Archives of Toxicology

, Volume 90, Issue 11, pp 2583–2594 | Cite as

Transcription-coupled repair: an update

  • Graciela SpivakEmail author
Review Article


Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. The serial steps in NER involve recognition of lesions, adducts or structures that disrupt the DNA double helix, removal of a short oligonucleotide containing the offending lesion, synthesis of a repair patch copying the opposite undamaged strand, and ligation, to restore the DNA to its original form. Transcription-coupled repair (TCR) is a subpathway of NER dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, I report on recent findings that contribute to the elucidation of TCR mechanisms in the bacterium Escherichia coli, the yeast Saccharomyces cerevisiae and human cells. I review general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.


Nucleotide excision repair Transcription-coupled repair DNA damage DNA repair 



Supported by National Institute of Environmental Health Sciences grant 5RO1 CA077712. We apologize to those whose work has not been cited.


  1. Banerjee D, Mandal SM, Das A et al (2010) Preferential repair of oxidized base damage in the transcribed genes of mammalian cells. J Biol Chem 286(8):6006–6016. doi: 10.1074/jbc.M110.198796 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beerens N, Hoeijmakers JH, Kanaar R, Vermeulen W, Wyman C (2005) The CSB protein actively wraps DNA. J Biol Chem 280(6):4722–4729. doi: 10.1074/jbc.M409147200 CrossRefPubMedGoogle Scholar
  3. Bhatia PK, Verhage RA, Brouwer J, Friedberg EC (1996) Molecular cloning and characterization of Saccharomyces cerevisiae RAD28, the yeast homolog of the human Cockayne syndrome A (CSA) gene. J Bacteriol 178(20):5977–5988PubMedPubMedCentralGoogle Scholar
  4. Bregeon D, Doddridge ZA, You HJ, Weiss B, Doetsch PW (2003) Transcriptional mutagenesis induced by uracil and 8-oxoguanine in Escherichia coli. Mol Cell 12(4):959–970CrossRefPubMedGoogle Scholar
  5. Brooks PJ (2013) Blinded by the UV light: how the focus on transcription-coupled NER has distracted from understanding the mechanisms of Cockayne syndrome neurologic disease. DNA Repair 12(8):656–671. doi: 10.1016/j.dnarep.2013.04.018 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Butland G, Peregrin-Alvarez JM, Li J et al (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433(7025):531–537. doi: 10.1038/nature03239: CrossRefPubMedGoogle Scholar
  7. Charlet-Berguerand N, Feuerhahn S, Kong SE et al (2006) RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. EMBO J 25(23):5481–5491. doi: 10.1038/sj.emboj.7601403 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cleaver JE (1968) Defective repair replication of DNA in xeroderma pigmentosum. Nature 218(5142):652–656CrossRefPubMedGoogle Scholar
  9. Cohen SE, Walker GC (2011) New discoveries linking transcription to DNA repair and damage tolerance pathways. Transcription 2(1):37–40. doi: 10.4161/trns.2.1.14228 CrossRefPubMedGoogle Scholar
  10. Cohen SE, Lewis CA, Mooney RA et al (2010) Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc Natl Acad Sci USA 107(35):15517–15522. doi: 10.1073/pnas.1005203107 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Crowley DJ, Hanawalt PC (2001) The SOS-dependent upregulation of uvrD is not required for efficient nucleotide excision repair of ultraviolet light induced DNA photoproducts in Escherichia coli. Mutat Res 485(4):319–329. doi: 10.1016/j.dnarep.2016.03.007 CrossRefPubMedGoogle Scholar
  12. Czaja W, Mao P, Smerdon MJ (2012) The emerging roles of ATP-dependent chromatin remodeling enzymes in nucleotide excision repair. Int J Mol Sci 13(9):11954–11973. doi: 10.3390/ijms130911954: CrossRefPubMedPubMedCentralGoogle Scholar
  13. Deaconescu AM, Chambers AL, Smith AJ et al (2006) Structural basis for bacterial transcription-coupled DNA repair. Cell 124(3):507–520. doi: 10.1016/j.cell.2005.11.045 CrossRefPubMedGoogle Scholar
  14. Dinant C, Ampatziadis-Michailidis G, Lans H et al (2013) Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage. Mol Cell 51(4):469–479. doi: 10.1016/j.molcel.2013.08.007 CrossRefPubMedGoogle Scholar
  15. Epshtein V, Kamarthapu V, McGary K et al (2014) UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 505(7483):372–377. doi: 10.1038/nature12928 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fagbemi AF, Orelli B, Scharer OD (2011) Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair 10(7):722–729. doi: 10.1016/j.dnarep.2011.04.022 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fei J, Chen J (2012) KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR). J Biol Chem 287(42):35118–35126. doi: 10.1074/jbc.M112.398131 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fousteri M, Vermeulen W, van Zeeland AA, Mullenders LH (2006) Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol Cell 23(4):471–482. doi: 10.1016/j.molcel.2006.06.029 CrossRefPubMedGoogle Scholar
  19. Friedberg EC, Elledge SJ, Lehmann AR, Lindahl T, Muzi-Falconi M (eds) (2014) DNA repair, mutagenesis, and other responses to DNA damage. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  20. Gaillard H, Aguilera A (2013) Transcription coupled repair at the interface between transcription elongation and mRNP biogenesis. Biochim Biophys Acta 1829(1):141–150. doi: 10.1016/j.bbagrm.2012.09.008 CrossRefPubMedGoogle Scholar
  21. Gaillard H, Wellinger RE, Aguilera A (2007) A new connection of mRNP biogenesis and export with transcription-coupled repair. Nucleic Acids Res 35(12):3893–3906. doi: 10.1093/nar/gkm373 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ganesan A, Hanawalt P (2016) Photobiological origins of the field of genomic maintenance. Photochem Photobiol 92(1):52–60. doi: 10.1111/php.12542 CrossRefPubMedGoogle Scholar
  23. Ganesan A, Spivak G, Hanawalt PC (2012) Transcription-coupled DNA repair in prokaryotes. Prog Mol Biol Transl Sci 110:25–40. doi: 10.1016/B978-0-12-387665-2.00002-X CrossRefPubMedGoogle Scholar
  24. Gao S, Drouin R, Holmquist GP (1994) DNA repair rates mapped along the human PGK1 gene at nucleotide resolution. Science 263(5152):1438–1440CrossRefPubMedGoogle Scholar
  25. Guo J, Hanawalt PC, Spivak G (2013) Comet-FISH with strand-specific probes reveals transcription-coupled repair of 8-oxoGuanine in human cells. Nucleic Acids Res 41(16):7700–7712. doi: 10.1093/nar/gkt524 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9(12):958–970. doi: 10.1038/nrm2549 CrossRefPubMedGoogle Scholar
  27. Harreman M, Taschner M, Sigurdsson S et al (2009) Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proc Natl Acad Sci USA 106(49):20705–20710. doi: 10.1073/pnas.0907052106 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Howan K, Smith AJ, Westblade LF et al (2012) Initiation of transcription-coupled repair characterized at single-molecule resolution. Nature 490(7420):431–434. doi: 10.1038/nature11430 CrossRefPubMedGoogle Scholar
  29. Iyama T, Wilson DM 3rd (2013) DNA repair mechanisms in dividing and non-dividing cells. DNA Repair 12(8):620–636. doi: 10.1016/j.dnarep.2013.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Iyama T, Wilson DM 3rd (2016) Elements that regulate the DNA damage response of proteins defective in Cockayne syndrome. J Mol Biol 428(1):62–78. doi: 10.1016/j.jmb.2015.11.020 CrossRefPubMedGoogle Scholar
  31. Johnson RE, Prakash S, Prakash L (1999) Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Science 283(5404):1001–1004CrossRefPubMedGoogle Scholar
  32. Kad NM, Van Houten B (2012) Dynamics of lesion processing by bacterial nucleotide excision repair proteins. Prog Mol Biol Transl Sci 110:1–24. doi: 10.1016/B978-0-12-387665-2.00001-8 CrossRefPubMedGoogle Scholar
  33. Kamarthapu V, Nudler E (2015) Rethinking transcription coupled DNA repair. Curr Opin Microbiol 24:15–20. doi: 10.1016/j.mib.2014.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kirkali G, de Souza-Pinto NC, Jaruga P, Bohr VA, Dizdaroglu M (2009) Accumulation of (5′S)-8,5′-cyclo-2′-deoxyadenosine in organs of Cockayne syndrome complementation group B gene knockout mice. DNA Repair 8(2):274–278. doi: 10.1016/j.dnarep.2008.09.009 CrossRefPubMedGoogle Scholar
  35. Kisker C, Kuper J, Van Houten B (2013) Prokaryotic nucleotide excision repair. Cold Spring Harb Perspect Biol 5(3):a012591. doi: 10.1101/cshperspect.a012591 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Koeppel F, Poindessous V, Lazar V, Raymond E, Sarasin A, Larsen AK (2004) Irofulven cytotoxicity depends on transcription-coupled nucleotide excision repair and is correlated with XPG expression in solid tumor cells. Clin Cancer Res 10(16):5604–5613. doi: 10.1158/1078-0432.CCR-04-0442 CrossRefPubMedGoogle Scholar
  37. Kuraoka I, Ito S, Wada T et al (2008) Isolation of XAB2 complex involved in pre-mRNA splicing, transcription, and transcription-coupled repair. J Biol Chem 283(2):940–950. doi: 10.1074/jbc.M706647200 CrossRefPubMedGoogle Scholar
  38. Lans H, Marteijn JA, Vermeulen W (2012) ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 5:4. doi: 10.1186/1756-8935-5-4 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lee YC, Cai Y, Mu H et al (2014) The relationships between XPC binding to conformationally diverse DNA adducts and their excision by the human NER system: is there a correlation? DNA Repair 19:55–63. doi: 10.1016/j.dnarep.2014.03.026 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Leela JK, Syeda AH, Anupama K, Gowrishankar J (2013) Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli. Proc Natl Acad Sci USA 110(1):258–263. doi: 10.1073/pnas.1213123110 CrossRefPubMedGoogle Scholar
  41. Lehmann AR (2011) DNA polymerases and repair synthesis in NER in human cells. DNA Repair 10(7):730–733. doi: 10.1016/j.dnarep.2011.04.023 CrossRefPubMedGoogle Scholar
  42. Li S, Smerdon MJ (2002) Rpb4 and Rpb9 mediate subpathways of transcription-coupled DNA repair in Saccharomyces cerevisiae. EMBO J 21(21):5921–5929CrossRefPubMedPubMedCentralGoogle Scholar
  43. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719. doi: 10.1016/j.cell.2007.01.015 CrossRefPubMedGoogle Scholar
  44. Li W, Selvam K, Rahman SA, Li S (2016) Sen1, the yeast homolog of human senataxin, plays a more direct role than Rad26 in transcription coupled DNA repair. Nucleic Acids Res. doi: 10.1093/nar/gkw428 Google Scholar
  45. Manelyte L, Kim YI, Smith AJ, Smith RM, Savery NJ (2010) Regulation and rate enhancement during transcription-coupled DNA repair. Mol Cell 40(5):714–724. doi: 10.1016/j.molcel.2010.11.012: CrossRefPubMedPubMedCentralGoogle Scholar
  46. Martin HA, Pedraza-Reyes M, Yasbin RE, Robleto EA (2011) Transcriptional de-repression and Mfd are mutagenic in stressed Bacillus subtilis cells. J Mol Microbiol Biotechnol 21(1–2):45–58. doi: 10.1159/000332751 CrossRefPubMedGoogle Scholar
  47. Mathieu N, Kaczmarek N, Ruthemann P, Luch A, Naegeli H (2013) DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Curr Biol 23(3):204–212. doi: 10.1016/j.cub.2012.12.032 CrossRefPubMedGoogle Scholar
  48. McKibbin PL, Fleming AM, Towheed MA, Van Houten B, Burrows CJ, David SS (2013) Repair of hydantoin lesions and their amine adducts in DNA by base and nucleotide excision repair. J Am Chem Soc 135(37):13851–13861. doi: 10.1021/ja4059469 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mellon I, Champe GN (1996) Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Proc Natl Acad Sci USA 93(3):1292–1297CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mellon I, Spivak G, Hanawalt PC (1987) Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51(2):241–249CrossRefPubMedGoogle Scholar
  51. Menoni H, Gasparutto D, Hamiche A et al (2007) ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A.Bbd nucleosomes. Mol Cell Biol 27(17):5949–5956. doi: 10.1128/MCB.00376-07 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Menoni H, Hoeijmakers JH, Vermeulen W (2012) Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. J Cell Biol 199(7):1037–1046. doi: 10.1083/jcb.201205149 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mooney RA, Davis SE, Peters JM, Rowland JL, Ansari AZ, Landick R (2009) Regulator trafficking on bacterial transcription units in vivo. Mol Cell 33(1):97–108. doi: 10.1016/j.molcel.2008.12.021 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Mullenders L (2015) DNA damage mediated transcription arrest: step back to go forward. DNA Repair 36:28–35. doi: 10.1016/j.dnarep.2015.09.005 CrossRefPubMedGoogle Scholar
  55. Nakatsu Y, Asahina H, Citterio E et al (2000) XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled DNA repair and transcription. J Biol Chem 275(45):34931–34937. doi: 10.1074/jbc.M004936200 CrossRefPubMedGoogle Scholar
  56. Nakazawa Y, Sasaki K, Mitsutake N et al (2012) Mutations in UVSSA cause UV-sensitive syndrome and impair RNA polymerase IIo processing in transcription-coupled nucleotide-excision repair. Nat Genet 44(5):586–592. doi: 10.1038/ng.2229 CrossRefPubMedGoogle Scholar
  57. Nouspikel TP, Hyka-Nouspikel N, Hanawalt PC (2006) Transcription domain-associated repair in human cells. Mol Cell Biol 26(23):8722–8730. doi: 10.1128/MCB.01263-06 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Ogi T, Limsirichaikul S, Overmeer RM et al (2010) Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol Cell 37(5):714–727. doi: 10.1016/j.molcel.2010.02.009 CrossRefPubMedGoogle Scholar
  59. Pettijohn D, Hanawalt P (1964) Evidence for repair-replication of ultraviolet damaged DNA in bacteria. J Mol Biol 9:395–410CrossRefPubMedGoogle Scholar
  60. Prakash S, Prakash L (2000) Nucleotide excision repair in yeast. Mutat Res 451(1–2):13–24CrossRefPubMedGoogle Scholar
  61. Reagan MS, Friedberg EC (1997) Recovery of RNA polymerase II synthesis following DNA damage in mutants of Saccharomyces cerevisiae defective in nucleotide excision repair. Nucleic Acids Res 25(21):4257–4263CrossRefPubMedPubMedCentralGoogle Scholar
  62. Reed SH (2005) Nucleotide excision repair in chromatin: the shape of things to come. DNA Repair 4(8):909–918. doi: 10.1016/j.dnarep.2005.04.009 CrossRefPubMedGoogle Scholar
  63. Reis AM, Mills WK, Ramachandran I, Friedberg EC, Thompson D, Queimado L (2012) Targeted detection of in vivo endogenous DNA base damage reveals preferential base excision repair in the transcribed strand. Nucleic Acids Res 40(1):206–219. doi: 10.1093/nar/gkr704 CrossRefPubMedGoogle Scholar
  64. Ross C, Pybus C, Pedraza-Reyes M, Sung HM, Yasbin RE, Robleto E (2006) Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 188(21):7512–7520. doi: 10.1128/JB.00980-06 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sarker A, Tsutakawa S, Kostek S et al (2005) Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH insights for transcription-coupled repair and Cockayne syndrome. Mol Cell 20:187–198CrossRefPubMedGoogle Scholar
  66. Saxowsky TT, Meadows KL, Klungland A, Doetsch PW (2008) 8-Oxoguanine-mediated transcriptional mutagenesis causes Ras activation in mammalian cells. Proc Natl Acad Sci USA 105(48):18877–18882. doi: 10.1073/pnas.0806464105 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Schalow BJ, Courcelle CT, Courcelle J (2012) Mfd is required for rapid recovery of transcription following UV-induced DNA damage but not oxidative DNA damage in Escherichia coli. J Bacteriol 194(10):2637–2645. doi: 10.1128/JB.06725-11 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Scharer OD (2013) Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol 5(10):a012609. doi: 10.1101/cshperspect.a012609 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Schwertman P, Lagarou A, Dekkers DH et al (2012) UV-sensitive syndrome protein UVSSA recruits USP7 to regulate transcription-coupled repair. Nat Genet 44(5):598–602. doi: 10.1038/ng.2230 CrossRefPubMedGoogle Scholar
  70. Schwertman P, Vermeulen W, Marteijn JA (2013) UVSSA and USP7, a new couple in transcription-coupled DNA repair. Chromosoma 122(4):275–284. doi: 10.1007/s00412-013-0420-2 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Selby CP, Sancar A (1993) Molecular mechanism of transcription-repair coupling. Science 260(5104):53–58CrossRefPubMedGoogle Scholar
  72. Selby CP, Sancar A (1997) Cockayne syndrome group B protein enhances elongation by RNA polymerase II. Proc Natl Acad Sci USA 94(21):11205–11209CrossRefPubMedPubMedCentralGoogle Scholar
  73. Selby CP, Witkin EM, Sancar A (1991) Escherichia coli mfd mutant deficient in “mutation frequency decline” lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc Natl Acad Sci USA 88(24):11574–11578CrossRefPubMedPubMedCentralGoogle Scholar
  74. Setlow RB, Carrier WL (1964) The disappearance of thymine dimers from DNA: an error-correcting mechanism. Proc Natl Acad Sci USA 51:226–231CrossRefPubMedPubMedCentralGoogle Scholar
  75. Sidorenko VS, Yeo JE, Bonala RR, Johnson F, Scharer OD, Grollman AP (2012) Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts. Nucleic Acids Res 40(6):2494–2505. doi: 10.1093/nar/gkr1095 CrossRefPubMedGoogle Scholar
  76. Sin Y, Tanaka K, Saijo M (2016) The C-terminal region and SUMOylation of cockayne syndrome group B protein play critical roles in transcription-coupled nucleotide excision repair. J Biol Chem 291(3):1387–1397. doi: 10.1074/jbc.M115.683235 CrossRefPubMedGoogle Scholar
  77. Singh A, Compe E, Le May N, Egly JM (2015) TFIIH subunit alterations causing xeroderma pigmentosum and trichothiodystrophy specifically disturb several steps during transcription. Am J Hum Genet 96(2):194–207. doi: 10.1016/j.ajhg.2014.12.012 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Soria G, Polo SE, Almouzni G (2012) Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell 46(6):722–734. doi: 10.1016/j.molcel.2012.06.002 CrossRefPubMedGoogle Scholar
  79. Spivak G (2015) Nucleotide excision repair in humans. DNA Repair 36:13–18. doi: 10.1016/j.dnarep.2015.09.003 CrossRefPubMedGoogle Scholar
  80. Spivak G, Ganesan AK (2014) The complex choreography of transcription-coupled repair. DNA Repair 19:64–70. doi: 10.1016/j.dnarep.2014.03.025 CrossRefPubMedGoogle Scholar
  81. Spivak G, Hanawalt PC (2006) Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome fibroblasts. DNA Repair 5(1):13–22. doi: 10.1016/j.dnarep.2005.06.017 CrossRefPubMedGoogle Scholar
  82. Spivak G, Hanawalt PC (2015) Photosensitive human syndromes. Mutat Res Fundam Mol Mech Mutagen 776:24–30CrossRefGoogle Scholar
  83. Stantial N, Dumpe J, Pietrosimone K, Baltazar F, Crowley DJ (2016) Transcription-coupled repair of UV damage in the halophilic archaea. DNA Repair 41:63–68. doi: 10.1016/j.dnarep.2016.03.007 CrossRefPubMedGoogle Scholar
  84. Tatum D, Li S (2011) Nucleotide Excision repair in S. cerevisiae. In: Storici F (ed) DNA repair—on the pathway to fixing DNA damage and errors. InTech.
  85. Tornaletti S, Reines D, Hanawalt PC (1999) Structural characterization of RNA polymerase II complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA. J Biol Chem 274(34):24124–24130CrossRefPubMedPubMedCentralGoogle Scholar
  86. van Gool AJ, Verhage R, Swagemakers SM et al (1994) RAD26, the functional S. cerevisiae homolog of the Cockayne syndrome B gene ERCC6. EMBO J 13(22):5361–5369PubMedPubMedCentralGoogle Scholar
  87. Verhage RA, Heyn J, van de Putte P, Brouwer J (1997) Transcription elongation factor S-ii is not required for transcription-coupled repair in yeast. Mol Gen Genet 254(3):284–290CrossRefPubMedGoogle Scholar
  88. Vermeulen W, Fousteri M (2013) Mammalian transcription-coupled excision repair. Cold Spring Harbor Perspect Biol. doi: 10.1101/cshperspect.a012625 Google Scholar
  89. Wei L, Lan L, Yasui A et al (2011) BRCA1 contributes to transcription-coupled repair of DNA damage through polyubiquitination and degradation of Cockayne syndrome B protein. Cancer Sci 102(10):1840–1847. doi: 10.1111/j.1349-7006.2011.02037.x CrossRefPubMedGoogle Scholar
  90. Wimberly H, Shee C, Thornton PC, Sivaramakrishnan P, Rosenberg SM, Hastings PJ (2013) R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat Commun 4:2115. doi: 10.1038/ncomms3115 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zhang X, Horibata K, Saijo M et al (2012) Mutations in UVSSA cause UV-sensitive syndrome and destabilize ERCC6 in transcription-coupled DNA repair. Nat Genet 44(5):593–597. doi: 10.1038/ng.2228 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Biology DepartmentStanford UniversityStanfordUSA

Personalised recommendations