Advertisement

Archives of Toxicology

, Volume 91, Issue 5, pp 2265–2282 | Cite as

Evaluation of the cytotoxic properties, gene expression profiles and secondary signalling responses of cultured cells exposed to fumonisin B1, deoxynivalenol and zearalenone mycotoxins

  • Johannes F. WentzelEmail author
  • Martani J. Lombard
  • Lissinda H. Du Plessis
  • Lizelle Zandberg
Biologics

Abstract

Mycotoxins are toxic secondary metabolites produced by a range of fungi and are common contaminants of agricultural crops. These toxins are chemically diverse and structurally stable, enabling them to enter the food chain which can lead to numerous adverse health effects in animals and humans. Although mycotoxin exposure is associated with the development of several cancers, it has proved challenging to show a direct connection between exposure and oncogenic change. This study investigates the in vitro cytotoxicity, molecular mechanisms and secondary signalling responses associated with the exposure to three major mycotoxins, fumonisin B1 (FB1), deoxynivalenol (Don) and zearalenone (Zea). The cytotoxicity of FB1, Don and Zea were investigated in cultured HepG2 and Caco-2 cells using cell viability assays as well as flow cytometry. FB1 proved to be less cytotoxic than its counterparts, while Don and Zea demonstrated high cytotoxicity through an apoptotic mechanism. Expression profiles of 84 genes involved in mediating communication between tumour cells and the cellular mediators of inflammation as well as the innate immune system were also studied. The expression profiles associated with the different mycotoxins were further explored for functional networks, biological functions, canonical pathways, toxicological association as well as to predict network associations between the differentially expressed genes. RT-qPCR revealed the significant differential expression of 46 genes, including the expression of several genes strongly associated with cancer and aberrant inflammatory signalling, after mycotoxin exposure. Aberrant inflammatory signalling seems to be a credible contributing factor that initiates the malignant change observed in cells exposed to mycotoxins.

Keywords

Mycotoxins Fumonisin B1 (FB1) Deoxynivalenol (Don) Zearalenone (Zea) Gene expression profiling Secondary signalling responses 

Notes

Acknowledgments

The authors thank Prof. PJ Pretorius for his critical input, the National Research Foundation of South Africa (NRF) (85297) and Nestlè Nutrition Institute Africa (PO4546394578). Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors, and therefore, the NRF does not accept any liability in regard thereto.

Authors’ contributions

Wentzel, J.F, Lombard, M.J, Du Plessis, L.H. and Zandberg, L. conceptualized the study. Wentzel, J.F and Zandberg, L. contributed equally to the study design, experimental work, data analyses and interpretation, as well as to drafting the manuscript. Lombard, M.J. and Du Plessis, L.H. critically reviewed the manuscript and approved the final draft.

Compliance with ethical standards

Conflict of interest

Wentzel, J.F., Lombard, M.J, Du Plessis, L.H, and Zandberg, L declare that they have no conflict of interest.

Supplementary material

204_2016_1872_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 23 kb)

References

  1. Ahamed S, Foster JS, Bukovsky A, Wimalasena J (2001) Signal transduction through the Ras/Erk pathway is essential for the mycoestrogen zearalenone-induced cell-cycle progression in MCF-7 cells. Mol Carcinog 30(2):88–98CrossRefPubMedGoogle Scholar
  2. Alassane-Kpembi I, Puel O, Oswald IP (2015) Toxicological interactions between the mycotoxins deoxynivalenol, nivalenol and their acetylated derivatives in intestinal epithelial cells. Arch Toxicol 89(8):1337–1346. doi: 10.1007/s00204-014-1309-4 CrossRefPubMedGoogle Scholar
  3. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550. doi: 10.1038/nrc1388 CrossRefPubMedGoogle Scholar
  4. Bhandari N, Sharma RP (2002) Fumonisin B(1)-induced alterations in cytokine expression and apoptosis signaling genes in mouse liver and kidney after an acute exposure. Toxicology 172(2):81–92CrossRefPubMedGoogle Scholar
  5. Bondy GS, Pestka JJ (2000) Immunomodulation by fungal toxins. J Toxicol Environ Health Part B 3(2):109–143. doi: 10.1080/109374000281113 CrossRefGoogle Scholar
  6. Bony S, Olivier-Loiseau L, Carcelen M, Devaux A (2007) Genotoxic potential associated with low levels of the Fusarium mycotoxins nivalenol and fusarenon X in a human intestinal cell line. Toxicol In Vitro 21(3):457–465. doi: 10.1016/j.tiv.2006.10.014 CrossRefPubMedGoogle Scholar
  7. Brewer JH, Thrasher JD, Hooper D (2014) Chronic illness associated with mold and mycotoxins: is naso-sinus fungal biofilm the culprit? Toxins 6(1):66–80. doi: 10.3390/toxins6010066 CrossRefGoogle Scholar
  8. Bruno A, Pagani A, Pulze L et al (2014) Orchestration of angiogenesis by immune cells. Front Oncol 4:131. doi: 10.3389/fonc.2014.00131 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Conkova E, Laciakova A, Pastorova B, Seidel H, Kovac G (2001) The effect of zearalenone on some enzymatic parameters in rabbits. Toxicol Lett 121(3):145–149CrossRefPubMedGoogle Scholar
  10. Cundliffe E, Davies JE (1977) Inhibition of initiation, elongation, and termination of eukaryotic protein synthesis by trichothecene fungal toxins. Antimicrob Agents Chemother 11(3):491–499CrossRefPubMedPubMedCentralGoogle Scholar
  11. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771. doi: 10.1038/nrc3611 CrossRefPubMedGoogle Scholar
  12. Escriva L, Font G, Manyes L (2015) In vivo toxicity studies of fusarium mycotoxins in the last decade: a review. Food Chem Toxicol 78:185–206. doi: 10.1016/j.fct.2015.02.005 CrossRefPubMedGoogle Scholar
  13. Gelderblom WC, Jaskiewicz K, Marasas WF et al (1988) Fumonisins–novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54(7):1806–1811PubMedPubMedCentralGoogle Scholar
  14. Gelderblom WC, Abel S, Smuts CM et al (2001) Fumonisin-induced hepatocarcinogenesis: mechanisms related to cancer initiation and promotion. Environ Health Perspect 109(Suppl 2):291–300CrossRefPubMedPubMedCentralGoogle Scholar
  15. Geske FJ, Lieberman R, Strange R, Gerschenson LE (2001) Early stages of p53-induced apoptosis are reversible. Cell Death Differ 8(2):182–191. doi: 10.1038/sj.cdd.4400786 CrossRefPubMedGoogle Scholar
  16. Goossens J, Pasmans F, Verbrugghe E et al (2012) Porcine intestinal epithelial barrier disruption by the Fusarium mycotoxins deoxynivalenol and T-2 toxin promotes transepithelial passage of doxycycline and paromomycin. BMC Vet Res 8:245. doi: 10.1186/1746-6148-8-245 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5(6):515–525. doi: 10.1111/j.1364-3703.2004.00252.x CrossRefPubMedGoogle Scholar
  18. He K, Pan X, Zhou H-R, Pestka JJ (2013) Modulation of inflammatory gene expression by the ribotoxin deoxynivalenol involves coordinate regulation of the transcriptome and Translatome. Toxicol Sci 131(1):153–163. doi: 10.1093/toxsci/kfs266 CrossRefPubMedGoogle Scholar
  19. Howard PC, Eppley RM, Stack ME et al (2001) Fumonisin b1 carcinogenicity in a two-year feeding study using F344 rats and B6C3F1 mice. Environ Health Perspect 109(Suppl 2):277–282PubMedPubMedCentralGoogle Scholar
  20. Joubert P, Lajoie-Kadoch S, Welman M et al (2008) Expression and regulation of CCR1 by airway smooth muscle cells in asthma. J Immunol 180(2):1268–1275CrossRefPubMedGoogle Scholar
  21. Kaifi JT, Yekebas EF, Schurr P et al (2005) Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst 97(24):1840–1847. doi: 10.1093/jnci/dji431 CrossRefPubMedGoogle Scholar
  22. Kearney J (2010) Food consumption trends and drivers. Philos Trans R Soc B Biol Sci 365(1554):2793–2807. doi: 10.1098/rstb.2010.0149 CrossRefGoogle Scholar
  23. Kolf-Clauw M, Castellote J, Joly B et al (2009) Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis. Toxicol In Vitro 23(8):1580–1584. doi: 10.1016/j.tiv.2009.07.015 CrossRefPubMedGoogle Scholar
  24. Kulbe H, Thompson R, Wilson JL et al (2007) The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 67(2):585–592. doi: 10.1158/0008-5472.CAN-06-2941 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liu H, Beck TN, Golemis EA, Serebriiskii IG (2014) Integrating in silico resources to map a signaling network. Methods Mol Biol. doi: 10.1007/978-1-62703-721-1_11 CrossRefGoogle Scholar
  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408CrossRefPubMedGoogle Scholar
  27. Maaroufi K, Chekir L, Creppy EE, Ellouz F, Bacha H (1996) Zearalenone induces modifications of haematological and biochemical parameters in rats. Toxicon 34(5):535–540CrossRefPubMedGoogle Scholar
  28. Mantovani A (2007) Cancer: an infernal triangle. Nature 448(7153):547–548. doi: 10.1038/448547a CrossRefPubMedGoogle Scholar
  29. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. doi: 10.1038/nature07205 CrossRefPubMedGoogle Scholar
  30. Marasas WF (2001) Discovery and occurrence of the fumonisins: a historical perspective. Environ Health Perspect 109(Suppl 2):239–243CrossRefPubMedPubMedCentralGoogle Scholar
  31. Marasas WF, Kriek NP, Fincham JE, van Rensburg SJ (1984) Primary liver cancer and oesophageal basal cell hyperplasia in rats caused by Fusarium moniliforme. Int J Cancer 34(3):383–387CrossRefPubMedGoogle Scholar
  32. Marasas WF, Riley RT, Hendricks KA et al (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134(4):711–716PubMedGoogle Scholar
  33. Marroquin-Cardona AG, Johnson NM, Phillips TD, Hayes AW (2014) Mycotoxins in a changing global environment–a review. Food Chem Toxicol 69:220–230. doi: 10.1016/j.fct.2014.04.025 CrossRefPubMedGoogle Scholar
  34. Mathew D, Drury JA, Valentijn AJ, Vasieva O, Hapangama DK (2016) In silico, in vitro and in vivo analysis identifies a potential role for steroid hormone regulation of FOXD3 in endometriosis-associated genes. Hum Reprod 31(2):345–354. doi: 10.1093/humrep/dev307 PubMedGoogle Scholar
  35. Minervini F, Garbetta A, D’Antuono I et al (2014) Toxic mechanisms induced by fumonisin b1 mycotoxin on human intestinal cell line. Arch Environ Contam Toxicol 67(1):115–123. doi: 10.1007/s00244-014-0004-z CrossRefPubMedGoogle Scholar
  36. Owen JD, Strieter R, Burdick M et al (1997) Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine beta and gamma proteins. Int J Cancer 73(1):94–103CrossRefPubMedGoogle Scholar
  37. Pestka JJ (2010) Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological sequelae. Toxins 2(6):1300–1317. doi: 10.3390/toxins2061300 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health Part B 8(1):39–69. doi: 10.1080/10937400590889458 CrossRefGoogle Scholar
  39. Pfeiffer E, Hildebrand A, Mikula H, Metzler M (2010) Glucuronidation of zearalenone, zeranol and four metabolites in vitro: formation of glucuronides by various microsomes and human UDP-glucuronosyltransferase isoforms. Mol Nutr Food Res 54(10):1468–1476. doi: 10.1002/mnfr.200900524 CrossRefPubMedGoogle Scholar
  40. Pinton P, Oswald IP (2014) Effect of deoxynivalenol and other type B trichothecenes on the Intestine: a review. Toxins 6(5):1615–1643. doi: 10.3390/toxins6051615 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rakoff-Nahoum S, Medzhitov R (2007) Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317(5834):124–127. doi: 10.1126/science.1140488 CrossRefPubMedGoogle Scholar
  42. Richard JL (2007) Some major mycotoxins and their mycotoxicoses–an overview. Int J Food Microbiol 119(1–2):3–10. doi: 10.1016/j.ijfoodmicro.2007.07.019 CrossRefPubMedGoogle Scholar
  43. Rotter BA, Prelusky DB, Pestka JJ (1996) Toxicology of deoxynivalenol (vomitoxin). J Toxicol Environ Health 48(1):1–34. doi: 10.1080/713851046 CrossRefPubMedGoogle Scholar
  44. Stockmann-Juvala H (2007) Neuro- and immunotoxic effects of fumonisin B1 in cells. University of Helsinki, FinlandGoogle Scholar
  45. Sun LH, Lei MY, Zhang NY, Zhao L, Krumm CS, Qi DS (2014) Hepatotoxic effects of mycotoxin combinations in mice. Food Chem Toxicol 74:289–293. doi: 10.1016/j.fct.2014.10.020 CrossRefPubMedGoogle Scholar
  46. Surget S, Khoury MP, Bourdon JC (2013) Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther 7:57–68. doi: 10.2147/OTT.S53876 PubMedPubMedCentralGoogle Scholar
  47. Swann JB, Vesely MD, Silva A et al (2008) Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA 105(2):652–656. doi: 10.1073/pnas.0708594105 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Taranu I, Marin DE, Bouhet S et al (2005) Mycotoxin fumonisin B1 alters the cytokine profile and decreases the vaccinal antibody titer in pigs. Toxicol Sci 84(2):301–307. doi: 10.1093/toxsci/kfi086 CrossRefPubMedGoogle Scholar
  49. Ueno Y, Iijima K, Wang SD et al (1997) Fumonisins as a possible contributory risk factor for primary liver cancer: a 3-year study of corn harvested in Haimen, China, by HPLC and ELISA. Food Chem Toxicol 35(12):1143–1150CrossRefPubMedGoogle Scholar
  50. Vries MH, Wagenaar A, Verbruggen SE et al (2015) CXCL1 promotes arteriogenesis through enhanced monocyte recruitment into the peri-collateral space. Angiogenesis 18(2):163–171. doi: 10.1007/s10456-014-9454-1 CrossRefPubMedGoogle Scholar
  51. Wolf MJ, Hoos A, Bauer J et al (2012) Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 22(1):91–105. doi: 10.1016/j.ccr.2012.05.023 CrossRefPubMedGoogle Scholar
  52. World Health Organization G (2006) Safety evaluation of certain contaminants in food. Prepared by the sixty-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). FAO Food Nutr Pap 82:1–778Google Scholar
  53. Xiao H, Gulen MF, Qin J et al (2007) The Toll–interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity 26(4):461–475. doi: 10.1016/j.immuni.2007.02.012 CrossRefPubMedGoogle Scholar
  54. Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45(1):1–18. doi: 10.1016/j.fct.2006.07.030 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Johannes F. Wentzel
    • 1
    Email author
  • Martani J. Lombard
    • 2
  • Lissinda H. Du Plessis
    • 1
  • Lizelle Zandberg
    • 2
  1. 1.Centre of Excellence for Pharmaceutical Sciences (Pharmacen)North-West UniversityPotchefstroomSouth Africa
  2. 2.Centre of Excellence for Nutrition (CEN)North-West UniversityPotchefstroomSouth Africa

Personalised recommendations