Archives of Toxicology

, Volume 90, Issue 11, pp 2563–2581 | Cite as

Genetics of the human placenta: implications for toxicokinetics

  • Claudia Gundacker
  • Jürgen Neesen
  • Elisabeth Straka
  • Isabella Ellinger
  • Helmut Dolznig
  • Markus Hengstschläger
Review Article

Abstract

Exposure to chemicals and environmental pollutants among them cadmium, lead, and mercury can harm reproduction. The metals cross the placenta, accumulate in placental tissue, and pass onto fetal blood and fetal organs to variable amounts. Still, the mechanisms underlying their transplacental passage are largely unknown and the human placenta is the most poorly understood organ in terms of reproduction toxicology. The genetic factors modulating placental toxicokinetics remain unclear just as well. From a genetic perspective, three aspects, which influence capacities of the human placenta to metabolize and transport toxicants, need to be considered. These are 1/presence and interplay of two genotypes, 2/chromosomal aberrations including aneuploidies and sequence variations, and 3/epigenetics and genetic imprinting. In this review, we summarize the current state of knowledge on how genetics and epigenetics affect placental (patho)physiology and thus fetal development and health.

Keywords

Genotype Aneuploidies Sequence variation SNP Epigenetics Imprinting 

References

  1. Adams SV, Barrick B et al (2015) Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc. Toxicol Appl Pharmacol 289:381–388. doi: 10.1016/j.taap.2015.10.024 PubMedCrossRefGoogle Scholar
  2. Angiolini E, Fowden A et al (2006) Regulation of placental efficiency for nutrient transport by imprinted genes. Placenta 27(Supplement):98–102. doi: 10.1016/j.placenta.2005.12.008 CrossRefGoogle Scholar
  3. Annunziato A (2008) DNA packaging: nucleosomes and chromatin. Nat Educ 1(1):26Google Scholar
  4. Antonarakis SE, Lyle R et al (2004) Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet 5(10):725–738. doi: 10.1038/nrg1448 PubMedCrossRefGoogle Scholar
  5. Aschner M, Syversen T et al (2006) Metallothioneins: mercury species-specific induction and their potential role in attenuating neurotoxicity. Exp Biol Med (Maywood) 231(9):1468–1473Google Scholar
  6. Ballatori NS, Krance M et al (2009) Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol Aspects Med 30(1–2):13–28. doi: 10.1016/j.mam.2008.08.004 PubMedCrossRefGoogle Scholar
  7. Bannon DI, Abounader R et al (2003) Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Am J Physiol Cell Physiol 284:C44–C50. doi: 10.1152/ajpcell.00184.2002 PubMedCrossRefGoogle Scholar
  8. Barcelos GR, Grotto D et al (2013) Polymorphisms in glutathione-related genes modify mercury concentrations and antioxidant status in subjects environmentally exposed to methylmercury. Sci Total Environ 463–464:319–325. doi: 10.1016/j.scitotenv.2013.06.029 PubMedCrossRefGoogle Scholar
  9. Barlow DP, Bartolomei MS (2014) Genomic imprinting in mammals. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a018382 PubMedPubMedCentralGoogle Scholar
  10. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Prac Oncol 2(Suppl 1):S4–S11CrossRefGoogle Scholar
  11. Bellinger DC (2005) Teratogen update: lead and pregnancy. Birth Defects Res A Clin Mol Teratol 73(6):409–420. doi: 10.1002/bdra.20127 PubMedCrossRefGoogle Scholar
  12. Benirschke K, Burton GJ et al (2012) Macroscopic features of the delivered placenta. In: Benirschke k et al (eds) Pathology of the human placenta, 6th edn. New York, Springer, pp 13–15Google Scholar
  13. Bokara KK, Blaylock I et al (2009) Influence of lead acetate on glutathione and its related enzymes in different regions of rat brain. J Appl Toxicol 29:452–458. doi: 10.1002/jat.1423 PubMedCrossRefGoogle Scholar
  14. Bressler JP, Olivi L, Cheong JH (2004) Divalent metal transporter 1 in lead and cadmium transport. Ann NY Acad Sci 1012:142–152. doi: 10.1196/annals.1306.011 PubMedCrossRefGoogle Scholar
  15. Bridges CC, Zalups RZ (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204:274–308. doi: 10.1016/j.taap.2004.09.007 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bridges CC, Joshee L, Zalups RZ (2011) MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury. Toxicol Appl Pharmacol 251:50–58. doi: 10.1016/j.taap.2010.11.015 PubMedCrossRefGoogle Scholar
  17. Chen C, Yu H et al (2006) The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect 114:297–301. doi: 10.1289/ehp.7861 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cheong JH, Bannon D et al (2004) Different mechanisms mediate uptake of lead in a rat astroglial cell line. Toxicol Sci 77:334–340. doi: 10.1093/toxsci/kfh024 PubMedCrossRefGoogle Scholar
  19. Clarkson TW (2002) The three modern faces of mercury. Environ Health Perspect 110(Supplement 1):11–23PubMedPubMedCentralCrossRefGoogle Scholar
  20. Coan PM, Burton GJ et al (2005) Imprinted genes in the placenta—a review. Placenta 26:S10–S20. doi: 10.1016/j.placenta.2004.12.009 PubMedCrossRefGoogle Scholar
  21. Cole SP, Deeley RG (2006) Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 27:438–446. doi: 10.1016/j.tips.2006.06.008 PubMedCrossRefGoogle Scholar
  22. Constância M, Angiolini E et al (2005) Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. PNAS 102(52):19219–19224. doi: 10.1073/pnas.0504468103 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Custodio HM, Broberg K et al (2004) Polymorphisms in glutathione-related genes affect methylmercury retention. Arch Environ Health 59:588–595PubMedCrossRefGoogle Scholar
  24. de Oliveira AÁ, de Souza MF et al (2014) Genetic polymorphisms in glutathione (GSH-) related genes affect the plasmatic Hg/whole blood Hg partitioning and the distribution between inorganic and methylmercury levels in plasma collected from a fish-eating population. Biomed Res Int 2014:940952. doi: 10.1155/2014/940952 PubMedPubMedCentralGoogle Scholar
  25. EFSA (2013) European Food Safety Authority. Scientific opinion on lead in food. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J 2010; 8(4):1570 [151 pp.]. doi: 10.2903/j.efsa.2010.1570
  26. Ellinger I, Chatuphonprasert W et al (2016) Don’t trust an(t)ybody—pitfalls during investigation of candidate proteins for methylmercury transport at the placental interface. Placenta 43:13–16. doi: 10.1016/j.placenta.2016.04.011 PubMedCrossRefGoogle Scholar
  27. Engidawork E, Lubec G (2003) Molecular changes in fetal Down syndrome brain. J Neurochem 84(5):895–904. doi: 10.1046/j.1471-4159.2003.01614.x PubMedCrossRefGoogle Scholar
  28. Engidawork E, Roberts JC et al (2001) Expression of the multidrug resistance P glycoprotein (Pgp) and multidrug resistance associated protein (MRP1) in Down syndrome brains. J Neural Transm Suppl 61:35–45PubMedGoogle Scholar
  29. Engström K, Ameer S et al (2013) Polymorphisms in genes encoding potential mercury transporters and urine mercury concentrations in populations exposed to mercury vapor from gold mining. Environ Health Perspect 121:85–91. doi: 10.1289/ehp.1204951 PubMedGoogle Scholar
  30. Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13(2):97–109. doi: 10.1038/nrg3142 PubMedGoogle Scholar
  31. Fernandes KC, Martins AC Jr et al (2016) Polymorphism of metallothionein 2A modifies lead body burden in workers chronically exposed to the metal. Public Health Genomics 19:47–52. doi: 10.1159/000441713 PubMedCrossRefGoogle Scholar
  32. Fowden AL, Coan PM et al (2011) Imprinted genes and the epigenetic regulation of placental phenotype. Prog Biophys Mol Biol 106(1):281–288. doi: 10.1016/j.pbiomolbio.2010.11.005 PubMedCrossRefGoogle Scholar
  33. García-Lestón J, Roma-Torres J et al (2012) Genotoxic effects of occupational exposure to lead and influence of polymorphisms in genes involved in lead toxicokinetics and in DNA repair. Environ Int 43:29–36. doi: 10.1016/j.envint.2012.03.001 PubMedCrossRefGoogle Scholar
  34. Goering PL (1993) Lead-protein interactions as a basis for lead toxicity. Neurotoxicology 14:45–60PubMedGoogle Scholar
  35. Goodrich JM, Wang Y et al (2011) Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. Toxicol Appl Pharmacol 257:301–308. doi: 10.1016/j.taap.2011.09.014 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Grandjean P, Landrigan P (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368(9553):2167–2178. doi: 10.1016/S0140-6736(06)69665-7 PubMedCrossRefGoogle Scholar
  37. Grati F (2014) Chromosomal mosaicism in human feto-placental development: implications for prenatal diagnosis. J Clin Med 3(3):809–837. doi: 10.3390/jcm3030809 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Green BB, Kappil M et al (2015) Expression of imprinted genes in placenta is associated with infant neurobehavioral development. Epigenetics 10(9):834–841. doi: 10.1080/15592294.2015.1073880 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gundacker C, Hengstschläger M (2012) The role of the placenta in fetal exposure to heavy metals. Wien Med Wochenschr 162(9):201–206. doi: 10.1007/s10354-012-0074-3 PubMedCrossRefGoogle Scholar
  40. Gundacker C, Komarnicki G et al (2007) Glutathione-S-transferase polymorphism, metallothionein expression, and mercury levels among students in Austria. Sci Total Environ 385:37–47. doi: 10.1016/j.scitotenv.2007.07.033 PubMedCrossRefGoogle Scholar
  41. Gundacker C, Wittmann KJ et al (2009) Genetic background of lead and mercury metabolism in a group of medical students in Austria. Environ Res 109:786–796. doi: 10.1016/j.envres.2009.05.003 PubMedCrossRefGoogle Scholar
  42. Gundacker C, Gencik M et al (2010) The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead. Mut Res Rev Mutat 705:130–140. doi: 10.1016/j.mrrev.2010.06.003 CrossRefGoogle Scholar
  43. Haenisch S, Laechelt S et al (2011) Down-regulation of ATP-binding cassette C2 protein expression in HepG2 cells after rifampicin treatment is mediated by microRNA-379. Mol Pharmacol 80(2):314–320. doi: 10.1124/mol.110.070714 PubMedCrossRefGoogle Scholar
  44. Hahnemann JM, Vejerslev LO (1997) European collaborative research on mosaicism in CVS (EUCROMIC)-fetal and extrafetal cell lineages in 192 gestations with CVS mosaicism involving single autosomal trisomy. Am J Med Genet 70(2):179–187PubMedCrossRefGoogle Scholar
  45. Harari R, Harari F (2012) Exposure and toxic effects of elemental mercury in gold-mining activities in Ecuador. Toxicol Lett 213:75–82. doi: 10.1016/j.toxlet.2011.09.006 PubMedCrossRefGoogle Scholar
  46. Harris WR, Madsen LJ (1988) Equilibrium studies on the binding of cadmium(II) to human serum transferrin. Biochemistry 27:284–288PubMedCrossRefGoogle Scholar
  47. Hassold T, Hall H et al (2007) The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet 16(R2):R203–R208. doi: 10.1093/hmg/ddm243 PubMedCrossRefGoogle Scholar
  48. He L, Wang B et al (2009) Discovery of ZIP transporters that participate in cadmium damage to testis and kidney. Toxicol Appl Pharmacol 238:250–257. doi: 10.1016/j.taap.2009.02.017 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Henderson K, Shaw T et al (1996) Distribution of mosaicism in human placentae. Hum Genet 97(5):650–654PubMedCrossRefGoogle Scholar
  50. Huang S, Ye J et al (2014) The accumulation and efflux of lead partly depend on ATP-dependent efflux pump-multidrug resistance protein 1 and glutathione in testis Sertoli cells. Toxicol Lett 226:277–2784. doi: 10.1016/j.toxlet.2014.02.017 PubMedCrossRefGoogle Scholar
  51. Huppertz B (2008) The anatomy of the normal placenta. J Clin Pathol 61(12):1296–1302. doi: 10.1136/jcp.2008.055277 PubMedCrossRefGoogle Scholar
  52. Ivanov M, Barragan I et al (2014) Epigenetic mechanisms of importance for drug treatment. Trends Pharmacol Sci 35:384–396. doi: 10.1016/j.tips.2014.05.004 PubMedCrossRefGoogle Scholar
  53. Janssen BG, Godderis L et al (2013) Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol 10(1):1–11. doi: 10.1186/1743-8977-10-22 CrossRefGoogle Scholar
  54. Janssen BG, Byun HM et al (2015) Placental mitochondrial methylation and exposure to airborne particulate matter in the early life environment: an ENVIRONAGE birth cohort study. Epigenetics 10(6):536–544. doi: 10.1080/15592294.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Januar V, Desoye G et al (2015) Epigenetic regulation of human placental function and pregnancy outcome: considerations for causal inference. Am J Obstet Gynecol 213(4, Supplement):S182–S196. doi: 10.1016/j.ajog.2015.07.011 PubMedCrossRefGoogle Scholar
  56. Jiang H, Daniels PJ et al (2003) Putative zinc-sensing zinc fingers of metal-response element-binding transcription factor-1 stabilize a metal-dependent chromatin complex on the endogenous metallothionein-i promoter. J Biol Chem 278(32):30394–30402. doi: 10.1074/jbc.M303598200 PubMedCrossRefGoogle Scholar
  57. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262. doi: 10.1038/nrg2045 PubMedCrossRefGoogle Scholar
  58. Jordan DM, Ramensky VE et al (2010) Human allelic variation: perspective from protein function, structure, and evolution. Curr Opin Struct Biol 20:342–350. doi: 10.1016/j.sbi.2010.03.006 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Juch H, Blaschitz A et al (2012) HLA class I expression in the human placenta. Wien Med Wochenschr 162(9):196–200. doi: 10.1007/s10354-012-0070-7 PubMedCrossRefGoogle Scholar
  60. Kalousek DK (2000) Pathogenesis of chromosomal mosaicism and its effect on early human development. Am J Med Genet 91(1):39–45PubMedCrossRefGoogle Scholar
  61. Kalousek DK, Vekemans M (1996) Confined placental mosaicism. J Med Genet 33(7):529–533PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kalousek DK, Barrett IJ, Gärtner AB (1992) Spontaneous abortion and confined chromosomal mosaicism. Hum Genet 88(6):642–646PubMedCrossRefGoogle Scholar
  63. Karwowski MP, Just AC et al (2014) Maternal iron metabolism gene variants modify umbilical cord blood lead levels by gene-environment interaction: a birth cohort study. Environ Health 13(1):1–10. doi: 10.1186/1476-069X-13-77 CrossRefGoogle Scholar
  64. Kaya-Akyüzlü D, Kayaaltı Z et al (2015) Does maternal VDR FokI single nucleotide polymorphism have an effect on lead levels of placenta, maternal and cord bloods? Placenta 36(8):870–875. doi: 10.1016/j.placenta.2015.06.012 PubMedCrossRefGoogle Scholar
  65. Kayaalti Z, Söylemezoğlu T (2010) The polymorphism of core promoter region on metallothionein 2A-metal binding protein in Turkish population. Mol Biol Rep 37:185–190. doi: 10.1007/s11033-009-9586-3 PubMedCrossRefGoogle Scholar
  66. Kayaalti Z, Aliyev V et al (2011) The potential effect of metallothionein 2A −5 A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels. Toxicol Appl Pharmacol 256:1–7. doi: 10.1016/j.taap.2011.06.023 PubMedCrossRefGoogle Scholar
  67. Kayaalti Z, Kaya-Akyüzlü D et al (2015a) Maternal hemochromatosis gene H63D single-nucleotide polymorphism and lead levels of placental tissue, maternal and umbilical cord blood. Environ Res 140:456–461. doi: 10.1016/j.envres.2015.05.004 PubMedCrossRefGoogle Scholar
  68. Kayaalti Z, Kaya-Akyüzlü D, Söylemezoğlu T (2015b) Evaluation of the effect of divalent metal transporter 1 gene poly-morphism on blood iron, lead and cadmium levels. Environ Res 137:8–13. doi: 10.1016/j.envres.2014.11.008 PubMedCrossRefGoogle Scholar
  69. Kayaaltı Z, Sert S et al (2016) Association between delta-aminolevulinic acid dehydratase polymorphism and placental lead levels. Environ Toxicol Pharmacol 41:147–151. doi: 10.1016/j.etap.2015.11.017 PubMedCrossRefGoogle Scholar
  70. Kessels JE, Wessels I et al (2016) Influence of DNA-methylation on zinc homeostasis in myeloid cells: regulation of zinc transporters and zinc binding proteins. J Trace Elem Med Biol. doi: 10.1016/j.jtemb.2016.02.003 PubMedGoogle Scholar
  71. Kidd KK, Pakstis AJ et al (2004) Understanding human DNA sequence variation. J Hered 95:406–420. doi: 10.1093/jhered/esh060 PubMedCrossRefGoogle Scholar
  72. Koide K, Slonim DK et al (2011) Transcriptomic analysis of cell-free fetal RNA suggests a specific molecular phenotype in trisomy 18. Hum Genet 129(3):295–305. doi: 10.1007/s00439-010-0923-3 PubMedCrossRefGoogle Scholar
  73. Koukoura O, Sifakis S et al (2012) DNA methylation in the human placenta and fetal growth (review). Mol Med Rep 5:883–889. doi: 10.3892/mmr.2012.763 PubMedPubMedCentralGoogle Scholar
  74. Krieg EF Jr, Butler MA et al (2010) Lead and cognitive function in VDR genotypes in the third National Health and Nutrition Examination Survey. Neurotoxicol Teratol 32:262–272. doi: 10.1016/j.ntt.2009.12.004 PubMedCrossRefGoogle Scholar
  75. Krześlak A, Forma E et al (2013) Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer. Toxicol Appl Pharmacol 268(3):278–285. doi: 10.1016/j.taap.2013.02.013 PubMedCrossRefGoogle Scholar
  76. Kuriwaki J, Nishijo M et al (2005) Effects of cadmium exposure during pregnancy on trace elements in fetal rat liver and kidney. Toxicol Lett 156(3):369–376. doi: 10.1016/j.toxlet.2004.12.009 PubMedCrossRefGoogle Scholar
  77. Lambertini L (2014) Genomic imprinting: sensing the environment and driving the fetal growth. Curr Opin Pediatr 26(2):237–242. doi: 10.1097/MOP.0000000000000072 PubMedCrossRefGoogle Scholar
  78. Lee BE, Hong Y-C et al (2010) Interaction between GSTM1/GSTT1 polymorphism and blood mercury on birth weight. Environ Health Perspect 118(3):437–443. doi: 10.1289/ehp.0900731 PubMedCrossRefGoogle Scholar
  79. Lee JS, Romero R et al (2016) Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J Matern Fetal Neonatal Med 29(7):1046–1054. doi: 10.3109/14767058.2015 PubMedCrossRefGoogle Scholar
  80. Lei L, Chang X et al (2012) A polymorphism in metallothionein 1A (MT1A) is associated with cadmium-related excretion of urinary beta 2-microglobulin. Toxicol Appl Pharmacol 265:373–379. doi: 10.1016/j.taap.2012.09.006 PubMedCrossRefGoogle Scholar
  81. Levkovitz R, Zaretsky U et al (2013) In vitro simulation of placental transport: part I. Biological model of the placental barrier. Placenta 34(8):699–707. doi: 10.1016/j.placenta.2013.03.014 PubMedCrossRefGoogle Scholar
  82. Lewis RM, Brooks S et al (2013) Review: Modelling placental amino acid transfer—from transporters to placental function. Placenta 34(Supplement):S46–S51. doi: 10.1016/j.placenta.2012.10.010 PubMedCrossRefGoogle Scholar
  83. Li Q, Kappil MA et al (2015) Exploring the associations between microRNA expression profiles and environmental pollutants in human placenta from the National Children’s Study (NCS). Epigenetics 10(9):793–802. doi: 10.1080/15592294.2015.1066960 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Li Y, Xie C et al (2016) Lead exposure during early human development and DNA methylation of imprinted gene regulatory elements in adulthood. Environ Health Perspect 124:666–673. doi: 10.1289/ehp.1408577 PubMedCrossRefGoogle Scholar
  85. Llop S, Engström K et al (2014) Polymorphisms in ABC transporter genes and concentrations of mercury in newborns—evidence from two mediterranean birth cohorts. PLoS ONE 9:e97172. doi: 10.1371/journal.pone.0097172 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Llop S, Ballester F et al (2015) Effect of gene-mercury interactions on mercury toxicokinetics and neurotoxicity. Curr Envir Health Rep 2:179–194. doi: 10.1007/s40572-015-0047-y CrossRefGoogle Scholar
  87. Maccani MA, Marsit CJ (2009) REVIEW ARTICLE: Epigenetics in the placenta. Am J Reprod Immunol 62(2):78–89. doi: 10.1111/j.1600-0897.2009.00716.x PubMedPubMedCentralCrossRefGoogle Scholar
  88. Maccani JZ, Koestler DC et al (2015) Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 123:723–729. doi: 10.1289/ehp.1408561 PubMedPubMedCentralGoogle Scholar
  89. MacDonald WA, Mann MRW (2014) Epigenetic regulation of genomic imprinting from germ line to preimplantation. Mol Reprod Dev 81(2):126–140. doi: 10.1002/mrd.22220 PubMedCrossRefGoogle Scholar
  90. Meyer zu Schwabedissen HE, Jedlitschky G et al (2005) Variable expression of MRP2 (ABCC2) in human placenta: influence of gestational age and cellular differentiation. Drug Metab Dispos 33(7):896–904. doi: 10.1124/dmd.104.003335 PubMedCrossRefGoogle Scholar
  91. Mo W, Tong C et al (2015) microRNAs’ differential regulations mediate the progress of human papillomavirus (HPV)-induced cervical intraepithelial neoplasia (CIN). BMC Syst Biol 9(1):1–17. doi: 10.1186/s12918-015-0145-3 CrossRefGoogle Scholar
  92. Monk D (2015) Genomic imprinting in the human placenta. Am J Obstet Gynecol 213(4, Supplement):S152–S162. doi: 10.1016/j.ajog.2015.06.032 PubMedCrossRefGoogle Scholar
  93. Ng E, Lind PM et al (2015) Genome-wide association study of toxic metals and trace elements reveals novel associations. Hum Mol Genet 24:4739–4745. doi: 10.1093/hmg/ddv190 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Onalaja AO, Claudio L (2000) Genetic susceptibility to lead poisoning. Environ Health Perspect 108:23–28PubMedPubMedCentralCrossRefGoogle Scholar
  95. Park BY, Chung J (2009) Cadmium increases ferroportin-1 gene expression in J774 macrophage cells via the production of reactive oxygen species. Nutr Res Pract 3:192–199. doi: 10.4162/nrp.2009.3.3.192 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Perera F, Herbstman J (2011) Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 31(3):363–373. doi: 10.1016/j.reprotox.2010.12.055 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Pidoux G, Gerbaud P et al (2012) Review: Human trophoblast fusion and differentiation: lessons from trisomy 21 placenta. Placenta 33:S81–S86. doi: 10.1016/j.placenta.2011.11.007 PubMedCrossRefGoogle Scholar
  98. Pilsner JR, Hu H et al (2009) Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect 117:1466–1471. doi: 10.1289/ehp.0800497 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ramensky V, Bork P et al (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894–3900. doi: 10.1093/nar/gkf493 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Raudenska M, Gumulec J et al (2014) Metallothionein polymorphisms in pathological processes. Metallomics 6:55–68. doi: 10.1039/c3mt00132f PubMedCrossRefGoogle Scholar
  101. Ray P, Yosim A et al (2014) Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Front Genet. doi: 10.3389/fgene.2014.00201 PubMedPubMedCentralGoogle Scholar
  102. Rentschler G, Kippler M et al (2013) Polymorphisms in iron homeostasis genes and urinary cadmium concentrations among nonsmoking women in Argentina and Bangladesh. Environ Health Perspect 121:467–472. doi: 10.1289/ehp.1205672 PubMedPubMedCentralGoogle Scholar
  103. Rentschler G, Kippler M et al (2014) Cadmium concentrations in human blood and urine are associated with polymorphisms in zinc transporter genes. Metallomics 6:885–891. doi: 10.1039/c3mt00365e PubMedCrossRefGoogle Scholar
  104. Rezende VB, Barbosa F Jr et al (2008) Haplotypes of vitamin D receptor modulate the circulating levels of lead in exposed subjects. Arch Toxicol 82:29–36PubMedCrossRefGoogle Scholar
  105. Rezende VB, Amaral JH et al (2010) Vitamin D receptor haplotypes affect lead levels during pregnancy. Sci Total Environ 408:4955–4960. doi: 10.1016/j.scitotenv.2010.07.039 PubMedCrossRefGoogle Scholar
  106. Röllin HB, Kootbodien T et al (2015) Prenatal exposure to cadmium, placental permeability and birth outcomes in coastal populations of South Africa. PLoS ONE 10(11):e0142455. doi: 10.1371/journal.pone.0142455 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Saito J, Hirota T et al (2013) Association between DNA Methylation in the miR-328 5′-flanking region and inter-individual differences in miR-328 and BCRP expression in human placenta. PLoS ONE 8(8):e72906. doi: 10.1371/journal.pone.0072906 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sato F, Tsuchiya S et al (2011) MicroRNAs and epigenetics. FEBS J 278(10):1598–1609. doi: 10.1111/j.1742-4658.2011.08089.x PubMedCrossRefGoogle Scholar
  109. Schläwicke Engström K, Strömberg U et al (2008) Genetic variation in glutathione-related genes and body burden of methylmercury. Environ Health Perspect 116:734–739. doi: 10.1289/ehp.10804 PubMedCrossRefGoogle Scholar
  110. Sherry ST, Ward MH et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311. doi: 10.1093/nar/29.1.308 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Stern AH, Smith AE (2003) An assessment of the cord blood: maternal blood methylmercury ratio: implications for risk assessment. Environ Health Perspect 111(12):1465–1470PubMedPubMedCentralCrossRefGoogle Scholar
  112. Straka E, Ellinger I et al (2016) Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters. Toxicology 340:34–42. doi: 10.1016/j.tox.2015.12.005 PubMedCrossRefGoogle Scholar
  113. Syme MR, Paxton JW et al (2004) Drug transfer and metabolism by the human placenta. Clin Pharmacokinet 43(8):487–514PubMedCrossRefGoogle Scholar
  114. Szymańska-Chabowska A, Łaczmański Ł et al (2015) The relationship between selected VDR, HFE and ALAD gene polymorphisms and several basic toxicological parameters among persons occupationally exposed to lead. Toxicology 334:12–21. doi: 10.1016/j.tox.2015.05.002 PubMedCrossRefGoogle Scholar
  115. Tekin D, Kayaaltı Z, Aliyev V, Söylemezoğlu T (2012a) The effects of metallothionein 2A polymorphism on placental cadmium accumulation: is metallothionein a modifiying factor in transfer of micronutrients to the fetus? J Appl Toxicol 32:270–275. doi: 10.1002/jat.1661 PubMedCrossRefGoogle Scholar
  116. Tekin D, Kayaaltı Z, Söylemezoğlu T (2012b) The effects of metallothionein 2A polymorphism on lead metabolism: are pregnant women with a heterozygote genotype for metallothionein 2A polymorphism and their newborns at risk of having higher blood lead levels? Int Arch Occup Environ Health 85:631–637. doi: 10.1007/s00420-011-0711-y PubMedCrossRefGoogle Scholar
  117. Theppeang K, Schwartz BS et al (2004) Associations of patella lead with polymorphisms in the vitamin D receptor, delta-aminolevulinic acid dehydratase and endothelial nitric oxide synthase genes. J Occup Environ Med 46:528–537PubMedCrossRefGoogle Scholar
  118. Thevenod F (2010) Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals 23:857–875. doi: 10.1007/s10534-010-9309-1 PubMedCrossRefGoogle Scholar
  119. Thompson J, Bannigan J (2008) Cadmium: toxic effects on the reproductive system and the embryo. Reprod Toxicol 25(3):304–315. doi: 10.1016/j.reprotox.2008.02.001 PubMedCrossRefGoogle Scholar
  120. Torres EM, Williams BR et al (2008) Aneuploidy: cells losing their balance. Genetics 179(2):737–746. doi: 10.1534/genetics.108.090878 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Troadec MB, Ward DM et al (2010) Induction of FPN1 transcription by MTF-1 reveals a role for ferroportin in transition metal efflux. Blood 116:4657–4664. doi: 10.1182/blood-2010-04-278614 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Vesey DA (2010) Transport pathways for cadmium in the intestine and kidney proximal tubule: focus on the interaction with essential metals. Toxicol Lett 198:13–19. doi: 10.1016/j.toxlet.2010.05.004 PubMedCrossRefGoogle Scholar
  123. Vilahur N, Vahter M et al (2015) The epigenetic effects of prenatal cadmium exposure. Curr Environ Health Rep 2(2):195–203. doi: 10.1007/s40572-015-0049-9 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wang Y, Goodrich JM et al (2012) An investigation of modifying effects of metallothionein single-nucleotide polymorphisms on the association between mercury exposure and biomarker levels. Environ Health Perspect 120:530–534. doi: 10.1289/ehp.1104079 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wang X, Miller DC et al (2013) Paternally expressed genes predominate in the placenta. Proc Natl Acad Sci USA 110(26):10705–10710. doi: 10.1073/pnas.1308998110 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Weaver VM, Lee BK et al (2006) Effect modification by delta-aminolevulinic acid dehydratase, vitamin D receptor, and nitric oxide synthase gene polymorphisms on associations between patella lead and renal function in lead workers. Environ Res 102:61–69. doi: 10.1016/j.envres.2006.01.001 PubMedCrossRefGoogle Scholar
  127. Weizsaecker K (2003) Lead toxicity during pregnancy. Prim Care Update Ob Gyns 10(6):304–309. doi: 10.1016/S1068-607X(03)00074-X CrossRefGoogle Scholar
  128. Whitfield JB, Dy V et al (2007) Evidence of genetic effects on blood lead concentration. Environ Health Perspect 115:1224–1230. doi: 10.1289/ehp.8847 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wilhelm M, Heinzow B et al (2010) Reassessment of critical lead effects by the German Human Biomonitoring Commission results in suspension of the human biomonitoring values (HBM I and HBM II) for lead in blood of children and adults. Int J Hyg Environ Health 213(4):265–269. doi: 10.1016/j.ijheh.2010.04.002 PubMedCrossRefGoogle Scholar
  130. Wilhelm-Benartzi CS, Houseman EA et al (2012) In utero exposures, infant growth, and DNA methylation of repetitive element and developmentally related genes in human placenta. Environ Health Perspect 120(2):296–302. doi: 10.1289/ehp.1103927 PubMedCrossRefGoogle Scholar
  131. Xu Z, Kaplan NL et al (2007) Tag SNP selection for candidate gene association studies using HapMap and gene resequencing data. Eur J Hum Genet 15:1063–1070. doi: 10.1038/sj.ejhg.5201875 PubMedCrossRefGoogle Scholar
  132. Yen TT, Gill AM et al (1994) Obesity, diabetes, and neoplasia in yellow A(vy)/-mice: ectopic expression of the agouti gene. FASEB J 8(8):479–488PubMedGoogle Scholar
  133. Yong PJ, Langlois S et al (2006) The association between preeclampsia and placental trisomy 16 mosaicism. Prenat Diagn 26(10):956–961. doi: 10.1002/pd.1534 PubMedCrossRefGoogle Scholar
  134. Yong PJ, McFadden DE et al (2012) Protein kinase profiling in miscarriage: implications for the pathogenesis of trisomic pregnancy. J Obstet Gynaecol Can 34(12):1141–1148. doi: 10.1016/S1701-2163(16)35461-5 PubMedCrossRefGoogle Scholar
  135. Yuen RKC, Robinson WP (2011) Review: A high capacity of the human placenta for genetic and epigenetic variation: implications for assessing pregnancy outcome. Placenta 32:S136–S141. doi: 10.1016/j.placenta.2011.01.003 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Medical Genetics, Center of Pathobiochemistry and GeneticsMedical University of ViennaViennaAustria
  2. 2.Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria

Personalised recommendations