407. Niamien-Ebrottie JE, Bhattacharyya S, Deep PR, Nayak B (2015) Cyanobacteria and cyanotoxins in the world: review. Inter J App Res 1(8):563–569Google Scholar
  408. Nishiwaki R, Ohta T, Sueoka E, Suganuma M, Harada K, Watanabe MF, Fujiki H (1994) Two significant aspects of microcystin-LR: specific binding and liver specificity. Cancer Lett 83(1–2):283–289PubMedCrossRefGoogle Scholar
  409. Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T, Carmichael WW, Fujiki H (1992) Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol 118(6):420–424PubMedCrossRefGoogle Scholar
  410. Norris RLG, Eaglesham GK, Pierens G, Shaw GR, Smith MJ, Chiswell RK, Seawright AA, Moore MR (1999) Deoxycylindropermopsin, an analog of cylindropermopsin from Cylindrospermopsis raciborskii. Environ Toxicol 14:163–165CrossRefGoogle Scholar
  411. Norris RL, Seawright AA, Shaw GR, Smith MJ, Chiswell RK, Moore MR (2001) Distribution of 14C cylindrospermopsin in vivo in the mouse. Environ Toxicol 16:498–505PubMedCrossRefGoogle Scholar
  412. Norris RL, Seawright AA, Shaw GR, Senogles P, Eaglesham GK, Smith MJ, Chiswell RK, Moore MR (2002) Hepatic xenobiotic metabolism of cylindrospermopsin in vivo in the mouse. Toxicon 40(4):471–476PubMedCrossRefGoogle Scholar
  413. Oberholster PJ, Myburgh JG, Govender D, Bengis R, Botha AM (2009) Identification of toxigenic Microcystis strains after incidents of wild animal mortalities in the Kruger National Park, South Africa. Ecotoxicol Environ Saf 72(4):1177–1182. doi: 10.1016/j.ecoenv.2008.12.014 PubMedCrossRefGoogle Scholar
  414. Ohio (2010) State Of Ohio, Cooperative Fish Tissue Monitoring Program, Sport Fish Tissue Consumption Advisory Program. 26 pages.
  415. Ohio Environmental Protection Agency (2015a) Public Water System Harmful Algal Bloom Response Strategy.
  416. Ohio Environmental Protection Agency (2015b) State of Ohio Harmful Algal Bloom response strategy for recreational waters;
  417. Ohta T, Sueoka E, Iida N, Komori A, Suganuma M, Nishiwaki R, Tatematsu M, Kim SJ, Carmichael WW, Fujiki H (1994) Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver. Cancer Res 54(24):6402–6406PubMedGoogle Scholar
  418. Ohtani I, Moore RE, Runnegar MTC (1992) Cylindrospermopsin—A potent hepatotoxin from the bluegreen alga Cylindrospermopsis raciborskii. J Am Chem Soc 114:7941–7942CrossRefGoogle Scholar
  419. Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivonen K (2004) Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. Strain IO-102-I. Appl Environ Microbiol 70(10):5756–5763. doi: 10.1128/aem.70.10.5756-5763.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  420. Oliveira VR, Carvalho GMC, Avila MB, Soares RM, Avezedo SMFO, Ferreira TS, Valença SS, Faffe DS, Araujo Zin W (2012) Time-dependence of lung injury in mice acutely exposed to cylindrospermopsin. Toxicon 60:764–772PubMedCrossRefGoogle Scholar
  421. Oliveira VR, Avila MB, Carvalho GM, Azevedo SM, Lima LM, Barreiro EJ, Carvalho AR, Zin WA (2015a) Investigating the therapeutic effects of LASSBio-596 in an in vivo model of cylindrospermopsin-induced lung injury. Toxicon 94:29–35. doi: 10.1016/j.toxicon.2014.12.004 PubMedCrossRefGoogle Scholar
  422. Oliveira VR, Mancin VG, Pinto EF, Soares RM, Azevedo SM, Macchione M, Carvalho AR, Zin WA (2015b) Repeated intranasal exposure to microcystin-LR affects lungs but not nasal epithelium in mice. Toxicon 104:14–18. doi: 10.1016/j.toxicon.2015.07.331 PubMedCrossRefGoogle Scholar
  423. Ongley SE, Pengelly JJL, Neilan BA (2016) Elevated Na + and pH influence the production and transport of saxitoxin in the cyanobacteria Anabaena circinalis AWQC131C and Cylindrospermopsis raciborskii T3. Environ Microbiol 18(2):427–438. doi: 10.1111/1462-2920.13048 PubMedCrossRefGoogle Scholar
  424. Orr PT, Jones GJ, Hunter RA, Berger K (2003) Exposure of beef cattle in sub-clinical doses of Microcystis aeruginosa: toxin bioaccumulation, physiological effects and human health risk assessment. Toxicon 41:613–620PubMedCrossRefGoogle Scholar
  425. Orr PT, Rasmussen JP, Burford MA, Eaglesham GK, Lennox SM (2010) Evaluation of quantitative real-time PCR to characterise spatial and temporal variations in cyanobacteria, Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju and cylindrospermopsin concentrations in three subtropical Australian reservoirs. Harmful Algae 9(3):243–254CrossRefGoogle Scholar
  426. Ostermaier V, Kurmayer R (2010) Application of real-time PCR to estimate toxin production by the cyanobacterium Planktothrix sp. Appl Environ Microbiol 76(11):3495–3502PubMedPubMedCentralCrossRefGoogle Scholar
  427. Ostermaier V, Schanz F, Köster O, Kurmayer R (2012) Stability of toxin gene proportion in red-pigmented populations of the cyanobacterium Planktothrix during 29 years of re-oligotrophication of Lake Zürich. BMC Biol 10:100PubMedPubMedCentralCrossRefGoogle Scholar
  428. Oziol L, Bouaïcha N (2010) First evidence of estrogenic potential of the cyanobacterial heptotoxins the nodularin-R and the microcystin-LR in cultured mammalian cells. J Hazard Mater 174(1–3):610–615. doi: 10.1016/j.jhazmat.2009.09.095 PubMedCrossRefGoogle Scholar
  429. Pablo J, Banack SA, Cox PA, Johnson TE, Papapetropoulos S, Bradley WG, Buck A, Mash DC (2009) Cyanobacterial neurotoxin BMAAin ALS and Alzheimer’s disease. Acta Neurol Scand 120(4):216–225PubMedCrossRefGoogle Scholar
  430. Pace JG, Robinson NA, Miura GA, Matson CF, Geisbert TW, White JD (1991) Toxicity and kinetics of [3H]microcystin-LR in isolated perfused rat livers. Toxicol Appl Pharmacol 107(3):391–401PubMedCrossRefGoogle Scholar
  431. Paerl HW (2014) Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life (Basel, Switzerland) 4(4):988–1012. doi: 10.3390/life4040988 Google Scholar
  432. Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environm Microbiol Rep 1(1):27–37. doi: 10.1111/j.1758-2229.2008.00004.x CrossRefGoogle Scholar
  433. Paerl HW, Otten TG (2013) Blooms Bite the Hand That Feeds Them. Science 342(6157):433–434. doi: 10.1126/science.1245276 PubMedCrossRefGoogle Scholar
  434. Park TJ, Song KY, Sohn SH, Lim IK (2002) Marked inhibition of testosterone biosynthesis by the hepatotoxin nodularin due to apoptosis of Leydig cells. Mol Carcinog 34(3):151–163PubMedCrossRefGoogle Scholar
  435. Pattanaik P, Wulff A, Roleda MY, Garde K, Mohlin M (2010) Production of the cyanotoxin nodularin-A multifactorial approach. Harmful Algae 10:30–38CrossRefGoogle Scholar
  436. Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8(5):1650–1680. doi: 10.3390/md8051650 PubMedPubMedCentralCrossRefGoogle Scholar
  437. Pearson LA, Dittmann E, Mazmouz R, Ongley SE, D’Agostino PM, Neilan BA (2016) The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. Harmful Algae 54:98–111. doi: 10.1016/j.hal.2015.11.002 PubMedCrossRefGoogle Scholar
  438. Pekar H, Westerberg E, Bruno O, Lääne A, Persson KM, Sundström LF, Thim AM (2016) Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water–First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds. J Chromatogr A 1429:265–276. doi: 10.1016/j.chroma.2015.12.049 PubMedCrossRefGoogle Scholar
  439. Penna A, Perini F, Dell’Aversano C, Capellacci S, Tartaglione L, Giacobbe MG, Casabianca S, Fraga S, Ciminiello P, Scardi M (2015) The sxt Gene and paralytic shellfish poisoning toxins as markers for the monitoring of toxic alexandrium species blooms. Environ Sci Technol 49(24):14230–14238PubMedCrossRefGoogle Scholar
  440. Pereira DA, Pimenta AMC, Giani A (2012) Profiles of toxic and non-toxic oligopeptides of Radiocystis fernandoii (Cyanobacteria) exposed to three different light intensities. Microbiol Res 167:413–421PubMedCrossRefGoogle Scholar
  441. Pereira DA, Pimentel JSM, Bird DF, Giani A (2015) Changes in oligopeptide production by toxic cyanobacterial strains under iron deficiency. Aquat Microb Ecol 74:205–214CrossRefGoogle Scholar
  442. Pflugmacher S, Wiegand C, Werner S, Schröder H, Kankaanpää H (2005) Activity and substrate specificity of cytosolic and microsomal glutathione S-transferase in Australian black tiger prawns (Penaeus monodon) after exposure to cyanobacterial toxins. Environ Toxicol 20:301–307PubMedCrossRefGoogle Scholar
  443. Pflugmacher S, Aulhorn M, Grimm B (2007) Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defence systems of different spinach variants. New Phytol 175(3):482–489. doi: 10.1111/j.1469-8137.2007.02144.x PubMedCrossRefGoogle Scholar
  444. Pierangelini M, Sinha R, Willis A, Burford MA, Orr PT, Beardall J, Neilan BA (2015) Constitutive cylindrospermopsin pool size in Cylindrospermopsis raciborskii under different light and CO2 partial pressure conditions. Appl Environ Microbiol 81(9):3069–3076PubMedPubMedCentralCrossRefGoogle Scholar
  445. Pilotto LS, Douglas RM, Burch MD, Cameron S, Beers M, Rouch GJ, Robinson P et al (1997) Health effects of exposure to cyanobacteria (blue-gree algae) during recreational water-related activities. Aust N Z J Public Health 21:562–566PubMedCrossRefGoogle Scholar
  446. Pilotto L, Hobson P, Burch MD, Ranmuthugala G, Attewell R, Weightman W (2004) Acute skin irritant effects of cyanobacteria (blue-green algae) in healthy volunteers. Aust N Z J Public Health 28(3):220–224PubMedCrossRefGoogle Scholar
  447. Pineda-Mendoza R, Zúñiga G, Martínez Jerónimo F (2014) Infochemicals released by Daphnia magna fed on Microcystis aeruginosa affect mcyA gene expression. Toxicon 80:78–86PubMedCrossRefGoogle Scholar
  448. Piyathilaka MA, Pathmalal MM, Tennekoon KH, De Silva BG, Samarakoon SR, Chanthirika S (2015) Microcystin-LR-induced cytotoxicity and apoptosis in human embryonic kidney and human kidney adenocarcinoma cell lines. Microbiology 161(Pt 4):819–828. doi: 10.1099/mic.0.000046 PubMedCrossRefGoogle Scholar
  449. Ploug H (2008) Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: small-scale fluxes, pH, and oxygen microenvironments. Limnol Oceanogr 53(3):914–921CrossRefGoogle Scholar
  450. Poniedziałek B, Rzymski P, Wiktorowicz K (2012) First report of cylindrospermopsin effect on human peripheral blood lymphocytes proliferation in vitro Central-European. J Immunol 37(4):314–317. doi: 10.5114/ceji.2012.32717 Google Scholar
  451. Poniedziałek B, Rzymski P, Karczewski J (2014a) Cylindrospermopsin decreases the oxidative burst capacity of human neutrophils. Toxicon 87:113–119. doi: 10.1016/j.toxicon.2014.05.004 PubMedCrossRefGoogle Scholar
  452. Poniedziałek B, Rzymski P, Wiktorowicz K (2014b) Toxicity of cylindrospermopsin in human lymphocytes: proliferation, viability and cell cycle studies. Toxicol In Vitro 28(5):968–974. doi: 10.1016/j.tiv.2014.04.015 PubMedCrossRefGoogle Scholar
  453. Poniedziałek B, Rzymski P, Karczewski J (2015) The role of the enzymatic antioxidant system in cylindrospermopsin-induced toxicity in human lymphocytes. Toxicol In Vitro 29(5):926–932. doi: 10.1016/j.tiv.2015.03.023 PubMedCrossRefGoogle Scholar
  454. Pouria S, de Andrade A, Barbosa J, Cavalcanti RL, Barreto VT, Ward CJ, Preiser W et al (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 352(9121):21–26PubMedCrossRefGoogle Scholar
  455. Preece EP, Moore BC, Hardy FJ (2015a) Transfer of microcystin from freshwater lakes to Puget Sound, WA and toxin accumulation in marine mussels (Mytilus trossulus). Ecotoxicol Environ Saf 122:98–105. doi: 10.1016/j.ecoenv.2015.07.013 PubMedCrossRefGoogle Scholar
  456. Preece EP, Moore BC, Hardy FJ, Deobald LA (2015b) First detection of microcystin in Puget Sound, Washington, mussels (Mytilus Trossulus). Lake Reserv Manage 31(1):50–54. doi: 10.1080/10402381.2014.998398 CrossRefGoogle Scholar
  457. Preußel K, Stüken A, Wiedner C, Chorus I, Fastner J (2006) First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon 47(2):156–162PubMedCrossRefGoogle Scholar
  458. Preußel K, Wessel G, Fastner J, Chorus I (2009) Response of cylindrospermopsin production and release in Aphanizomenon flos-aquae (Cyanobacteria) to varying light and temperature conditions. Harmful Algae 8(5):645–650. doi: 10.1016/j.hal.2008.10.009 CrossRefGoogle Scholar
  459. Preußel K, Chorus I, Fastner J (2014) Nitrogen limitation promotes accumulation and suppresses release of cylindrospermopsins in cells of Planktothrix sp. Toxins 6(10):2932PubMedPubMedCentralCrossRefGoogle Scholar
  460. Proença LAO, Tamanaha MS, Fonseca RS (2009) Screening the toxicity and toxin content of blooms of the cyanobacterium Trichodesmium erythraeum (Ehrenberg) in northeast brazil. J Venom Anim Toxins incl Trop Dis 15(2):204–215CrossRefGoogle Scholar
  461. Puddick J, Prinsep MR, Wood SA, Cary SC, Hamilton DP, Holland PT (2015) Further characterization of glycine-containing microcystins from the McMurdo dry Valleys of Antarctica. Toxins 7(2):493–515. doi: 10.3390/toxins7020493 PubMedPubMedCentralCrossRefGoogle Scholar
  462. Puschner B, Hoff B, Tor ER (2008) Diagnosis of anatoxin-a poisoning in dogs from North America. J Vet Diagn Invest 20(1):89–92. doi: 10.1177/104063870802000119 PubMedCrossRefGoogle Scholar
  463. Qian H, Hu B, Yu S, Pan X, Wu T, Fu Z (2012) The effects of hydrogen peroxide on the circadian rhythms of Microcystis aeruginosa. PLoS ONE 7(3):e33347. doi: 10.1371/journal.pone.0033347 PubMedPubMedCentralCrossRefGoogle Scholar
  464. Qin W, Zhang X, Yang L, Xu L, Zhang Z, Wu J, Wang Y (2015) Microcystin-LR altered mRNA and protein expression of endoplasmic reticulum stress signaling molecules related to hepatic lipid metabolism abnormalities in mice. Environ Toxicol Pharmacol 40(1):114–121. doi: 10.1016/j.etap.2015.05.002 PubMedCrossRefGoogle Scholar
  465. Quiblier C, Wood S, Echenique-Subiabre I, Heath M, Villeneuve A, Humbert J-F (2013) A review of current knowledge on toxic benthic freshwater cyanobacteria–ecology, toxin production and risk management. Water Res 47(15):5464–5479. doi: 10.1016/j.watres.2013.06.042 CrossRefGoogle Scholar
  466. Rantala-Ylinen A, Kana S, Wang H, Rouhiainen L, Wahlsten M, Rizzi E, Berg K, Gugger M, Sivonen K (2011) Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl Environ Microbiol 77:7271–7278PubMedPubMedCentralCrossRefGoogle Scholar
  467. Rao PVL, Bhattacharya R, Parida MM, Jana AM, Bhaskar ASB (1998) Freshwater cyanobacterium Microcystis aeruginosa (UTEX 2385) induced DNA damage in vivo and in vitro. Environ Toxicol Pharmacol 5:1–6CrossRefGoogle Scholar
  468. Rao PVL, Gupta N, Jayaraj R, Bhaskar AS, Jatav PC (2005) Age-dependent effects on biochemical variables and toxicity induced by cyclic peptide toxin microcystin-LR in mice. Comp Biochem Physiol C Pharmacol Toxicol 140(1):11–19CrossRefGoogle Scholar
  469. Rapala J, Sivonen K, Lyra C, Niemela SI (1997) Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 63:2206–2212PubMedPubMedCentralGoogle Scholar
  470. Rastogi RP, Sinha RP (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 27(4):521–539. doi: 10.1016/j.biotechadv.2009.04.009 PubMedCrossRefGoogle Scholar
  471. Rastogi RP, Sinha RP, Incharoensakdi A (2014) The cyanotoxin-microcystins: current overview. Rev Environ Sci Bio 13(2):215–249. doi: 10.1007/s11157-014-9334-6 CrossRefGoogle Scholar
  472. Rawn DFK, Saker M, Lau BPY, Niedzwiadek B (2007) Anatoxin-a and its metabolites in blue-green algae food supplements from Canada and Portugal. J Food Prot 70(3):776–779PubMedCrossRefGoogle Scholar
  473. Reid KJ, Lang K, Froscio S, Humpage AJ, Young FM (2015) Undifferentiated murine embryonic stem cells used to model the effects of the blue-green algal toxin cylindrospermopsin on preimplantation embryonic cell proliferation. Toxicon 106:79–88. doi: 10.1016/j.toxicon.2015.09.022 PubMedCrossRefGoogle Scholar
  474. Reisner M, Carmeli S, Werman M, Sukenik A (2004) The cyanobacterial toxin cylindrospermopsin inhibits pyrimidine nucleotide synthesis and alters cholesterol distribution in mice. Toxicol Sci 82(2):620–627PubMedCrossRefGoogle Scholar
  475. Rellan S, Osswald J, Saker M, Gago-Martinez A, Vasconcelos V (2009) First detection of anatoxin-a in human and animal dietary supplements containing cyanobacteria. Food Chem Toxicol 47(9):2189–2195. doi: 10.1016/j.fct.2009.06.004 PubMedCrossRefGoogle Scholar
  476. Repka S, Mehtonen J, Vaitomaa J, Saari L, Sivonen K (2001) Effects of nutrients on growth and nodularin production of Nodularia strain GR8b. Microbiol Ecol 42:606–613CrossRefGoogle Scholar
  477. Reveillon D, Abadie E, Sechet V, Masseret E, Hess P, Amzil Z (2015) beta-N-methylamino-l-alanine (BMAA) and isomers: distribution in different food web compartments of Thau lagoon, French Mediterranean Sea. Mar Environ Res 110:8–18. doi: 10.1016/j.marenvres.2015.07.015 PubMedCrossRefGoogle Scholar
  478. Reveillon D, Sechet V, Hess P, Amzil Z (2016) Systematic detection of BMAA (beta-N-methylamino-l-alanine) and DAB (2,4-diaminobutyric acid) in mollusks collected in shellfish production areas along the French coasts. Toxicon 110:35–46. doi: 10.1016/j.toxicon.2015.11.011 PubMedCrossRefGoogle Scholar
  479. Richardson LL, Sekar R, Myers JL et al (2007) The presence of the cyanobacterial toxin microcystin in black band disease of corals. FEMS Microbiol Lett 272(2):182–187. doi: 10.1111/j.1574-6968.2007.00751.x PubMedCrossRefGoogle Scholar
  480. Rivetti C, Gomez-Canela C, Lacorte S, Diez S, Lazaro WL, Barata C (2015) Identification of compounds bound to suspended solids causing sub-lethal toxic effects in Daphnia magna. A field study on re-suspended particles during river floods in Ebro River. Aquat Toxicol (Amsterdam, Netherlands) 161:41–50. doi: 10.1016/j.aquatox.2015.01.021 CrossRefGoogle Scholar
  481. Robinson NA, Miura GA, Matson CF, Dinterman RE, Pace JG (1989) Characterization of chemically tritiated microcystin-LR and its distribution in mice. Toxicon 27:1035–1042PubMedCrossRefGoogle Scholar
  482. Robinson NA, Pace JG, Matson CF, Miura GA, Lawrence WB (1991) Tissue distribution, excretion and hepatic biotransformation of microcystin-LR in mice. J Pharmacol Exp The 256:176–182Google Scholar
  483. Rogers EH, Zehr RD, Gage MI, Humpage AR, Falconer IR, Marr M, Chernoff N (2007) The cyanobacterial toxin, cylindrospermopsin, induces fetal toxicity in the mouse after exposure late in gestation. Toxicon 49(6):855–864PubMedCrossRefGoogle Scholar
  484. Rohrlack T, Hyenstrand P (2007) Fate of intracellular microcystins in the cyanobacterium Microcystis aeruginosa (Chroococcales, Cyanophyceae). Phycologia 46(3):277–283. doi: 10.2216/06-14.1 CrossRefGoogle Scholar
  485. Romero-Oliva CS, Contardo-Jara V, Block T, Pflugmacher S (2014) Accumulation of microcystin congeners in different aquatic plants and crops—a case study from lake Amatitlan, Guatemala. Ecotoxicol Environ Saf 102:121–128. doi: 10.1016/j.ecoenv.2014.01.031 PubMedCrossRefGoogle Scholar
  486. Rosen J, Westerberg E, Schmiedt S, Hellenas KE (2016) BMAA detected as neither free nor protein bound amino acid in blue mussels. Toxicon 109:45–50. doi: 10.1016/j.toxicon.2015.11.008 PubMedCrossRefGoogle Scholar
  487. Ross SM, Seelig M, Spencer PS (1987) Specific antagonism of excitotoxic action of ‘uncommon’ amino acids assayed in organotypic mouse cortical cultures. Brain Res 425:120–127PubMedCrossRefGoogle Scholar
  488. Rouhiainen L, Vakkilainen T, Siemer BL, Buikema W, Haselkorn R, Sivonen K (2004) Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 70(2):686–692PubMedPubMedCentralCrossRefGoogle Scholar
  489. Roy-Lachapelle A, Solliec M, Sauve S (2015a) Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry. Anal Bioanal Chem 407(18):5487–5501. doi: 10.1007/s00216-015-8722-2 PubMedCrossRefGoogle Scholar
  490. Roy-Lachapelle A, Solliec M, Sinotte M, Deblois C, Sauve S (2015b) Total analysis of microcystins in fish tissue using laser thermal desorption-atmospheric pressure chemical ionization-high-resolution mass spectrometry (LDTD-APCI-HRMS). J Agric Food Chem 63(33):7440–7449. doi: 10.1021/acs.jafc.5b02318 PubMedCrossRefGoogle Scholar
  491. Rücker J, Stüken A, Nixdorf B, Fastner J, Chorus I, Wiedner C (2007) Concentrations of particulate and dissolved cylindrospermopsin in 21 Planktothrix-dominated temperate lakes. Toxicon 50(6):800–809. doi: 10.1016/j.toxicon.2007.06.019 PubMedCrossRefGoogle Scholar
  492. Ruiz M, Galanti L, Ruibal AL, Rodriguez MI, Wunderlin DA, Amé MV (2013) First Report of Microcystins and Anatoxin-a Co-occurrence in San Roque Reservoir (Córdoba, Argentina). Wat Air Soil Pollut 224(6):1593. doi: 10.1007/s11270-013-1593-2 CrossRefGoogle Scholar
  493. Runnegar MT, Jackson AR, Falconer IR (1988) Toxicity of the cyanobacterium Nodularia spumigena Mertens. Toxicon 26(2):143–151PubMedCrossRefGoogle Scholar
  494. Runnegar MT, Kong SM, Zhong YZ, Lu SC (1995) Inhibition of reduced glutathione synthesis by cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochem Pharmacol 49:219–225PubMedCrossRefGoogle Scholar
  495. Sabart M, Pobel D, Briand E, Combourieu B, Salencon MJ, Humbert JF et al (2010) Spatiotemporal variations in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. Appl Environ Microbiol 76(14):4750–4759. doi: 10.1128/aem.02531-09 PubMedPubMedCentralCrossRefGoogle Scholar
  496. Sabart M, Misson B, Descroix A, Duffaud E, Combourieu B, Salencon M-J et al (2013) The importance of small colonies in sustaining Microcystis population exposed to mixing conditions: an exploration through colony size, genotypic composition and toxic potential. Environ Microbiol Rep 5(5):747–756. doi: 10.1111/1758-2229.12077 PubMedGoogle Scholar
  497. Sacilotto Detoni AM, Fonseca Costa LD, Pacheco LA, Yunes JS (2016) Toxic Trichodesmium bloom occurrence in the southwestern South Atlantic Ocean. Toxicon 110:51–55. doi: 10.1016/j.toxicon.2015.12.003 PubMedCrossRefGoogle Scholar
  498. Saker ML, Griffiths DJ (2000) The effect of temperature on growth and cylindrospermopsin content of seven isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from water bodies in northern Australia. Phycologia 39(4):349–354. doi: 10.2216/i0031-8884-39-4-349.1 CrossRefGoogle Scholar
  499. Saker ML, Thomas AD, Norton JH (1999) Cattle mortality attributed to the toxic cyanobacterium Cylindrospermopsis raciborskii in an outback region of north Queensland. Environ Toxicol 14(1):179–182CrossRefGoogle Scholar
  500. Salmaso N, Buzzi F, Garibaldi L, Morabito G, Simona M (2012) Effects of nutrient availability and temperature on phytoplankton development: a case study from large lakes south of the Alps. Aquat Sci 74:555–570CrossRefGoogle Scholar
  501. Salmaso N, Cerasino L, Boscaini A, Capelli C (2016) Planktic Tychonema (Cyanobacteria) in the large lakes south of the Alps: phylogenetic assessment and toxigenic potential. FEMS Microbiol Ecol. doi: 10.1093/femsec/fiw155 PubMedGoogle Scholar
  502. Savela H, Spoof L, Perälä N, Preede M, Lamminmäki U, Nybom S, Häggqvist K et al (2015) Detection of cyanobacterial sxt genes and paralytic shellfish toxins in freshwater lakes and brackish waters on Åland Islands, Finland. Harmful Algae 46:1–10. doi: 10.1016/j.hal.2015.04.005 CrossRefGoogle Scholar
  503. Savichtcheva O, Debroas D, Kurmayer R, Villar C, Jenny JP, Fabien A, Perga ME, Domaizon I (2011) Quantitative PCR enumeration of total and toxic Planktothrix rubescens/agardhii and other cyanobacteria in preserved DNA isolated from lake sediments. Appl Environ Microbiol 77:8744–8753PubMedPubMedCentralCrossRefGoogle Scholar
  504. Schaeffer DJ, Malpas PB, Barton LL (1999) Risk assessment of microcystin in dietary Aphanizomenon flos-aquae. Ecotoxicol Environ Saf 44:73–80PubMedCrossRefGoogle Scholar
  505. Schopf J (2002) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton B, Potts M (eds) The ecology of cyanobacteria Their diversity in time and space. Kluwer, New York, pp 13–35CrossRefGoogle Scholar
  506. Seawright AA, Nolan CC, Shaw GR, Chiswell RK, Norris RL, Moore MR, Smith MJ (1999) The oral toxicity for mice of the tropical cyanobacterium Cylindrospermopsis raciborskii (Woloszynska). Environ Toxicol 14(1):135–142CrossRefGoogle Scholar
  507. Sedan D, Laguens M, Copparoni G, Aranda JO, Giannuzzi L, Marra CA, Andrinolo D (2015) Hepatic and intestine alterations in mice after prolonged exposure to low oral doses of Microcystin-LR. Toxicon 104:26–33. doi: 10.1016/j.toxicon.2015.07.011 PubMedCrossRefGoogle Scholar
  508. Sedda T, Baralla E, Varoni MV, Pasciu V, Lorenzoni G, Demontis MP (2016) Determination of microcystin-LR in clams (Tapes decussatus) of two Sardinian coastal ponds (Italy). Mar Pollut Bull 108(1–2):317–320. doi: 10.1016/j.marpolbul.2016.04.022 PubMedCrossRefGoogle Scholar
  509. Seifert M, McGregor G, Eaglesham G, Wickramasinghe W, Shaw G (2007) First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 6(1):73–80. doi: 10.1016/j.hal.2006.07.001 CrossRefGoogle Scholar
  510. Sekijima M, Tsutsumi T, Yoshida T, Harada T, Tashiro F, Chen G, Yu SZ, Ueno Y (1999) Enhancement of glutathione S-transferase placental-form positive liver cell foci development by microcystin-LR in aflatoxin B1-initiated rats. Carcinogenesis 20(1):161–165PubMedCrossRefGoogle Scholar
  511. Senogles P, Shaw G, Smith M, Norris R, Chiswell R, Mueller J, Sadler R, Eaglesham G (2000) Degradation of the cyanobacterial toxin cylindrospermopsin, from Cylindrospermopsis raciborskii, by chlorination. Toxicon 38(9):1203–1213PubMedCrossRefGoogle Scholar
  512. Šetlíková I, Wiegand C (2009) Hepatic and branchial glutathione S-transferases of two fish species: substrate specificity and biotransformation of microcystin-LR. Comp Biochem Physiol C Pharmacol Toxicol 149:515–523CrossRefGoogle Scholar
  513. Shams S, Capelli C, Cerasino L, Ballot A, Dietrich DR, Sivonen K, Salmaso N (2015) Anatoxin-a producing Tychonema (Cyanobacteria) in European waterbodies. Water Res 69:68–79PubMedCrossRefGoogle Scholar
  514. Shang L, Feng M, Liu F, Xu X, Ke F, Chen X, Li W (2015) The establishment of preliminary safety threshold values for cyanobacteria based on periodic variations in different microcystin congeners in Lake Chaohu, China. Environ Sci Process Impacts 17(4):728–739. doi: 10.1039/c5em00002e PubMedCrossRefGoogle Scholar
  515. Shaw GR, Seawright AA, Moore MR, Lam PK (2000) Cylindrospermopsin, a cyanobacterial alkaloid: evaluation of its toxicologic activity. Ther Drug Monit 22(1):89–92PubMedCrossRefGoogle Scholar
  516. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A et al (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA 110:1053–1058PubMedCrossRefGoogle Scholar
  517. Shimizu Y (1986) Toxigenesis and biosynthesis of saxitoxin analogues. Pure Appl Chem 58:257–262CrossRefGoogle Scholar
  518. Shimizu Y, Norte M, Hori A, Genenah A, Kobayashi M (1984) Biosynthesis of saxitoxin analogs: the unexpected pathway. J Am Chem Soc 106:6433–6434CrossRefGoogle Scholar
  519. Sieroslawska A (2013) Assessment of the mutagenic potential of cyanobacterial extracts and pure cyanotoxins. Toxicon 74:76–82PubMedCrossRefGoogle Scholar
  520. Sieroslawska A, Rymuszka A (2010) Evaluation of genotoxic potential of neurotoxin anatoxin-a with the use of umuC test. Neuro Endocrinol Lett 31:16–20PubMedGoogle Scholar
  521. Simola O, Wiberg M, Jokela J, Wahlsten M, Sivonen K, Syrjä P (2012) Pathologic findings and toxin identification in cyanobacterial (Nodularia spumigena) intoxication in a dog. Vet Pathol 49(5):755–759. doi: 10.1177/0300985811415703 PubMedCrossRefGoogle Scholar
  522. Singh S, Asthana R (2014) Assessment of microcystin concentration in carp and catfish: a case study from Lakshmikund Pond, Varanasi, India. Bull Environ Contam Toxicol 92(6):687–692. doi: 10.1007/s00128-014-1277-7 PubMedCrossRefGoogle Scholar
  523. Sinha R, Pearson LA, Davis TW, Muenchhoff J, Pratama R, Jex A, Burford MA, Neilan BA (2014) Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities. BMC Genom. doi: 10.1186/1471-2164-15-83 Google Scholar
  524. Sipiä VO, Kankaanpää HT, Pflugmacher S, Flinkman J, Furey A, James KJ (2002) Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), Mussels (Mytilus edulis, Dreissena polymorpha), and Clams (Macoma balthica) from the Northern Baltic Sea. Ecotoxicol Environ Saf 53(2):305–311PubMedCrossRefGoogle Scholar
  525. Sipiä VO, Kankaanpaa H, Peltonen H, Vinni M, Meriluoto J (2007) Transfer of nodularin to three-spined stickleback (Gasterosteus aculeatus L.), herring (Clupea harengus L.), and salmon (Salmo salar L.) in the northern Baltic Sea. Ecotoxicol Environ Saf 66(3):421–425. doi: 10.1016/j.ecoenv.2006.02.006 PubMedCrossRefGoogle Scholar
  526. Sivonen K (1999) Effect of light, temperature, nitrate, orthophosphate, and bacteria on growth and hepatotoxin production by Oscillatoria agradhi strains. Appl Environ Microbiol 56:2658–2666Google Scholar
  527. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. E & FN Spon, London, pp 41–111Google Scholar
  528. Sivonen K, Himberg K, Luukkainen R, Niemelä S, Poon G, Codd G (1989) Preliminary characterization of neurotoxic cyanobacteria blooms and strains from Finland. Toxic Assess 4:339–352CrossRefGoogle Scholar
  529. Sivonen K, Namikoshi M, Evans WR, Carmichael WW, Sun F, Rouhiainen L et al (1992) Isolation and characterization of a variety of microcystins from seven strains of the cyanobacterial genus Anabaena. Appl Environ Microbiol 58(8):2495–2500PubMedPubMedCentralGoogle Scholar
  530. Smith FM, Wood SA, van Ginkel R, Broady PA, Gaw S (2011) First report of saxitoxin production by a species of the freshwater benthic cyanobacterium, Scytonema Agardh. Toxicon 57(4):566–573. doi: 10.1016/j.toxicon.2010.12.020 PubMedCrossRefGoogle Scholar
  531. Snyder LR, Cruz-Aguado R, Sadilek M, Galasko D, Shaw CA, Montine TJ (2009) Lack of cerebral BMAA in human cerebral cortex. Neurology 72:1360–1361PubMedPubMedCentralCrossRefGoogle Scholar
  532. Snyder LR, Hoggard JC, Montine TJ, Synovec RE (2010) Development and application of a comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry method for the analysis of L-β-methylamino-alanine in human tissue. J Chromatogr A 1217:4639–4647PubMedPubMedCentralCrossRefGoogle Scholar
  533. Soares RM, Yuan M, Servaites JC, Delgado A, Magalhães VF, Hilborn ED, Carmichael WW, Azevedo SM (2006) Sublethal exposure from microcystins to renal insufficiency patients in Rio de Janeiro, Brazil. Environ Toxicol 21(2):95–103PubMedCrossRefGoogle Scholar
  534. Soares RM, Cagido VR, Ferraro RB, Meyer-Fernandes JR, Rocco PR, Zin WA, Azevedo SM (2007) Effects of microcystin-LR on mouse lungs. Toxicon 50(3):330–338PubMedCrossRefGoogle Scholar
  535. Solstad T, Fismen L, Garberg H, Fladmark KE (2008) Identification of a novel phosphorylation site of acyl-CoA binding protein (ACBP) in nodularin-induced apoptotic hepatocytes. Exp Cell Res 314(10):2141–2149. doi: 10.1016/j.yexcr.2008.03.014 PubMedCrossRefGoogle Scholar
  536. Solter PF, Wollenberg GK, Huang X, Chu FS, Runnegar MT (1998) Prolonged sublethal exposure to the protein phosphatase inhibitor microcystin-LR results in multiple dose-dependent hepatotoxic effects. Toxicol Sci 44(1):87–96PubMedCrossRefGoogle Scholar
  537. Song KY, Lim IK, Park SC, Lee SO, Park HS, Choi YK, Hyun BH (1999) Effect of nodularin on the expression of glutathione S-transferase placental form and proliferating cell nuclear antigen in N-nitrosodiethylamine initiated hepatocarcinogenesis in the male Fischer 344 rat. Carcinogenesis 20(8):1541–1548PubMedCrossRefGoogle Scholar
  538. Spencer PS, Hugon J, Ludolph A, Nunn PB, Ross SM, Roy DN, Schaumburg HH (1987) Discovery and partial characterization of primate motor-system toxins. Ciba Found Symp 126:221–238PubMedGoogle Scholar
  539. Spencer PS, Garner CE, Palmer VS, Kisby GE (2016) Vervets and macaques: similarities and differences in their responses to l-BMAA. Neurotoxicology 56:284–286PubMedCrossRefGoogle Scholar
  540. Spoof L, Berg KA, Rapala J et al (2006) First observation of cylindrospermopsin in Anabaena lapponica isolated from the boreal environment (Finland). Environ Toxicol 21(6):552–560. doi: 10.1002/tox.20216 PubMedCrossRefGoogle Scholar
  541. Srivastava A, Ahn C-Y, Asthana RK, Lee H-G, Oh H-M (2015) Status, alert system, and prediction of cyanobacterial bloom in South Korea. Biomed Res Int 2015:584–696. doi: 10.1155/2015/584696 Google Scholar
  542. Stal LJ, Albertano P, Bergman B et al (2003) BASIC: baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea–responses to a changing environment. Cont Shelf Res 23(17–19):1695–1714CrossRefGoogle Scholar
  543. Stevens DK, Krieger RI (1991) Effect of route of exposure and repeated doses on the acute toxicity in mice of the cyanobacterial nicotinic alkaloid anatoxin-a. Toxicon 29:134–138PubMedCrossRefGoogle Scholar
  544. Stewart I, Robertson IM, Webb PM, Schluter PJ, Shaw GR (2006a) Cutaneous hypersensitivity reactions to freshwater cyanobacteria–human volunteer studies. BMC Dermatol 6:1–9CrossRefGoogle Scholar
  545. Stewart I, Seawright AA, Schluter PJ, Shaw GR (2006b) Primary irritant and delayed-contact hypersensitivity reactions to the freshwater cyanobacterium Cylindrospermopsis raciborskii and its associated toxin cylindrospermopsin. BMC Dermatol 6:1–12CrossRefGoogle Scholar
  546. Stewart I, Webb PM, Schluter PJ, Fleming LE, Burns JW, Gantar M, Backe LC, Shaw GR (2006c) Epidemiology of recreational exposure to freshwater cyanobacteria- an international prospective cohort study. BMC Public Health 6:93PubMedPubMedCentralCrossRefGoogle Scholar
  547. Stewart I, Webb PM, Schluter PJ, Shaw GR (2006d) Recreational and occupational field exposure to freshwater cyanobacteria: a review of anecdotal and case reports, epidemiological studies and the challenges for epidemiologic assessment. Environ Health A Global Access Science Source 5:6Google Scholar
  548. Stewart I, Seawright AA, Shaw GR (2008) Cyanobacterial poisoning in livestock, wild mammals and birds-an overview. Adv Exp Med Biol 619:613–637. doi: 10.1007/978-0-387-75865-7_28 PubMedCrossRefGoogle Scholar
  549. Stewart I, Eaglesham GK, McGregor GB, Chong R, Seawright AA, Wickramasinghe WA, Sadler R, Hunt L, Graham G (2012) First report of a toxic Nodularia spumigena (Nostocales/Cyanobacteria) bloom in sub-tropical Australia. II. Bioaccumulation of nodularin in isolated populations of mullet (Mugilidae). Int J Environ Res Public Health 9(7):2412–2443. doi: 10.3390/ijerph9072412 PubMedPubMedCentralCrossRefGoogle Scholar
  550. Stolte W, Karlsson C, Carlsson P, Granéli E (2002) Modeling the increase of nodularin content in Baltic Sea Nodularia spumigena during stationary phase in phosphorus-limited batch cultures. FEMS Microbiol Ecol 41:211–220PubMedCrossRefGoogle Scholar
  551. Stoner RD, Adams WH, Slatkin DN, Siegelman HW (1989) The effects of single L-amino acid substitutions on the lethal potencies of the microcystins. Toxicon 27(7):825–828PubMedCrossRefGoogle Scholar
  552. Stotts RR, Namikoshi M, Haschek WM, Rinehart KL, Carmichael WW, Dahlem AM, Beasley VR (1993) Structural modifications imparting reduced toxicity in microcystins from Microcystis spp. Toxicon 31(6):783–789PubMedCrossRefGoogle Scholar
  553. Štraser A, Filipič M, Žegura B (2013a) Cylindrospermopsin induced transcriptional responses in human hepatoma HepG2 cells. Toxicol In Vitro 27(6):1809–1819. doi: 10.1016/j.tiv.2013.05.012 PubMedCrossRefGoogle Scholar
  554. Štraser A, Filipič M, Gorenc I, Žegura B (2013b) The influence of cylindrospermopsin on oxidative DNA damage and apoptosis induction in HepG2 cells. Chemosphere 92(1):24–30. doi: 10.1016/j.chemosphere.2013.03.023 PubMedCrossRefGoogle Scholar
  555. Štraser A, Filipič M, Novak M, Žegura B (2013c) Double strand breaks and cell-cycle arrest induced by the cyanobacterial toxin cylindrospermopsin in HepG2 cells. Mar Drugs 11(8):3077–3090. doi: 10.3390/md11083077 PubMedCentralCrossRefGoogle Scholar
  556. Stucken K, Murillo AA, Soto-Liebe K, Fuentes-Valdes JJ, Mendez MA, Vasquez M (2009) Toxicity phenotype does not correlate with phylogeny of Cylindrospermopsis raciborskii strains. Syst Appl Microbiol 32(1):37–48PubMedCrossRefGoogle Scholar
  557. Stucken K, John U, Cembella A, Soto-Liebe K, Vásquez M (2014) Impact of nitrogen sources on gene expression and toxin production in the diazotroph Cylindrospermopsis raciborskii CS-505 and non-diazotroph Raphidiopsis brookii D9. Toxins 6:2932–2947CrossRefGoogle Scholar
  558. Stuken A, Jakobsen KS (2010) The cylindrospermopsin gene cluster of Planktothrix sp. strain 10E6: organization and recombination. Microbiol 156:2438–2451CrossRefGoogle Scholar
  559. Stuken A, Campbell RJ, Quesada A, Sukenik A, Dadheech PK, Wiedner C (2009) Genetic and morphologic characterization of four putative cylindrospermopsin producing species of the cyanobacterial genera Anabaena and Planktothrix. J Plankton Res 31(5):465–480CrossRefGoogle Scholar
  560. Stuken A, Orr RJS, Kellmann R, Murray SA, Neilan BA, Jakobsen KS (2011) Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates. PLoS One. doi: 10.1371/journal.pone.0020096 PubMedPubMedCentralGoogle Scholar
  561. Su Z, Sheets M, Ishida H, Li FH, Barry WH (2004) Saxitoxin blocks L-type ICa. J Pharmacol Exp Ther 308:324–329PubMedCrossRefGoogle Scholar
  562. Suda S, Watanabe MM, Otsuka S et al (2002) Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol 52(5):1577–1595. doi: 10.1099/ijs.0.01834-0 PubMedGoogle Scholar
  563. Sukenik A, Reisner M, Carmeli S, Werman M (2006) Oral toxicity of the cyanobacterial toxin cylindrospermopsin in mice: long-term exposure to low doses. Environ Toxicol 21:575582CrossRefGoogle Scholar
  564. Sulcius S, Pilkaityte R, Mazur-Marzec H et al (2015) Increased risk of exposure to microcystins in the scum of the filamentous cyanobacterium Planktothrix flos-aquae accumulated on the western shoreline of the Curonian Lagoon. Mar Pollut Bull 99(1–2):264–270. doi: 10.1016/j.marpolbul.2015.07.057 PubMedCrossRefGoogle Scholar
  565. Sun Y, Zheng Q, Sun YT, Huang P, Guo ZL, Xu LH (2014) Microcystin-LR induces protein phosphatase 2A alteration in a human liver cell line. Environ Toxicol 29(11):1236–1244. doi: 10.1002/tox.21854 PubMedGoogle Scholar
  566. Sun Y, Liu JH, Huang P, Guo ZL, Xu LH (2015) Alterations of tau and VASP during microcystin-LR-induced cytoskeletal reorganization in a human liver cell line. Environ Toxicol 30(1):92–100. doi: 10.1002/tox.21898 PubMedCrossRefGoogle Scholar
  567. Svirčev Z, Krstic S, Miladinov-Mikov M, Baltić V, Vidović M (2009) Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(1):36–55. doi: 10.1080/10590500802668016 PubMedCrossRefGoogle Scholar
  568. Svirčev Z, Drobac D, Tokodi N, Vidović M, Simeunovic J, Miladinov-Mikov M, Baltić V (2013) Epidemiology of Primary Liver Cancer in Serbia and possible connection with cyanobacterial blooms. J Environ Sciand Health Part C Environ Carcinogen Ecotoxicol Rev 31:181–200CrossRefGoogle Scholar
  569. Szlag DC, Sinclair JL, Southwell B, Westrick JA (2015) Cyanobacteria and cyanotoxins occurrence and removal from five high-risk conventional treatment drinking water plants. Toxins 7(6):2198–2220. doi: 10.3390/toxins7062198 PubMedPubMedCentralCrossRefGoogle Scholar
  570. Takahashi T, Umehara A, Tsutsumi H (2014) Diffusion of microcystins (cyanobacteria hepatotoxins) from the reservoir of Isahaya Bay, Japan, into the marine and surrounding ecosystems as a result of large-scale drainage. Mar Pollut Bull 89(1–2):250–258. doi: 10.1016/j.marpolbul.2014.09.052 PubMedCrossRefGoogle Scholar
  571. Takenaka S (2001) Covalent glutathione conjugation to cyanobacterial hepatotoxin microcystin LR by F344 rat cytosolic and microsomal glutathione S-transferases. Environ Toxicol Pharmacol 9(4):135–139PubMedCrossRefGoogle Scholar
  572. Takumi S, Komatsu M, Furukawa T, Ikeda R, Sumizawa T, Akenaga H, Maeda Y et al (2010) p53 Plays an important role in cell fate determination after exposure to microcystin-LR. Environ Health Perspect 118(9):1292–1298. doi: 10.1289/ehp.1001899 PubMedPubMedCentralCrossRefGoogle Scholar
  573. Takumi S, Ikema S, Hanyu T, Shima Y, Kurimoto T, Shiozaki K, Sugiyama Y et al (2015) Naringin attenuates the cytotoxicity of hepatotoxin microcystin-LR by the curious mechanisms to OATP1B1- and OATP1B3-expressing cells. Environ Toxicol Pharmacol 39(2):974–981. doi: 10.1016/j.etap.2015.02.021 PubMedCrossRefGoogle Scholar
  574. Teixera MGLC, Costa MNC, Carvalho VLP, Pereira MS, Hage E (1993) Gastroenteritis epidemic in the area of the Itaparica Dam, Bahia, Brazil. Bull Pan Am Health Organ 27:244–253Google Scholar
  575. Teneva I, Klaczkowska D, Batsalova T, Kostova Z, Dzhambazov B (2016) Influence of captopril on the cellular uptake and toxic potential of microcystin-LR in non-hepatic adhesive cell lines. Toxicon 111:50–57. doi: 10.1016/j.toxicon.2015.12.006 PubMedCrossRefGoogle Scholar
  576. Terao K, Ohmori S, Igarashi K, Ohtani I, Watanabe MF, Harada KI, Ito E, Watanabe M (1994) Electron-microscopic studies on experimental poisoning in mice induced by cylindrospermopsin isolated from blue-green-alga Umezakia natans. Toxicon 32(7):833–843PubMedCrossRefGoogle Scholar
  577. Testai E, Buratti FM, Funari E, Manganelli M, Vichi S, Arnich A, Biré R et al (2016a) Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Supporting Publications 13(2):998E. doi: 10.2903/sp.efsa.2016.EN-998 Google Scholar
  578. Testai E, Scardala S, Vichi S, Buratti FM, Funari E (2016b) Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit Rev Toxicol. doi: 10.3109/10408444.2015.1137865 PubMedGoogle Scholar
  579. Thomas AD, Saker ML, Norton JH, Olsen RD (1998) Cyanobacterium Cylindrospermopsis raciborskii as a probable cause of death in cattle in northern Queensland. Aust Vet J 76(9):592–594PubMedCrossRefGoogle Scholar
  580. Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7(10):753–764PubMedCrossRefGoogle Scholar
  581. Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular–phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103(14):5442–5447. doi: 10.1073/pnas.0600999103 PubMedPubMedCentralCrossRefGoogle Scholar
  582. Tonk L, van de Waal DB, Slot P, Huisman J, Matthijs HCP, Visser PM (2008) Amino acid availability determines the ratio of microcystin variants in the cyanobacterium Planktothrix agardhii. FEMS Microbiol Ecol 65:383–390PubMedCrossRefGoogle Scholar
  583. Torokne A, Palovics A, Banckine M (2001) Allergenic (sensitization, skin and eye irritation) effects of freshwater cyanobacteria: experimental evidence. Environ Toxicol 32:512–516CrossRefGoogle Scholar
  584. Trainer VL, Hardy FJ (2015) Integrative monitoring of marine and freshwater harmful algae in washington state for public health protection. Toxins 7:1206–1234. doi: 10.3390/toxins7041206 PubMedPubMedCentralCrossRefGoogle Scholar
  585. Trevino-Garrison I, DeMent J, Ahmed FS, Haines-Lieber P, Langer T, Ménager H, Neff J et al (2015) Human illnesses and animal deaths associated with freshwater harmful algal blooms—kansas. Toxins 7(2):353–366. doi: 10.3390/toxins7020353 PubMedPubMedCentralCrossRefGoogle Scholar
  586. Trout-Haney JV, Wood ZT, Cottingham KL (2016) Presence of the cyanotoxin microcystin in Arctic Lakes of Southwestern Greenland. Toxins. doi: 10.3390/toxins8090256 PubMedPubMedCentralGoogle Scholar
  587. Tsuchiya S, Cho Y, Konoki K, Nagasawa K, Oshima Y, Yotsu-Yamashita M (2016) Biosynthetic route towards saxitoxin and shunt pathway. Sci Rep 6:20340. doi: 10.1038/srep20340 PubMedPubMedCentralCrossRefGoogle Scholar
  588. Turner PC, Gammie AJ, Hollinrake K, Codd GA (1990) Pneumonia associated with cyanobacteria. British Med J 300:1440–1441CrossRefGoogle Scholar
  589. Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Watanabe MF, Park HD, Chen GC, Yu SH (1996) Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 17:1317–1321PubMedCrossRefGoogle Scholar
  590. Ueno Y, Makita Y, Nagata S, Tsutsumi T, Yoshida F, Tamura S, Sekijima M et al (1999) No chronic oral toxicity of a low dose of microcystin-LR, a cyanobacterial hepatotoxin, in female BALB/c mice. EnvironToxicol 14(1):45–55Google Scholar
  591. Ufelmann H, Schrenk D (2015) Nodularin-triggered apoptosis and hyperphosphorylation of signaling proteins in cultured rat hepatocytes. Toxicol In Vitro 29(1):16–26. doi: 10.1016/j.tiv.2014.08.008 PubMedCrossRefGoogle Scholar
  592. Ufelmann H, Krüger T, Luckas B, Schrenk D (2012) Human and rat hepatocyte toxicity and protein phosphatase 1 and 2A inhibitory activity of naturally occurring desmethyl-microcystins and nodularins. Toxicology 293(1–3):59–67. doi: 10.1016/j.tox.2011.12.011 PubMedCrossRefGoogle Scholar
  593. US EPA (United States Environmental Protection Agency) (2015a) Drinking Water Health Advisory for the Cyanobacterial Microcystin Toxin, EPA-820R15100. 75 pages. Accessed 26 October 2016
  594. US EPA (United States Environmental Protection Agency) (2015b) Drinking Water Health Advisory for the Cyanobacterial Toxin Cylindrospermopsin, EPA- 820R15101. 52 pages. Accessed 26 October 2016
  595. US EPA (United States Environmental Protection Agency) (2015c) Health effects support document for the cyanobacterial toxin anatoxin-a. EPA 820R15104, Washington, DC, p 58. Accessed 26 Oct 2016
  596. Valentine WM, Schaeffer DJ, Beasley VR (1991) Electromyographic assessment of the neuromuscular blockade produced in vivo by anatoxin-a in the rat. Toxicon 29:347–357PubMedCrossRefGoogle Scholar
  597. Van de Waal DB, Ferreruela G, Tonk L, Van Donk E, Huisman J, Visser PM, Matthijs HCP (2010) Pulsed nitrogen supply induces dynamic changes in the amino acid composition and microcystin production of the harmful cyanobacterium Planktothrix agardhii. FEMS Microbiol Ecol 74:430–438PubMedCrossRefGoogle Scholar
  598. Van de Waal DB, Verspagen JMH, Finke JF, Vournazou V, Immers AK, Kardinaal WEA, Tonk L et al (2011) Reversal in competitive dominance of a toxic versus non-toxic cyanobacterium in response to rising CO2. ISME J 5:1438–1450PubMedPubMedCentralCrossRefGoogle Scholar
  599. van der Merwe D, Sebbag L, Nietfeld JC, Aubel MT, Foss A, Carney E (2012) Investigation of a Microcystis aeruginosa cyanobacterial freshwater harmful algal bloom associated with acute microcystin toxicosis in a dog. J Vet Diagn Invest 24(4):679–687. doi: 10.1177/1040638712445768 PubMedCrossRefGoogle Scholar
  600. Vesterkvist PSM, Misiorek JO, Spoof LEM, Toivola DM, Meriluoto JAO (2012) Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells. Toxins 4:1008–1023PubMedPubMedCentralCrossRefGoogle Scholar
  601. Vichi S, Lavorini P, Funari E, Scardala S, Testai E (2012) Contamination by Microcystis and microcystins of blue-green algae food supplements (BGAS) on the Italian market and possible risk for the exposed population. Food Chem Toxicol 50:4493–4499PubMedCrossRefGoogle Scholar
  602. Vichi S, Buratti FM, Testai E (2016) Microcystins: toxicological profile. In: Gopalakrishnakone P et al (eds) Marine and freshwater toxins. Toxinology, Springer Science + Business Media Dordrecht, pp 219–238CrossRefGoogle Scholar
  603. Vijayakumar S, Menakha M (2015) Pharmaceutical applications of cyanobacteria: a review. J Acute Med 5(1):15–23. doi: 10.1016/j.jacme.2015.02.004 CrossRefGoogle Scholar
  604. Voß B, Bolhuis H, Fewer DP et al (2013) Insights into the physiology and ecology of the brackish-water-adapted cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis. PLoS ONE 8(3):e60224. doi: 10.1371/journal.pone.0060224 PubMedPubMedCentralCrossRefGoogle Scholar
  605. Wang J, Salata JJ, Bennett PB (2003) Saxitoxin is a gating modifier of hERG KC channels. J Gen Physiol 121:583–598PubMedPubMedCentralCrossRefGoogle Scholar
  606. Wang Q, Xie P, Chen J, Liang G (2008) Distribution of microcystins in various organs (heart, liver, intestine, gonad, brain, kidney and lung) of Wistar rat via intravenous injection. Toxicon 52(6):721–727PubMedCrossRefGoogle Scholar
  607. Wang X, Ying F, Chen Y, Han X (2012) Microcystin (-LR) affects hormones level of male mice by damaging hypothalamic-pituitary system. Toxicon 59(2):205–214PubMedCrossRefGoogle Scholar
  608. Wang X, Chen Y, Zuo X, Ding N, Zeng H, Zou X, Han X (2013) Microcystin (-LR) induced testicular cell apoptosis via up-regulating apoptosis-related genes in vivo. Food Chem Toxicol 60:309–317. doi: 10.1016/j.fct.2013.07.039 PubMedCrossRefGoogle Scholar
  609. Wang X, Huang P, Liu Y, Du H, Wang X, Wang M, Wang Y et al (2015) Role of nitric oxide in the genotoxic response to chronic microcystin-LR exposure in human-hamster hybrid cells. J Environ Sci (China) 29:210–218. doi: 10.1016/j.jes.2014.07.036 CrossRefGoogle Scholar
  610. Wang C, Gu S, Yin X, Yuan M, Xiang Z, Li Z, Cao H et al (2016) The toxic effects of microcystin-LR on mouse lungs and alveolar type II epithelial cells. Toxicon 115:81–88. doi: 10.1016/j.toxicon.2016.03.007 PubMedCrossRefGoogle Scholar
  611. Weng D, Lu Y, Wei Y, Liu Y, Shen P (2007) The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice. Toxicology 232:15–23PubMedCrossRefGoogle Scholar
  612. Whitton BA (2012) Ecology of cyanobacteria II. Their Diversity in Space and Time. Springer. Dordrecht, Heidelberg, New York, London, p 760CrossRefGoogle Scholar
  613. WHO (World Health Organization) (2003a) Cyanobacterial toxins: Microcystin-LR in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. WHO/SDE/WSH/03.04/57. 18 pages.
  614. WHO (World Health Organization) (2003b) Guidelines for safe recreational water environments—Volume 1: coastal and fresh waters. Geneva: World Health Organization, 253 pages.
  615. WHO (World Health Organization) (2004) Guidelines for Drinking-water Quality. Third edition
  616. Williams DE, Dawe SC, Kent ML, Andersen RJ, Craig M, Holmes CFB (1997) Bioaccumulation and clearance of microcystins from salt water, mussels, Mytilus edulis, and in vivo evidence for covalently bound microcystins in mussel tissues. Toxicon 35(11):1617–1625PubMedCrossRefGoogle Scholar
  617. Willis A, Adams MP, Chuang AW, Orr PT, O’Brien KR, Burford MA (2015) Constitutive toxin production under various nitrogen and phosphorus regimes of three ecotypes of Cylindrospermopsis raciborskii (Woloszyriska) Seenayya et Subba Raju). Harmful Algae 47:27–34. doi: 10.1016/j.hal.2015.05.011 CrossRefGoogle Scholar
  618. Willis A, Chuang AW, Woodhouse JN, Neilan BA, Burford MA (2016) Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii. Toxicon 119:307–310. doi: 10.1016/j.toxicon.2016.07.005 PubMedCrossRefGoogle Scholar
  619. Wimmer KM, Strangman W K, and Wright J LC (2014) 7-Deoxy-desulfocylindrospermopsin and 7-deoxy-desulfo-12-acetylcylindrospermopsin: Two new cylindrospermopsin analogs isolated from a Thai strain of Cylindrospermopsis raciborskii. Harmful Algae 37: 203–206CrossRefGoogle Scholar
  620. Wood SA, Selwood AI, Rueckert A et al (2007) First report of homoanatoxin-a and associated dog neurotoxicosis in New Zealand. Toxicon 50(2):292–301PubMedCrossRefGoogle Scholar
  621. Wood SA, Heath MW, Holland PT, Munday R, McGregor GB, Ryan KG (2010a) Identification of a benthic microcystin-producing filamentous cyanobacterium (Oscillatoriales) associated with a dog poisoning in New Zealand. Toxicon 55(4):897–903. doi: 10.1016/j.toxicon.2009.12.019 PubMedCrossRefGoogle Scholar
  622. Wood SA, Heath MW, Kuhajek J, Ryan KG (2010b) Fine-scale spatial variability in anatoxin-a and homoanatoxin-a concentrations in benthic cyanobacterial mats: implication for monitoring and management. J Appl Microbiol 109:2011–2018PubMedCrossRefGoogle Scholar
  623. Wood SA, Rueckert A, Hamilton DP, Cary SC, Dietrich DR (2011) Switching toxin production on and off: intermittent microcystin synthesis in a Microcystis bloom. Environ Microbiol Rep 3(1):118–124. doi: 10.1111/j.1758-2229.2010.00196.x PubMedCrossRefGoogle Scholar
  624. Wood SA, Dietrich DR, Cary SC, Hamilton DP (2012a) Increasing Microcystis cell density enhances microcystin synthesis: a mesocosm study. Inland Waters 2:17–22. doi: 10.5268/IW-2.1.424 CrossRefGoogle Scholar
  625. Wood SA, Smith FMJ, Heath MW, Palfroy T, Gaw S, Young RG et al (2012b) Within-mat variability in anatoxin-a and homoanatoxin-a production among benthic phormidium (Cyanobacteria) strains. Toxins 4(10):900PubMedPubMedCentralCrossRefGoogle Scholar
  626. Wood S, Wagenhoff A, Young R (2014) The effect of flow and nutrients on Phormidium abundance and toxin production in rivers in the Manawatu-Whanganui region Cawthron Report. Prepared for Horizons Regional Council, Nelson, New ZealandGoogle Scholar
  627. Wormer L, Cirés S, Carrasco D, Quesada A (2008) Cylindrospermopsin is not degraded by co-occurring natural bacterial communities during a 40-day study. Harmful Algae 7(2):206–213CrossRefGoogle Scholar
  628. Wormer L, Huerta-Fontela M, Cires S, Carrasco D, Quesada A (2010) Natural photodegradation of the cyanobacterial toxins microcystin and cylindrospermopsin. Environ Sci Technol 44(8):3002–3007. doi: 10.1021/es9036012 PubMedCrossRefGoogle Scholar
  629. Wu L, Xie P, Chen J, Zhang D, Liang G (2010) Development and validation of a liquid chromatography–tandem mass spectrometry assay for the simultaneous quantitation of microcystin-RR and its metabolites in fish liver. J Chromatogr A 1217:1455–1462PubMedCrossRefGoogle Scholar
  630. Wu J, Shao S, Zhou F, Wen S, Chen F, Han X (2014) Reproductive toxicity on female mice induced by microcystin-LR. Environ l Toxicol Pharmacol 37(1):1–6CrossRefGoogle Scholar
  631. Wu J, Yuan M, Song Y, Sun F, Han X (2015) MC-LR exposure leads to subfertility of female mice and induces oxidative stress in granulosa cells. Toxins (Basel) 7(12):5212–5223. doi: 10.3390/toxins7124872 CrossRefGoogle Scholar
  632. Xiao FG, Zhao XL, Tang J, Gu XH, Zhang JP, Niu WM (2009) Necessity of screening water chestnuts for microcystins after cyanobacterial blooms break out. Arch Environ Contam Toxicol 57(2):256–263. doi: 10.1007/s00244-008-9275-6 PubMedCrossRefGoogle Scholar
  633. Xing Y, Xu Y, Chen Y, Jeffrey PD, Chao Y, Lin Z, Li Z, Strack S, Stock JB, Shi Y (2006) Structure of protein phosphatase 2A core enzyme bound to tumor- inducing toxins. Cell 127:341–353PubMedCrossRefGoogle Scholar
  634. Xing ML, Wang XF, Xu LH (2008) Alteration of proteins expression in apoptotic FL cells induced by MCLR. Environ Toxicol 23:451–458PubMedCrossRefGoogle Scholar
  635. Xu K, Li Z-K, Qiu B-S, Juneau P (2013a) Different responses to high light stress of toxic and non-toxic Microcystis aeruginosa acclimated under two light intensities and zinc concentrations. Toxicol Environ Chem 95(7):1145–1156. doi: 10.1080/02772248.2013.849347 CrossRefGoogle Scholar
  636. Xu P, Zhang XX, Miao C, Fu Z, Li Z, Zhang G, Zheng M et al (2013b) Promotion of melanoma cell invasion and tumor metastasis by microcystin-LR via phosphatidylinositol 3-kinase/AKT pathway. Environ Sci Technol 47(15):8801–8808. doi: 10.1021/es4007228 PubMedGoogle Scholar
  637. Xue L, Li J, Li Y, Chu C, Xie G, Qin J, Yang M et al (2015) N-acetylcysteine protects Chinese Hamster ovary cells from oxidative injury and apoptosis induced by microcystin-LR. Int J Clin Exp Med 8(4):4911–4921PubMedPubMedCentralGoogle Scholar
  638. Yang Z, Kong F (2015) UV-B exposure affects the biosynthesis of microcystin in toxic Microcystis aeruginosa cells and its degradation in the extracellular space. Toxins 7:4238–4252PubMedPubMedCentralCrossRefGoogle Scholar
  639. Yasumoto T, Nakajima I, Bagnis R, Adachi R (1977) Finding of a dinoflagellate as a likely culprit of ciguatera. Bull Jpn Soc Sci Fish 43:1021–1026CrossRefGoogle Scholar
  640. Yea SS, Kim HM, Jeon YJ, Oh HM, Jeong HG, Yang KH (2000) Suppression of IL-2 and IL-4 gene expression by nodularin through the reduced NF-AT binding activity. Toxicol Lett 114(1–3):215–224PubMedCrossRefGoogle Scholar
  641. Yen HK, Lin TF, Liao PC (2011) Simultaneous detection of nine cyanotoxins in drinking water using dual solid-phase extraction and liquid chromatography-mass spectrometry. Toxicon 58(2):209–218. doi: 10.1016/j.toxicon.2011.06.003 PubMedCrossRefGoogle Scholar
  642. Yoshida T, Makita Y, Nagata S, Tsutsumi T, Yoshida F, Sekijima M, Tamura S, Ueno Y (1997) Acute oral toxicity of microcystin-LR, a cyanobacterial hepatotoxin, in mice. Nat Toxins 5(3):91–95PubMedCrossRefGoogle Scholar
  643. Young FM, Micklem J, Humpage AR (2008) Effects of blue-green algal toxin cylindrospermopsin (CYN) on human granulosa cells in vitro. Reprod Toxicol 25(3):374–380. doi: 10.1016/j.reprotox.2008.02.006 PubMedCrossRefGoogle Scholar
  644. Young FM, Zebian D, Froscio S, Humpage A (2012) Cylindrospermopsin, a blue-green algal toxin, inhibited human luteinised granulosa cell protein synthesis in vitro. Toxicol In Vitro 26(5):656–662. doi: 10.1016/j.tiv.2012.03.001 PubMedCrossRefGoogle Scholar
  645. Yu G, Zhu M, Li R, Tan W, Jiang Y, Song G (2014) Variation of Microcystis and microcystins coupling nitrogen and phosphorus nutrients in Lake Erhai, a drinking-water source in Southwest Plateau, China [electronic resource]. Environ Sci Pollut Res Int 21(16):9887–9898. doi: 10.1007/s11356-014-2937-1 PubMedCrossRefGoogle Scholar
  646. Žegura B, Filipič M, Šuput D, Lah T, Sedmak B (2002) In vitro genotoxicity of microcystin-RR on primary cultured rat hepatocites and Hep G2 cell line detected by Comet assay. Radiol Oncol 36(2):159–161Google Scholar
  647. Žegura B, Lah TT, Filipič M (2004) The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology 200(1):59–68PubMedCrossRefGoogle Scholar
  648. Žegura B, Volčič M, Lah TT, Filipič M (2008) Different sensitivities of human colon adenocarcinoma (CaCo-2), astrocytoma (IPDDC-A2) and lymphoblastoid (NCNC) cell lines to microcystin-LR induced reactive oxygen species and DNA damage. Toxicon 52(3):518–525PubMedCrossRefGoogle Scholar
  649. Žegura B, Štraser A, Filipic M (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins. A review. Mut Res 727:16–41CrossRefGoogle Scholar
  650. Zeller P, Quenault H, Huguet A, Blanchard Y, Fessard V (2012) Transcriptomic comparison of cyanotoxin variants in a human intestinal model revealed major differences in oxidative stress response: effects of MC-RR and MC-LR on Caco-2 cells. Ecotoxicol Environ Saf 82:13–21. doi: 10.1016/j.ecoenv.2012.05.001 PubMedCrossRefGoogle Scholar
  651. Zeng J, Tu WW, Lazar L, Chen DN, Zhao JS, Xu J (2015) Hyperphosphorylation of microfilament-associated proteins is involved in microcystin-LR-induced toxicity in HL7702 cells. Environ Toxicol 30(8):981–988. doi: 10.1002/tox.21974 PubMedCrossRefGoogle Scholar
  652. Zervou SK, Christophoridis C, Kaloudis T, Triantis TM, Hiskia A (2016) New SPE-LC-MS/MS method for simultaneous determination of multi-class cyanobacterial and algal toxins. J Hazard Mater. doi: 10.1016/j.jhazmat.2016.07.020 PubMedGoogle Scholar
  653. Zhan L, Sakamoto H, Sakuraba M, Wu D-S, Zhang L-S, Suzuki T, Hayashi M, Honma M (2004) Genotoxicity of microcystin-LR in human lymphoblastoid TK6 cells. Mut Res 557:1–6CrossRefGoogle Scholar
  654. Zhang D, Chen J, Xie P (2010) Effects of temperature on the stability of microcystins in muscle of fish and its consequences for food safety [electronic resource]. Bull Environ Contam Toxicol 84(2):202–207. doi: 10.1007/s00128-009-9910-6 PubMedCrossRefGoogle Scholar
  655. Zhang J, Chen J, Xia Z (2013) Microcystin-LR exhibits immunomodulatory role in mouse primary hepatocytes through activation of the NF-κB and MAPK signaling pathways. Toxicol Sci 136(1):86–96. doi: 10.1093/toxsci/kft180 PubMedCrossRefGoogle Scholar
  656. Zhang B, Liu Y, Li X (2015) Alteration in the expression of cytochrome P450 s (CYP1A1, CYP2E1, and CYP3A11) in the liver of mouse induced by microcystin-LR. Toxins (Basel) 7(4):1102–1115. doi: 10.3390/toxins7041102 CrossRefGoogle Scholar
  657. Zhao Y, Xie P, Fan H (2012) Genomic profiling of microRNAs and proteomics reveals an early molecular alteration associated with tumorigenesis induced by MC-LR in mice. Environ Sci Technol 46(1):34–41. doi: 10.1021/es201514h PubMedCrossRefGoogle Scholar
  658. Zhao S, Li G, Chen J (2015a) A proteomic analysis of prenatal transfer of microcystin-LR induced neurotoxicity in rat offspring. J Proteomics 114:197–213. doi: 10.1016/j.jprot.2014.11.015 PubMedCrossRefGoogle Scholar
  659. Zhao Y, Xue Q, Su X, Xie L, Yan Y, Steinman AD (2015b) Microcystin-LR induced thyroid dysfunction and metabolic disorders in mice. Toxicology 328:135–141PubMedCrossRefGoogle Scholar
  660. Zhao S, Xie P, Chen J, Liu L, Fan H (2016) A proteomic study on liver impairment in rat pups induced by maternal microcystin-LR exposure. Environ Pollut 212:197–207. doi: 10.1016/j.envpol.2015.12.055 PubMedCrossRefGoogle Scholar
  661. Zhou L, Yu H, Chen K (2002) Relationship between microcystin in drinking water and colorectal cancer. Biomed Environ Sci 15(2):166–171PubMedGoogle Scholar
  662. Zhou Y, Yuan J, Wu J, Han X (2012) The toxic effects of microcystin-LR on rat spermatogonia in vitro. Toxicol Lett 212(1):48–56. doi: 10.1016/j.toxlet.2012.05.001 PubMedCrossRefGoogle Scholar
  663. Zhou W, Zhang X, Xie P, Liang H, Zhang X (2013) The suppression of hematopoiesis function in Balb/c mice induced by prolonged exposure of microcystin-LR. Toxicol Lett 219(2):194–201PubMedCrossRefGoogle Scholar
  664. Zhou M, Tu WW, Xu J (2015) Mechanisms of microcystin-LR-induced cytoskeletal disruption in animal cells. Toxicon 101:92–100. doi: 10.1016/j.toxicon.2015.05.005 PubMedCrossRefGoogle Scholar
  665. Zurawell RW, Chen H, Burke JM, Prepas EE (2005) Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J Toxicol Environ Health Part B 8(1):1–37. doi: 10.1080/10937400590889412 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Franca M. Buratti
    • 1
  • Maura Manganelli
    • 1
  • Susanna Vichi
    • 1
  • Mara Stefanelli
    • 2
  • Simona Scardala
    • 1
  • Emanuela Testai
    • 1
    Email author
  • Enzo Funari
    • 1
  1. 1.Environment and Health DepartmentIstituto Superiore di SanitàRomeItaly
  2. 2.Research Certification and Control DivisionINAILRomeItaly

Personalised recommendations