Archives of Toxicology

, Volume 90, Issue 11, pp 2657–2667 | Cite as

Impaired nuclear functions in micronuclei results in genome instability and chromothripsis

  • Mariona TerradasEmail author
  • Marta Martín
  • Anna GenescàEmail author
Review Article


Micronuclei (MN) have generally been considered a consequence of DNA damage and, as such, have been used as markers of exposure to genotoxic agents. However, advances in DNA sequencing methods and the development of high-resolution microscopy with which to analyse chromosome dynamics in live cells have been fundamental in building a more refined view of the existing links between DNA damage and micronuclei. Here, we review recent progress indicating that defects of micronuclei affect basic nuclear functions, such as DNA repair and replication, generating massive damage in the chromatin of the MN. In addition, the physical isolation of chromosomes within MN offers an attractive mechanistic explanation for chromothripsis, a massive local DNA fragmentation that produces complex rearrangements restricted to only one or a few chromosomes. When micronuclear chromatin is reincorporated in the daughter cell nuclei, the under-replicated, damaged or rearranged micronuclear chromatin might contribute to genome instability. The traditional conception of micronuclei has been overturned, as they have evolved from passive indicators of DNA damage to active players in the formation of DNA lesions, thus unravelling previously unforeseen roles of micronuclei in the origins of chromosome instability.


Micronuclei Chromosome instability Chromatin bridges Chromothripsis DNA repair DNA replication 



The authors would like to apologize to those whose work has not been cited. We thank to for editing the manuscript. The Genome Integrity Group at Universitat Autònoma de Barcelona is supported by grants from Consejo de Seguridad Nuclear (CSN 2012-0001), EURATOM (Dark.Risk GA 323216) and Generalitat de Catalunya (2014-SGR-524).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. Avlasevich S, Bryce S, De Boeck M et al (2011) Flow cytometric analysis of micronuclei in mammalian cell cultures: past, present and future. Mutagenesis 26:147–152. doi: 10.1093/mutage/geq058 CrossRefPubMedGoogle Scholar
  2. Bekker-Jensen S, Mailand N (2010) Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst). doi: 10.1016/j.dnarep.2010.09.010 Google Scholar
  3. Bonassi S, El-Zein R, Bolognesi C, Fenech M (2011) Micronuclei frequency in peripheral blood lymphocytes and cancer risk: evidence from human studies. Mutagenesis 26:93–100. doi: 10.1093/mutage/geq075 CrossRefPubMedGoogle Scholar
  4. Bouwman P, Aly A, Escandell JM et al (2010) 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 17:688–695. doi: 10.1038/nsmb.1831 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cai H, Kumar N, Bagheri HC et al (2014) Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens. BMC Genomics 15:82. doi: 10.1186/1471-2164-15-82 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Callen E, Di Virgilio M, Kruhlak MJ et al (2013) 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153:1266–1280. doi: 10.1016/j.cell.2013.05.023 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chan GKT, Jablonski SA, Sudakin V et al (1999) Human BUBR1 is a mitotic checkpoint kinase that monitors CENP-E functions at kinetochores and binds the cyclosome/APC. J Cell Biol 146:941–954. doi: 10.1083/jcb.146.5.941 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chapman JR, Barral P, Vannier J-B et al (2013) RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol Cell 49:858–871. doi: 10.1016/j.molcel.2013.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cimini D, Fioravanti D, Salmon ED, Degrassi F (2002) Merotelic kinetochore orientation versus chromosome mono-orientation in the origin of lagging chromosomes in human primary cells. J Cell Sci 115:507–515PubMedGoogle Scholar
  10. Coin F, Oksenych V, Egly JM (2007) Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol Cell 26:245–256. doi: 10.1016/j.molcel.2007.03.009 CrossRefPubMedGoogle Scholar
  11. Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58. doi: 10.1038/nature10802 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dittmer TA, Misteli T (2011) The lamin protein family. Genome Biol 12:222. doi: 10.1186/gb-2011-12-5-222 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Doherty AT, Ellard S, Parry EM, Parry JM (1996) A study of the aneugenic activity of trichlorfon detected by centromere-specific probes in human lymphoblastoid cell lines. Mutat Res 372:221–231CrossRefPubMedGoogle Scholar
  14. Downs JA, Jackson SP (2004) A means to a DNA end: the many roles of Ku. Nat Rev cell Biol 5:367–378. doi: 10.1038/nrm1367 CrossRefGoogle Scholar
  15. Ernst A, Jones DTW, Maass KK et al (2016) Telomere dysfunction and chromothripsis. Int J Cancer 138:2905–2914. doi: 10.1002/ijc.30033 CrossRefPubMedGoogle Scholar
  16. Evans HJ, Neary GJ, Williamson FS (1959) The relative biological efficiency of single doses of fast neutrons and gamma-rays on Vicia faba roots and the effect of oxygen. Part II. Chromosome damage: the production of micronuclei. Int J Radiat Biol 1:216–219Google Scholar
  17. Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104. doi: 10.1038/nprot.2007.77 CrossRefPubMedGoogle Scholar
  18. Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147:29–36CrossRefPubMedGoogle Scholar
  19. Fenech M, Kirsch-Volders M, Natarajan AT et al (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132. doi: 10.1093/mutage/geq052 CrossRefPubMedGoogle Scholar
  20. Fujiwara T, Bandi M, Nitta M et al (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047. doi: 10.1038/nature04217 CrossRefPubMedGoogle Scholar
  21. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282. doi: 10.1038/nature08136 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Geraud G, Laquerriere F, Masson C et al (1989) Three-dimensional organization of micronuclei induced by colchicine in PtK1 cells. Exp Cell Res 181:27–39CrossRefPubMedGoogle Scholar
  23. Gillet LC, Scharer OD (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 106:253–276. doi: 10.1021/cr040483f CrossRefPubMedGoogle Scholar
  24. Gisselsson D, Bjork J, Hoglund M et al (2001a) Abnormal nuclear shape in solid tumors reflects mitotic instability. Am J Pathol 158:199–206CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gisselsson D, Jonson T, Petersen A et al (2001b) Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA 98:12683–12688. doi: 10.1073/pnas.211357798 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Giunta S, Jackson SP (2011) Give me a break, but not in mitosis: the mitotic DNA damage response marks DNA double-strand breaks with early signaling events. Cell Cycle 10:1215–1221CrossRefPubMedPubMedCentralGoogle Scholar
  27. Haaf T, Raderschall E, Reddy G et al (1999) Sequestration of mammalian Rad51-recombination protein into micronuclei. J Cell Biol 144:11–20CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW (2013) Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154:47–60. doi: 10.1016/j.cell.2013.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Heddle JA (1973) A rapid in vivo test for chromosomal damage. Mutat Res 18:187–190CrossRefPubMedGoogle Scholar
  30. Heddle JA, Carrano AV (1977) The DNA content of micronuclei induced in mouse bone marrow by gamma-irradiation: evidence that micronuclei arise from acentric chromosomal fragments. Mutat Res 44:63–69CrossRefPubMedGoogle Scholar
  31. Hoffelder DR, Luo L, Burke NA et al (2004) Resolution of anaphase bridges in cancer cells. Chromosoma 112:389–397. doi: 10.1007/s00412-004-0284-6 CrossRefPubMedGoogle Scholar
  32. Hoogstraten D, Bergink S, Ng JM et al (2008) Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC. J Cell Sci 121:2850–2859. doi: 10.1242/jcs.031708 CrossRefPubMedGoogle Scholar
  33. Huang Y, Fenech M, Shi Q (2011) Micronucleus formation detected by live-cell imaging. Mutagenesis 26:133–138. doi: 10.1093/mutage/geq062 CrossRefPubMedGoogle Scholar
  34. Iarmarcovai G, Ceppi M, Botta A (2008) Micronuclei frequency in peripheral blood lymphocytes of cancer patients: a meta-analysis. Mutat Res Mutat Res 659:274–283. doi: 10.1016/j.mrrev.2008.05.006 CrossRefPubMedGoogle Scholar
  35. Jones CJ, Wood RD (1993) Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry 32:12096–12104CrossRefPubMedGoogle Scholar
  36. Kanda T, Wahl GM (2000) The dynamics of acentric chromosomes in cancer cells revealed by GFP-based chromosome labeling strategies. J Cell Biochem Suppl 35:107–114CrossRefPubMedGoogle Scholar
  37. Kanda T, Sullivan KF, Wahl GM (1998) Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8:377–385CrossRefPubMedGoogle Scholar
  38. Klein G, Klein EVA (1952) The viability and the average desoxypentosenucleic acid content of micronuclei-containing cells produced by colchicine treatment in the Ehrhch ascites tumor found theminregenerating ratliverandinterGoogle Scholar
  39. Kloosterman WP, Cuppen E (2013) Chromothripsis in congenital disorders and cancer: similarities and differences. Curr Opin Cell Biol 25:341–348. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  40. Kurz EU, Lees-Miller SP (2004) DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst) 3:889–900. doi: 10.1016/j.dnarep.2004.03.029 CrossRefGoogle Scholar
  41. Latre L, Tusell L, Martin M et al (2003) Shortened telomeres join to DNA breaks interfering with their correct repair. Exp Cell Res 287:282–288CrossRefPubMedGoogle Scholar
  42. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649. doi: 10.1038/25292 CrossRefPubMedGoogle Scholar
  43. Li M, Fang X, Baker DJ et al (2010) The ATM–p53 pathway suppresses aneuploidy-induced tumorigenesis. PNAS 107:14188–14193. doi: 10.1073/pnas.1005960107 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Li Y, Schwab C, Ryan SL et al (2014) Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508:98–102. doi: 10.1038/nature13115 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lynch AM, Parry JM (1993) The cytochalasin-B micronucleus/kinetochore assay in vitro: studies with 10 suspected aneugens. Mutat Res 287:71–86CrossRefPubMedGoogle Scholar
  46. Maciejowski J, Li Y, Bosco N et al (2015) Chromothripsis and Kataegis Induced by telomere crisis. Cell 163:1641–1654. doi: 10.1016/j.cell.2015.11.054 CrossRefPubMedGoogle Scholar
  47. Mahaney BL, Meek K, Lees-Miller SP (2009) Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 417:639–650. doi: 10.1042/BJ20080413 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Malhotra A, Lindberg M, Faust GG et al (2013) Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res 23:762–776. doi: 10.1101/gr.143677.112 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mardin BR, Drainas AP, Waszak SM et al (2015) A cell-based model system links chromothripsis with hyperploidy. Mol Syst Biol 11:828. doi: 10.15252/msb.20156505 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Marshall RR, Murphy M, Kirkland DJ, Bentley KS (1996) Fluorescence in situ hybridisation with chromosome-specific centromeric probes: a sensitive method to detect aneuploidy. Mutat Res Fundam Mol Mech Mutagen 372:233–245. doi: 10.1016/S0027-5107(96)00143-1 CrossRefGoogle Scholar
  51. Molenaar JJ, Koster J, Zwijnenburg DA et al (2012) Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483:589–593. doi: 10.1038/nature10910 CrossRefPubMedGoogle Scholar
  52. Moser J, Kool H, Giakzidis I et al (2007) Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Mol Cell 27:311–323. doi: 10.1016/j.molcel.2007.06.014 CrossRefPubMedGoogle Scholar
  53. Mu D, Hsu DS, Sancar A (1996) Reaction mechanism of human DNA repair excision nuclease. J Biol Chem 271:8285–8294CrossRefPubMedGoogle Scholar
  54. Naegeli H, Sugasawa K (2011) The xeroderma pigmentosum pathway: decision tree analysis of DNA quality. DNA Repair (Amst) 10:673–683. doi: 10.1016/j.dnarep.2011.04.019 CrossRefGoogle Scholar
  55. Nones K, Waddell N, Wayte N et al (2014) Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun 5:5224. doi: 10.1038/ncomms6224 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pampalona J, Soler D, Genesca A, Tusell L (2009) Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies. Mutat Res. doi: 10.1016/j.mrfmmm.2009.10.001 Google Scholar
  57. Patch A-M, Christie EL, Etemadmoghadam D et al (2015) Whole-genome characterization of chemoresistant ovarian cancer. Nature 521:489–494. doi: 10.1038/nature14410 CrossRefPubMedGoogle Scholar
  58. Rausch T, Jones DTW, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71. doi: 10.1016/j.cell.2011.12.013 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rogakou EP, Pilch DR, Orr AH et al (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868CrossRefPubMedGoogle Scholar
  60. Schmid W (1975) The micronucleus test. Mutat Res 31:9–15CrossRefPubMedGoogle Scholar
  61. Schoenlein PV, Barrett JT, Kulharya A et al (2003) Radiation therapy depletes extrachromosomally amplified drug resistance genes and oncogenes from tumor cells via micronuclear capture of episomes and double minute chromosomes. Int J Radiat Oncol 55:1051–1065. doi: 10.1016/S0360-3016(02)04473-5 CrossRefGoogle Scholar
  62. Shay JW, Wright WE (2005) Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 26:867–874. doi: 10.1093/carcin/bgh296 CrossRefPubMedGoogle Scholar
  63. Shimizu N (2011) Molecular mechanisms of the origin of micronuclei from extrachromosomal elements. Mutagenesis 26:119–123. doi: 10.1093/mutage/geq053 CrossRefPubMedGoogle Scholar
  64. Shimizu N, Itoh N, Utiyama H, Wahl GM (1998) Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase. J Cell Biol 140:1307–1320CrossRefPubMedPubMedCentralGoogle Scholar
  65. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40. doi: 10.1016/j.cell.2010.11.055 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tanaka T, Shimizu N (2000) Induced detachment of acentric chromatin from mitotic chromosomes leads to their cytoplasmic localization at G(1) and the micronucleation by lamin reorganization at S phase. J Cell Sci 113(4):697–707PubMedGoogle Scholar
  67. Terradas M, Martin M, Tusell L, Genesca A (2009) DNA lesions sequestered in micronuclei induce a local defective-damage response. DNA Repair (Amst) 8:1225–1234. doi: 10.1016/j.dnarep.2009.07.004 CrossRefGoogle Scholar
  68. Terradas M, Martin M, Hernandez L et al (2012) Nuclear envelope defects impede a proper response to micronuclear DNA lesions. Mutat Res 729:35–40. doi: 10.1016/j.mrfmmm.2011.09.003 CrossRefPubMedGoogle Scholar
  69. Thompson SL, Compton DA (2010) Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188:369–381. doi: 10.1083/jcb.200905057 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Utani K, Kawamoto JK, Shimizu N (2007) Micronuclei bearing acentric extrachromosomal chromatin are transcriptionally competent and may perturb the cancer cell phenotype. Mol Cancer Res 5:695–704. doi: 10.1158/1541-7786.MCR-07-0031 CrossRefPubMedGoogle Scholar
  71. Utani K, Okamoto A, Shimizu N (2011) Generation of micronuclei during interphase by coupling between cytoplasmic membrane blebbing and nuclear budding. PLoS ONE 6:e27233. doi: 10.1371/journal.pone.0027233 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Uziel T, Lerenthal Y, Moyal L et al (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22:5612–5621. doi: 10.1093/emboj/cdg541 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Waddell N, Pajic M, Patch A-M et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518:495–501. doi: 10.1038/nature14169 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yoo S, Dynan WS (1999) Geometry of a complex formed by double strand break repair proteins at a single DNA end: recruitment of DNA-PKcs induces inward translocation of Ku protein. Nucleic Acids Res 27:4679–4686CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhang C-Z, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184. doi: 10.1038/nature14493 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Cell Biology Unit, Department of Cell Biology, Physiology and Immunology, Biosciences SchoolUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations