Archives of Toxicology

, Volume 91, Issue 1, pp 1–33 | Cite as

In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities

  • Béla Z. Schmidt
  • Martin Lehmann
  • Simon Gutbier
  • Erastus Nembo
  • Sabrina Noel
  • Lena Smirnova
  • Anna Forsby
  • Jürgen Hescheler
  • Hasan X. Avci
  • Thomas Hartung
  • Marcel Leist
  • Julianna Kobolák
  • András DinnyésEmail author
Review Article


Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.


Stem cells Neurodevelopment Electrophysiology Cell death High-throughput screening Assay development In vitro testing Neurotoxicity Developmental neurotoxicity 



Alzheimer’s disease


Amyotrophic lateral sclerosis


Automated patch-clamp


Autism spectrum disorders


Blood–brain barrier


Cell membrane potential


Central nervous system




Developmental neurotoxicity


Endothelial cells


Engineered neural tissue


Endoplasmic reticulum


Embryonic stem cell test


Fluorescence intensity


Frontotemporal dementia


Human embryonic stem cells


Human-induced pluripotent stem cells


High throughput


Integrated approaches to testing and assessment


Integrated testing strategies


Key event


Multielectrode array or microelectrode array


Neural progenitor cell




Organisation for Economic Co-operation and Development


Parkinson’s disease


Peripheral nervous system


Cu/Zn-binding superoxide dismutase


Transcription activator-like effector nucleases



This work was supported by EU FP7 and H2020 projects (EpiHealth, HEALTH-2012-F2-278418; EpiHealthNet, PITN-GA-2012-317146, STEMCAM, PIAP-GA-2009-251186; STEMMAD, PIAPP-GA-2012-324451, EU-ToxRisk H2020-PHC-2015-681002), the Research Centre of Excellence 11476-3/2016/FEKUT, the NIH transformative research project on ‘Mapping the Human Toxome by Systems Toxicology’ (R01ES020750), the DFG (KoRS-CB, RTG1331) and the BMBF (Neuritox).

Compliance with ethical standards

Conflict of interest

B.Z.S, M. Lehman, E.N., H.X.A., J.K., and A.D. had been or are involved in a company that produces iPSCs, does neural differentiation, and has a commercial interest in the field of (developmental) neurotoxicity testing and stem cell products. S.N. is married to B.Z.S. T.H. is cofounder of Organome LLC, the licensee of a provisional patent filed by Johns Hopkins University for a human mini-brain mentioned in this paper (inventors David Pamies, Helena Hogberg and Thomas Hartung). L.S. is married to T.H.


  1. Abbott NJ, Patabendige AAK, Dolman DEM et al (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25. doi: 10.1016/j.nbd.2009.07.030 PubMedCrossRefGoogle Scholar
  2. Abushik PA, Niittykoski M, Giniatullina R et al (2014) The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J Neurochem 129:264–274. doi: 10.1111/jnc.12615 PubMedCrossRefGoogle Scholar
  3. Adler S, Lindqvist J, Uddenberg K et al (2008a) Testing potential developmental toxicants with a cytotoxicity assay based on human embryonic stem cells. Altern Lab Anim 36:129–140PubMedGoogle Scholar
  4. Adler S, Pellizzer C, Hareng L et al (2008b) First steps in establishing a developmental toxicity test method based on human embryonic stem cells. Toxicol In Vitro 22:200–211. doi: 10.1016/j.tiv.2007.07.013 PubMedCrossRefGoogle Scholar
  5. Alépée N, Bahinski A, Daneshian M et al (2014) State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX 31:441–477. doi: 10.14573/altex1406111 PubMedPubMedCentralGoogle Scholar
  6. Allman JM, Tetreault NA, Hakeem AY et al (2011) The von Economo neurons in fronto-insular and anterior cingulate cortex. Ann N Y Acad Sci 1225:59–71. doi: 10.1111/j.1749-6632.2011.06011.x PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alwin Prem Anand A, Gowri Sankar S, Kokila Vani V (2012) Immortalization of neuronal progenitors using SV40 large T antigen and differentiation towards dopaminergic neurons. J Cell Mol Med 16:2592–2610. doi: 10.1111/j.1582-4934.2012.01607.x PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anderl JL, Redpath S, Ball AJ (2009) A neuronal and astrocyte co-culture assay for high content analysis of neurotoxicity. J Vis Exp. doi: 10.3791/1173 PubMedPubMedCentralGoogle Scholar
  9. Andersen T, Markussen C, Dornish M et al (2013) In situ gelation for cell immobilization and culture in alginate foam scaffolds. Tissue Eng Part A 20:600–610. doi: 10.1089/ten.tea.2013.0223 PubMedPubMedCentralGoogle Scholar
  10. Andersen ME, Betts K, Dragan Y et al (2014) Developing microphysiological systems for use as regulatory tools–challenges and opportunities. ALTEX 31:364–367PubMedPubMedCentralCrossRefGoogle Scholar
  11. Anderson MA, Burda JE, Ren Y et al (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195–200. doi: 10.1038/nature17623 PubMedCrossRefGoogle Scholar
  12. Araque A, Navarrete M (2010) Glial cells in neuronal network function. Philos Trans R Soc Lond B Biol Sci 365:2375–2381. doi: 10.1098/rstb.2009.0313 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Arayanarakool R, Meyer AK, Helbig L et al (2015) Tailoring three-dimensional architectures by rolled-up nanotechnology for mimicking microvasculatures. Lab Chip. doi: 10.1039/c5lc00024f PubMedGoogle Scholar
  14. Aschner M, Allen JW, Kimelberg HK et al (1999) Glial cells in neurotoxicity development. Annu Rev Pharmacol Toxicol 39:151–173. doi: 10.1146/annurev.pharmtox.39.1.151 PubMedCrossRefGoogle Scholar
  15. Attene-Ramos MS, Miller N, Huang R et al (2013) The Tox21 robotic platform for the assessment of environmental chemicals—from vision to reality. Drug Discov Today 18:716–723. doi: 10.1016/j.drudis.2013.05.015 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ayala A, Venero JL, Cano J, Machado A (2007) Mitochondrial toxins and neurodegenerative diseases. Front Biosci J Virtual Libr 12:986–1007CrossRefGoogle Scholar
  17. Azevedo FAC, Carvalho LRB, Grinberg LT et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541. doi: 10.1002/cne.21974 PubMedCrossRefGoogle Scholar
  18. Bai Y, Hu Q, Li X et al (2004) Telomerase immortalization of human neural progenitor cells. Neuroreport 15:245–249PubMedCrossRefGoogle Scholar
  19. Bajinskis A, Lindegren H, Johansson L et al (2010) Low-dose/dose-rate γ radiation depresses neural differentiation and alters protein expression profiles in neuroblastoma SH-SY5Y cells and C17.2 neural stem cells. Radiat Res 175:185–192. doi: 10.1667/RR2090.1 PubMedCrossRefGoogle Scholar
  20. Balmer NV, Leist M (2014) Epigenetics and transcriptomics to detect adverse drug effects in model systems of human development. Basic Clin Pharmacol Toxicol 115:59–68. doi: 10.1111/bcpt.12203 PubMedCrossRefGoogle Scholar
  21. Balmer NV, Weng MK, Zimmer B et al (2012) Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Hum Mol Genet 21:4104–4114. doi: 10.1093/hmg/dds239 PubMedCrossRefGoogle Scholar
  22. Balmer NV, Klima S, Rempel E et al (2014) From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol 88:1451–1468. doi: 10.1007/s00204-014-1279-6 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bal-Price AK, Suñol C, Weiss DG et al (2008) Application of in vitro neurotoxicity testing for regulatory purposes: symposium III summary and research needs. Neurotoxicology 29:520–531. doi: 10.1016/j.neuro.2008.02.008 PubMedCrossRefGoogle Scholar
  24. Bal-Price A, Crofton KM, Leist M et al (2015a) International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch Toxicol 89:269–287. doi: 10.1007/s00204-015-1464-2 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bal-Price A, Crofton KM, Sachana M et al (2015b) Putative adverse outcome pathways relevant to neurotoxicity. Crit Rev Toxicol 45:83–91. doi: 10.3109/10408444.2014.981331 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Barayuga SM, Pang X, Andres MA et al (2013) Methamphetamine decreases levels of glutathione peroxidases 1 and 4 in SH-SY5Y neuronal cells: protective effects of selenium. Neurotoxicology 37:240–246. doi: 10.1016/j.neuro.2013.05.009 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Barenys M, Gassmann K, Baksmeier C et al (2016) Epigallocatechin gallate (EGCG) inhibits adhesion and migration of neural progenitor cells in vitro. Arch Toxicol. doi: 10.1007/s00204-016-1709-8 Google Scholar
  28. Bartel DP (2004) MicroRNAs. Cell 116:281–297. doi: 10.1016/S0092-8674(04)00045-5 PubMedCrossRefGoogle Scholar
  29. Basketter D, Clewell H, Kimber I et al (2012) A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing—t4 report*. ALTEX 29:3–91. doi: 10.14573/altex.2012.1.003 PubMedCrossRefGoogle Scholar
  30. Bauer H-C, Krizbai IA, Bauer H, Traweger A (2014) “You shall not pass”—tight junctions of the blood brain barrier. Neurogenomics 8:392. doi: 10.3389/fnins.2014.00392 Google Scholar
  31. Becker RA, Ankley GT, Edwards SW et al (2015) Increasing scientific confidence in adverse outcome pathways: application of tailored Bradford-Hill considerations for evaluating weight of evidence. Regul Toxicol Pharmacol RTP 72:514–537. doi: 10.1016/j.yrtph.2015.04.004 PubMedCrossRefGoogle Scholar
  32. Behl C, Widmann M, Trapp T, Holsboer F (1995) 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem Biophys Res Commun 216:473–482. doi: 10.1006/bbrc.1995.2647 PubMedCrossRefGoogle Scholar
  33. Berliocchi L, Fava E, Leist M et al (2005) Botulinum neurotoxin C initiates two different programs for neurite degeneration and neuronal apoptosis. J Cell Biol 168:607–618. doi: 10.1083/jcb.200406126 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bhattacharya S, Zhang Q, Carmichael PL et al (2011) Toxicity testing in the 21st century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One 6:e20887. doi: 10.1371/journal.pone.0020887 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Billeci L, Magliaro C, Pioggia G, Ahluwalia A (2013) NEuronMOrphological analysis tool: open-source software for quantitative morphometrics. Front Neuroinform. doi: 10.3389/fninf.2013.00002 PubMedPubMedCentralGoogle Scholar
  36. Blaauboer BJ, Boekelheide K, Clewell HJ et al (2012) The use of biomarkers of toxicity for integrating in vitro hazard estimates into risk assessment for humans. ALTEX 29:411–425PubMedCrossRefGoogle Scholar
  37. Bosca A, Martina M, Py C (2014) Planar patch clamp for neuronal networks–considerations and future perspectives. Methods Mol Biol 1183:93–113. doi: 10.1007/978-1-4939-1096-0_6 PubMedCrossRefGoogle Scholar
  38. Bosgra S, Westerhout J (2015) Interpreting in vitro developmental toxicity test battery results: the consideration of toxicokinetics. Reprod Toxicol 55:73–80. doi: 10.1016/j.reprotox.2014.11.001 PubMedCrossRefGoogle Scholar
  39. Bouhifd M, Hartung T, Hogberg HT et al (2013) Review: toxicometabolomics. J Appl Toxicol 12:1365–1383. doi: 10.1002/jat.2874 CrossRefGoogle Scholar
  40. Bouhifd M, Beger R, Flynn T et al (2015a) Quality assurance of metabolomics. ALTEX 4: 319–326. doi: 10.14573/altex.1509161 CrossRefGoogle Scholar
  41. Bouhifd M, Andersen ME, Baghdikian C et al (2015b) The human toxome project. ALTEX 2:112–124. doi: 10.14573/altex.1502091 CrossRefGoogle Scholar
  42. Brennand KJ, Simone A, Jou J et al (2011) Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–225. doi: 10.1038/nature09915 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Brewer JR, Morrison G, Dolan ME, Fleming GF (2016) Chemotherapy-induced peripheral neuropathy: current status and progress. Gynecol Oncol 140:176–183. doi: 10.1016/j.ygyno.2015.11.011 PubMedCrossRefGoogle Scholar
  44. Bunc M, Luzar B, Finderle Z et al (2006) Immediate oxygen therapy prevents brain cell injury in carbon monoxide poisoned rats without loss of consciousness. Toxicology 225:138–141. doi: 10.1016/j.tox.2006.05.012 PubMedCrossRefGoogle Scholar
  45. Bunge RP (1968) Glial cells and the central myelin sheath. Physiol Rev 48:197–251PubMedGoogle Scholar
  46. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248. doi: 10.1016/j.neuron.2013.12.034 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Carpenter AE, Jones TR, Lamprecht MR et al (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100. doi: 10.1186/gb-2006-7-10-r100 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Cecchelli R, Berezowski V, Lundquist S et al (2007) Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov 6:650–661. doi: 10.1038/nrd2368 PubMedCrossRefGoogle Scholar
  49. Cezar GG, Quam JA, Smith AM et al (2007) Identification of small molecules from human embryonic stem cells using metabolomics. Stem Cells Dev 16:869–882. doi: 10.1089/scd.2007.0022 PubMedCrossRefGoogle Scholar
  50. Chambers SM, Fasano CA, Papapetrou EP et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280. doi: 10.1038/nbt.1529 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Chanda S, Marro S, Wernig M, Südhof TC (2013) Neurons generated by direct conversion of fibroblasts reproduce synaptic phenotype caused by autism-associated neuroligin-3 mutation. Proc Natl Acad Sci USA 110:16622–16627. doi: 10.1073/pnas.1316240110 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Chanda S, Ang CE, Davila J et al (2014) Generation of induced neuronal cells by the single reprogramming factor ASCL1. Stem Cell Rep 3:282–296. doi: 10.1016/j.stemcr.2014.05.020 CrossRefGoogle Scholar
  53. Charoenkwan P, Hwang E, Cutler RW et al (2013) HCS-Neurons: identifying phenotypic changes in multi-neuron images upon drug treatments of high-content screening. BMC Bioinform 14:S12. doi: 10.1186/1471-2105-14-S16-S12 CrossRefGoogle Scholar
  54. Chu SC, Marks-Konczalik J, Wu HP et al (1998) Analysis of the cytokine-stimulated human inducible nitric oxide synthase (iNOS) gene: characterization of differences between human and mouse iNOS promoters. Biochem Biophys Res Commun 248:871–878. doi: 10.1006/bbrc.1998.9062 PubMedCrossRefGoogle Scholar
  55. Coccini T, Randine G, Castoldi AF et al (2006) Effects of developmental co-exposure to methylmercury and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) on cholinergic muscarinic receptors in rat brain. Neurotoxicology 27:468–477. doi: 10.1016/j.neuro.2005.12.004 PubMedCrossRefGoogle Scholar
  56. Coecke S, Eskes C, Gartlon J et al (2006) The value of alternative testing for neurotoxicity in the context of regulatory needs. Environ Toxicol Pharmacol 21:153–167. doi: 10.1016/j.etap.2005.07.006 PubMedCrossRefGoogle Scholar
  57. Colaianna M, Ilmjärv S, Peterson H et al (2016) Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay. Arch Toxicol. doi: 10.1007/s00204-016-1690-2 PubMedGoogle Scholar
  58. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656. doi: 10.1038/nrc883 PubMedCrossRefGoogle Scholar
  59. Cucullo L, Hossain M, Puvenna V et al (2011a) The role of shear stress in Blood–Brain Barrier endothelial physiology. BMC Neurosci 12:40. doi: 10.1186/1471-2202-12-40 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Cucullo L, Marchi N, Hossain M, Janigro D (2011b) A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system. J Cereb Blood Flow Metab 31:767–777. doi: 10.1038/jcbfm.2010.162 PubMedCrossRefGoogle Scholar
  61. Culbreth ME, Harrill JA, Freudenrich TM et al (2012) Comparison of chemical-induced changes in proliferation and apoptosis in human and mouse neuroprogenitor cells. Neurotoxicology 33:1499–1510. doi: 10.1016/j.neuro.2012.05.012 PubMedCrossRefGoogle Scholar
  62. Culot M, Lundquist S, Vanuxeem D et al (2008) An in vitro blood–brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro 22:799–811. doi: 10.1016/j.tiv.2007.12.016 PubMedCrossRefGoogle Scholar
  63. Daston GP, Beyer BK, Carney EW et al (2014) Exposure-based validation list for developmental toxicity screening assays. Birth Defects Res B Dev Reprod Toxicol 101:423–428. doi: 10.1002/bdrb.21132 PubMedCrossRefGoogle Scholar
  64. Davis JB, Maher P (1994) Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell line. Brain Res 652:169–173PubMedCrossRefGoogle Scholar
  65. de Groot MWGDM, Westerink RHS, Dingemans MML (2013) Don’t judge a neuron only by its cover: neuronal function in in vitro developmental neurotoxicity testing. Toxicol Sci 132:1–7. doi: 10.1093/toxsci/kfs269 PubMedCrossRefGoogle Scholar
  66. De Los Angeles A, Ferrari F, Xi R et al (2015) Hallmarks of pluripotency. Nature 525:469–478. doi: 10.1038/nature15515 PubMedCrossRefGoogle Scholar
  67. DeFelipe J, Alonso-Nanclares L, Arellano JI (2002) Microstructure of the neocortex: comparative aspects. J Neurocytol 31:299–316. doi: 10.1023/A:1024130211265 PubMedCrossRefGoogle Scholar
  68. Defranchi E, Novellino A, Whelan M et al (2011) Feasibility assessment of micro-electrode chip assay as a method of detecting neurotoxicity in vitro. Front Neuroeng. doi: 10.3389/fneng.2011.00006 Google Scholar
  69. DeJongh J, Nordin-Andersson M, Ploeger BA, Forsby A (1999) Estimation of systemic toxicity of acrylamide by integration of in vitro toxicity data with kinetic simulations. Toxicol Appl Pharmacol 158:261–268. doi: 10.1006/taap.1999.8670 PubMedCrossRefGoogle Scholar
  70. Diemert S, Dolga AM, Tobaben S et al (2012) Impedance measurement for real time detection of neuronal cell death. J Neurosci Methods 203:69–77. doi: 10.1016/j.jneumeth.2011.09.012 PubMedCrossRefGoogle Scholar
  71. Donato R, Miljan EA, Hines SJ et al (2007) Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci 8:36. doi: 10.1186/1471-2202-8-36 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Dreser N, Zimmer B, Dietz C et al (2015) Grouping of histone deacetylase inhibitors and other toxicants disturbing neural crest migration by transcriptional profiling. Neurotoxicology 50:56–70. doi: 10.1016/j.neuro.2015.07.008 PubMedCrossRefGoogle Scholar
  73. Dubois-Dauphin ML, Toni N, Julien SD et al (2010) The long-term survival of in vitro engineered nervous tissue derived from the specific neural differentiation of mouse embryonic stem cells. Biomaterials 31:7032–7042. doi: 10.1016/j.biomaterials.2010.06.017 PubMedCrossRefGoogle Scholar
  74. Dypbukt JM, Costa LG, Manzo L et al (1992) Cytotoxic and genotoxic effects of styrene-7,8-oxide in neuroadrenergic Pc 12 cells. Carcinogenesis 13:417–424PubMedCrossRefGoogle Scholar
  75. Efremova L, Schildknecht S, Adam M et al (2015) Prevention of the degeneration of human dopaminergic neurons in an astrocyte co-culture system allowing endogenous drug metabolism. Br J Pharmacol 172:4119–4132. doi: 10.1111/bph.13193 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Efremova L, Chovancova P, Adam M et al (2016) Switching from astrocytic neuroprotection to neurodegeneration by cytokine stimulation. Arch Toxicol. doi: 10.1007/s00204-016-1702-2 PubMedGoogle Scholar
  77. Ehrlich DJ, McKenna BK, Evans JG et al (2011) Parallel imaging microfluidic cytometer. Methods Cell Biol 102:49–75. doi: 10.1016/B978-0-12-374912-3.00003-1 PubMedPubMedCentralCrossRefGoogle Scholar
  78. European Parliament C of the EU (2009) Regulation (EC) no 1223/2009 of the European parliament and of the council of 30 November 2009 on cosmetic products.
  79. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedCrossRefGoogle Scholar
  80. Falsig J, Latta M, Leist M (2004a) Defined inflammatory states in astrocyte cultures: correlation with susceptibility towards CD95-driven apoptosis. J Neurochem 88:181–193PubMedCrossRefGoogle Scholar
  81. Falsig J, Pörzgen P, Lotharius J, Leist M (2004b) Specific modulation of astrocyte inflammation by inhibition of mixed lineage kinases with CEP-1347. J Immunol 173:2762–2770PubMedCrossRefGoogle Scholar
  82. Falsig J, Pörzgen P, Lund S et al (2006) The inflammatory transcriptome of reactive murine astrocytes and implications for their innate immune function. J Neurochem 96:893–907. doi: 10.1111/j.1471-4159.2005.03622.x PubMedCrossRefGoogle Scholar
  83. Falsig J, van Beek J, Hermann C, Leist M (2008) Molecular basis for detection of invading pathogens in the brain. J Neurosci Res 86:1434–1447. doi: 10.1002/jnr.21590 PubMedCrossRefGoogle Scholar
  84. Fernandez-Moya SM, Bauer KE, Kiebler MA (2014) Meet the players: local translation at the synapse. Front Mol Neurosci 7:84. doi: 10.3389/fnmol.2014.00084 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Florio M, Huttner WB (2014) Neural progenitors, neurogenesis and the evolution of the neocortex. Development 141:2182–2194. doi: 10.1242/dev.090571 PubMedCrossRefGoogle Scholar
  86. Forsby A (2011) Neurite degeneration in human neuronal SH-SY5Y cells as an indicator of axonopathy. In: Aschner M, Suñol C, Bal-Price A (eds) Cell culture techniques. Humana Press, Totowa, pp 255–268CrossRefGoogle Scholar
  87. Forsby A, Bal-Price AK, Camins A et al (2009) Neuronal in vitro models for the estimation of acute systemic toxicity. Toxicol In Vitro 23:1564–1569. doi: 10.1016/j.tiv.2009.07.017 PubMedCrossRefGoogle Scholar
  88. Fougerousse F, Bullen P, Herasse M et al (2000) Human–mouse differences in the embryonic expression patterns of developmental control genes and disease genes. Hum Mol Genet 9:165–173. doi: 10.1093/hmg/9.2.165 PubMedCrossRefGoogle Scholar
  89. Frimat J-P, Sisnaiske J, Subbiah S et al (2010) The network formation assay: a spatially standardized neurite outgrowth analytical display for neurotoxicity screening. Lab Chip 10:701–709. doi: 10.1039/b922193j PubMedCrossRefGoogle Scholar
  90. Galofré M, Babot Z, García DA et al (2010) GABAA receptor and cell membrane potential as functional endpoints in cultured neurons to evaluate chemicals for human acute toxicity. Neurotoxicol Teratol 32:52–61. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  91. Gao J, Wang H, Liu Y et al (2014) Glutamate and GABA imbalance promotes neuronal apoptosis in hippocampus after stress. Med Sci Monit Int Med J Exp Clin Res 20:499–512. doi: 10.12659/MSM.890589 CrossRefGoogle Scholar
  92. Gassmann K, Baumann J, Giersiefer S et al (2012) Automated neurosphere sorting and plating by the COPAS large particle sorter is a suitable method for high-throughput 3D in vitro applications. Toxicol In Vitro 26:993–1000. doi: 10.1016/j.tiv.2012.04.025 PubMedCrossRefGoogle Scholar
  93. Genschow E, Spielmann H, Scholz G et al (2004) Validation of the embryonic stem cell test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern Lab Anim 32:209–244PubMedGoogle Scholar
  94. Gerhardt E, Kügler S, Leist M et al (2001) Cascade of caspase activation in potassium-deprived cerebellar granule neurons: targets for treatment with peptide and protein inhibitors of apoptosis. Mol Cell Neurosci 17:717–731. doi: 10.1006/mcne.2001.0962 PubMedCrossRefGoogle Scholar
  95. Gibbs KL, Greensmith L, Schiavo G (2015) Regulation of axonal transport by protein kinases. Trends Biochem Sci 40:597–610. doi: 10.1016/j.tibs.2015.08.003 PubMedCrossRefGoogle Scholar
  96. Gorris R, Fischer J, Erwes KL et al (2015) Pluripotent stem cell-derived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes. Glia 63:2152–2167. doi: 10.1002/glia.22882 PubMedCrossRefGoogle Scholar
  97. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178. doi: 10.1016/S0140-6736(06)69665-7 PubMedCrossRefGoogle Scholar
  98. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428PubMedPubMedCentralCrossRefGoogle Scholar
  99. Guentert-Lauber B, Monnet-Tschudi F, Omlin FX et al (1985) Serum-free aggregate cultures of rat CNS glial cells: biochemical, immunocytochemical and morphological characterization. Dev Neurosci 7:33–44PubMedCrossRefGoogle Scholar
  100. Gustafsson H, Runesson J, Lundqvist J et al (2010) Neurofunctional endpoints assessed in human neuroblastoma SH-SY5Y cells for estimation of acute systemic toxicity. Toxicol Appl Pharmacol 245:191–202. doi: 10.1016/j.taap.2010.02.018 PubMedCrossRefGoogle Scholar
  101. Hansson O, Castilho RF, Kaminski Schierle GS et al (2000) Additive effects of caspase inhibitor and lazaroid on the survival of transplanted rat and human embryonic dopamine neurons. Exp Neurol 164:102–111. doi: 10.1006/exnr.2000.7406 PubMedCrossRefGoogle Scholar
  102. Harrill JA, Freudenrich TM, Machacek DW et al (2010) Quantitative assessment of neurite outgrowth in human embryonic stem cell-derived hN2 cells using automated high-content image analysis. Neurotoxicology 31:277–290. doi: 10.1016/j.neuro.2010.02.003 PubMedCrossRefGoogle Scholar
  103. Harrill JA, Robinette BL, Mundy WR (2011) Use of high content image analysis to detect chemical-induced changes in synaptogenesis in vitro. Toxicol In Vitro 25:368–387. doi: 10.1016/j.tiv.2010.10.011 PubMedCrossRefGoogle Scholar
  104. Hartung T (2009) Toxicology for the twenty-first century. Nature 460:208–212. doi: 10.1038/460208a PubMedCrossRefGoogle Scholar
  105. Hartung T (2010) Food for thought…on alternative methods for chemical safety testing. ALTEX 27:3–14PubMedCrossRefGoogle Scholar
  106. Hartung T, Leist M (2008) Food for thought on the evolution of toxicology and the phasing out of animal testing. ALTEX 25:91–102PubMedCrossRefGoogle Scholar
  107. Hartung T, McBride M (2011) Food for thought… on mapping the human toxome. ALTEX 28:83–93PubMedCrossRefGoogle Scholar
  108. Hartung T, Rovida C (2009) Chemical regulators have overreached. Nature 460:1080–1081. doi: 10.1038/4601080a PubMedCrossRefGoogle Scholar
  109. Hartung T, Luechtefeld T, Maertens A, Kleensang A (2013a) Integrated testing strategies for safety assessments. ALTEX 30:3–18. doi: 10.14573/altex.2013.1.003 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Hartung T, Hoffmann S, Stephens M (2013b) Mechanistic validation. ALTEX 30:119–130PubMedPubMedCentralCrossRefGoogle Scholar
  111. Hausherr V, van Thriel C, Krug A et al (2014) Impairment of glutamate signaling in mouse central nervous system neurons in vitro by tri-ortho-cresyl phosphate at noncytotoxic concentrations. Toxicol Sci 142:274–284. doi: 10.1093/toxsci/kfu174 PubMedCrossRefGoogle Scholar
  112. Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185. doi: 10.1124/pr.57.2.4 PubMedCrossRefGoogle Scholar
  113. Hayess K, Riebeling C, Pirow R et al (2013) The DNT-EST: a predictive embryonic stem cell-based assay for developmental neurotoxicity testing in vitro. Toxicology 314:135–147. doi: 10.1016/j.tox.2013.09.012 PubMedCrossRefGoogle Scholar
  114. Haythornthwaite A, Stoelzle S, Hasler A et al (2012) Characterizing human ion channels in induced pluripotent stem cell-derived neurons. J Biomol Screen 17:1264–1272. doi: 10.1177/1087057112457821 PubMedCrossRefGoogle Scholar
  115. Herculano-Houzel S (2011) Not all brains are made the same: new views on brain scaling in evolution. Brain Behav Evol 78:22–36. doi: 10.1159/000327318 PubMedCrossRefGoogle Scholar
  116. Heuer J, Bremer S, Pohl I, Spielmann H (1993) Development of an in vitro embryotoxicity test using murine embryonic stem cell cultures. Toxicol In Vitro 7:551–556PubMedCrossRefGoogle Scholar
  117. Hind WH, Tufarelli C, Neophytou M et al (2015) Endocannabinoids modulate human blood–brain barrier permeability in vitro. Br J Pharmacol 172:3015–3027. doi: 10.1111/bph.13106 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ho S-Y, Chao C-Y, Huang H-L et al (2011) NeurphologyJ: an automatic neuronal morphology quantification method and its application in pharmacological discovery. BMC Bioinform 12:230. doi: 10.1186/1471-2105-12-230 CrossRefGoogle Scholar
  119. Hoelting L, Klima S, Karreman C et al (2015) Stem cell-derived immature human dorsal root ganglia neurons to identify peripheral neurotoxicants. ALTEX Proc 4:101Google Scholar
  120. Hoelting L, Klima S, Karreman C et al (2016) Stem cell-derived immature human dorsal root ganglia neurons to identify peripheral neurotoxicants. Stem Cells Transl Med 5:476–487. doi: 10.5966/sctm.2015-0108 PubMedCrossRefGoogle Scholar
  121. Höfer T, Gerner I, Gundert-Remy U et al (2004) Animal testing and alternative approaches for the human health risk assessment under the proposed new European chemicals regulation. Arch Toxicol 78:549–564. doi: 10.1007/s00204-004-0577-9 PubMedCrossRefGoogle Scholar
  122. Hogberg HT, Kinsner-Ovaskainen A, Coecke S et al (2010) mRNA expression is a relevant tool to identify developmental neurotoxicants using an in vitro approach. Toxicol Sci 113:95–115. doi: 10.1093/toxsci/kfp175 PubMedCrossRefGoogle Scholar
  123. Hogberg HT, Bressler J, Christian KM et al (2013) Toward a 3D model of human brain development for studying gene/environment interactions. Stem Cell Res Ther 4(Suppl 1):S4. doi: 10.1186/scrt365 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Honegger P, Lenoir D, Favrod P (1979) Growth and differentiation of aggregating fetal brain cells in a serum-free defined medium. Nature 282:305–308PubMedCrossRefGoogle Scholar
  125. Hou X-Q, Yan R, Yang C et al (2014) A novel assay for high-throughput screening of anti-Alzheimer’s disease drugs to determine their efficacy by real-time monitoring of changes in PC12 cell proliferation. Int J Mol Med 33:543–549. doi: 10.3892/ijmm.2013.1608 PubMedGoogle Scholar
  126. Howard AS, Bucelli R, Jett DA et al (2005) Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures. Toxicol Appl Pharmacol 207:112–124. doi: 10.1016/j.taap.2004.12.008 PubMedCrossRefGoogle Scholar
  127. Hu B-Y, Weick JP, Yu J et al (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci 107:4335–4340. doi: 10.1073/pnas.0910012107 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Huang W, Li MD (2009) Nicotine modulates expression of miR-140*, which targets the 3′-untranslated region of dynamin 1 gene (Dnm1). Int J Neuropsychopharmacol 12:537–546. doi: 10.1017/S1461145708009528 PubMedCrossRefGoogle Scholar
  129. Inglese J, Auld DS, Jadhav A et al (2006) Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci USA 103:11473–11478. doi: 10.1073/pnas.0604348103 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Jana M, Jana A, Pal U, Pahan K (2007) A simplified method for isolating highly purified neurons, oligodendrocytes, astrocytes, and microglia from the same human fetal brain tissue. Neurochem Res 32:2015–2022. doi: 10.1007/s11064-007-9340-y PubMedPubMedCentralCrossRefGoogle Scholar
  131. Johnson ME, Bobrovskaya L (2015) An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology 46:101–116. doi: 10.1016/j.neuro.2014.12.002 PubMedCrossRefGoogle Scholar
  132. Johnstone AF, Gross GW, Weiss DG et al (2010) Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology 31(4):331–350. doi: 10.1016/j.neuro.2010.04.001
  133. Judson R, Kavlock R, Martin M et al (2013) Perspectives on validation of high-throughput assays supporting 21st century toxicity testing. ALTEX 30:51–56PubMedPubMedCentralCrossRefGoogle Scholar
  134. Kadereit S, Zimmer B, van Thriel C et al (2012) Compound selection for in vitro modeling of developmental neurotoxicity. Front Biosci Landmark Ed 17:2442–2460PubMedCrossRefGoogle Scholar
  135. Karumbayaram S, Novitch BG, Patterson M et al (2009) Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27:806–811. doi: 10.1002/stem.31 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Kim JA, Kim HN, Im S-K et al (2015) Collagen-based brain microvasculature model in vitro using three-dimensional printed template. Biomicrofluidics 9:24115. doi: 10.1063/1.4917508 CrossRefGoogle Scholar
  137. Kleiderman S, Sá JV, Teixeira AP et al (2015) Functional and phenotypic differences of pure populations of stem cell-derived astrocytes and neuronal precursor cells. Glia. doi: 10.1002/glia.22954 PubMedGoogle Scholar
  138. Kleinstreuer NC, Smith AM, West PR et al (2011) Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 257:111–121. doi: 10.1016/j.taap.2011.08.025 PubMedCrossRefGoogle Scholar
  139. Kleinstreuer NC, Yang J, Berg EL et al (2014) Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat Biotechnol 32:583–591. doi: 10.1038/nbt.2914 PubMedCrossRefGoogle Scholar
  140. Köhling R, Melani R, Koch U et al (2005) Detection of electrophysiological indicators of neurotoxicity in human and rat brain slices by a three-dimensional microelectrode array. Altern Lab Anim 33:579–589PubMedGoogle Scholar
  141. Kolaja K (2014) Stem cells and stem cell-derived tissues and their use in safety assessment. J Biol Chem 289:4555–4561. doi: 10.1074/jbc.R113.481028 PubMedCrossRefGoogle Scholar
  142. Koopman WJH, Visch H-J, Smeitink JAM, Willems PHGM (2006) Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytometry A 69A:1–12. doi: 10.1002/cyto.a.20198 CrossRefGoogle Scholar
  143. Krtolica A, Ilic D, Genbacev O, Miller RK (2009) Human embryonic stem cells as a model for embryotoxicity screening. Regen Med 4:449–459. doi: 10.2217/rme.09.13 PubMedCrossRefGoogle Scholar
  144. Krug AK, Balmer NV, Matt F et al (2013a) Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch Toxicol 87:2215–2231. doi: 10.1007/s00204-013-1072-y PubMedCrossRefGoogle Scholar
  145. Krug AK, Kolde R, Gaspar JA et al (2013b) Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol 87:123–143. doi: 10.1007/s00204-012-0967-3 PubMedCrossRefGoogle Scholar
  146. Krug AK, Gutbier S, Zhao L et al (2014) Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP(+). Cell Death Dis 5:e1222. doi: 10.1038/cddis.2014.166 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Kuegler PB, Zimmer B, Waldmann T et al (2010) Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX 27:17–42PubMedGoogle Scholar
  148. Kuegler PB, Baumann BA, Zimmer B et al (2012) GFAP-independent inflammatory competence and trophic functions of astrocytes generated from murine embryonic stem cells. Glia 60:218–228. doi: 10.1002/glia.21257 PubMedCrossRefGoogle Scholar
  149. Lancaster MA, Renner M, Martin C-A et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379. doi: 10.1038/nature12517 PubMedCrossRefGoogle Scholar
  150. Landrigan PJ (2010) What causes autism? Exploring the environmental contribution. Curr Opin Pediatr 22:219–225. doi: 10.1097/MOP.0b013e328336eb9a PubMedCrossRefGoogle Scholar
  151. Latta M, Künstle G, Leist M, Wendel A (2000) Metabolic depletion of ATP by fructose inversely controls CD95- and tumor necrosis factor receptor 1-mediated hepatic apoptosis. J Exp Med 191:1975–1985PubMedPubMedCentralCrossRefGoogle Scholar
  152. Lee W, Pinckney J, Lee V et al (2009) Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport 20:798–803. doi: 10.1097/WNR.0b013e32832b8be4 PubMedCrossRefGoogle Scholar
  153. Lee Y-B, Polio S, Lee W et al (2010) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223:645–652. doi: 10.1016/j.expneurol.2010.02.014 PubMedCrossRefGoogle Scholar
  154. Lein P, Locke P, Goldberg A (2007a) Meeting report: alternatives for developmental neurotoxicity testing. Environ Health Perspect 115:764–768. doi: 10.1289/ehp.9841 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Lein PJ, Guo X, Shi G-X et al (2007b) The novel GTPase rit differentially regulates axonal and dendritic growth. J Neurosci 27:4725–4736. doi: 10.1523/JNEUROSCI.5633-06.2007 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Leist M, Hartung T (2013) Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Arch Toxicol 87:563–567. doi: 10.1007/s00204-013-1038-0 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Leist M, Jäättelä M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598. doi: 10.1038/35085008 PubMedCrossRefGoogle Scholar
  158. Leist M, Nicotera P (1998) Calcium and neuronal death. Rev Physiol Biochem Pharmacol 132:79–125PubMedGoogle Scholar
  159. Leist M, Gantner F, Künstle G et al (1996) The 55-kD tumor necrosis factor receptor and CD95 independently signal murine hepatocyte apoptosis and subsequent liver failure. Mol Med Camb Mass 2:109–124PubMedPubMedCentralGoogle Scholar
  160. Leist M, Bremer S, Brundin P et al (2008a) The biological and ethical basis of the use of human embryonic stem cells for in vitro test systems or cell therapy. ALTEX 25:163–190PubMedGoogle Scholar
  161. Leist M, Hartung T, Nicotera P (2008b) The dawning of a new age of toxicology. ALTEX 25:103–114PubMedCrossRefGoogle Scholar
  162. Leist M, Hasiwa N, Daneshian M, Hartung T (2012) Validation and quality control of replacement alternatives—current status and future challenges. Toxicol Res 1:8–22. doi: 10.1039/C2TX20011B CrossRefGoogle Scholar
  163. Leist M, Hasiwa N, Rovida C et al (2014) Consensus report on the future of animal-free systemic toxicity testing. ALTEX 31:341–356PubMedCrossRefGoogle Scholar
  164. Leonard AP, Cameron RB, Speiser JL et al (2015) Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning. Biochim Biophys Acta 1853:348–360. doi: 10.1016/j.bbamcr.2014.11.002 PubMedCrossRefGoogle Scholar
  165. Li X, Jin P (2010) Roles of small regulatory RNAs in determining neuronal identity. Nat Rev Neurosci 11:329–338. doi: 10.1038/nrn2739 PubMedCrossRefGoogle Scholar
  166. Liu H, Yu N, Lu S et al (2015) Solute carrier family of the organic anion-transporting polypeptides 1A2- madin-darby canine kidney II: a promising in vitro system to understand the role of organic anion-transporting polypeptide 1A2 in blood–brain barrier drug penetration. Drug Metab Dispos Biol Fate Chem 43:1008–1018. doi: 10.1124/dmd.115.064170 PubMedCrossRefGoogle Scholar
  167. Lock JT, Parker I, Smith IF (2015) A comparison of fluorescent Ca(2+) indicators for imaging local Ca(2+) signals in cultured cells. Cell Calcium 58:638–648. doi: 10.1016/j.ceca.2015.10.003 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Lohren H, Blagojevic L, Fitkau R et al (2015) Toxicity of organic and inorganic mercury species in differentiated human neurons and human astrocytes. J Trace Elem Med Biol 32:200–208. doi: 10.1016/j.jtemb.2015.06.008 PubMedCrossRefGoogle Scholar
  169. Lotharius J, Barg S, Wiekop P et al (2002) Effect of mutant α-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem 277:38884–38894. doi: 10.1074/jbc.M205518200 PubMedCrossRefGoogle Scholar
  170. Lotharius J, Falsig J, van Beek J et al (2005) Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. J Neurosci Off J Soc Neurosci 25:6329–6342. doi: 10.1523/JNEUROSCI.1746-05.2005 CrossRefGoogle Scholar
  171. Lund S, Christensen KV, Hedtjärn M et al (2006) The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions. J Neuroimmunol 180:71–87. doi: 10.1016/j.jneuroim.2006.07.007 PubMedCrossRefGoogle Scholar
  172. Lundqvist J, Andaloussi-Lilja ELJ, Svensson C et al (2013) Optimisation of culture conditions for differentiation of C17.2 neural stem cells to be used for in vitro toxicity tests. Toxicol In Vitro 27:1565–1569. doi: 10.1016/j.tiv.2012.04.020 PubMedCrossRefGoogle Scholar
  173. Maertens A, Luechtefeld T, Kleensang A, Hartung T (2015) MPTP’s pathway of toxicity indicates central role of transcription factor SP1. Arch Toxicol 89:743–755. doi: 10.1007/s00204-015-1509-6 PubMedPubMedCentralCrossRefGoogle Scholar
  174. Malik N, Rao MS (2013) A review of the methods for human iPSC derivation. Methods Mol Biol 997:23–33. doi: 10.1007/978-1-62703-348-0_3 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Mariani J, Coppola G, Zhang P et al (2015) FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162:375–390. doi: 10.1016/j.cell.2015.06.034 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Marrs TC, Maynard RL (2013) Neurotranmission systems as targets for toxicants: a review. Cell Biol Toxicol 29:381–396. doi: 10.1007/s10565-013-9259-9 PubMedCrossRefGoogle Scholar
  177. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638PubMedPubMedCentralCrossRefGoogle Scholar
  178. Martinez MM, Reif RD, Pappas D (2010) Detection of apoptosis: a review of conventional and novel techniques. Anal Methods 2:996–1004. doi: 10.1039/C0AY00247J CrossRefGoogle Scholar
  179. Martinez Y, Dubois-Dauphin M, Krause K-H (2012) Generation and applications of human pluripotent stem cells induced into neural lineages and neural tissues. Front Physiol 3:47. doi: 10.3389/fphys.2012.00047 PubMedPubMedCentralCrossRefGoogle Scholar
  180. Materne E-M, Ramme AP, Terrasso AP et al (2015) A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing. J Biotechnol 205:36–46. doi: 10.1016/j.jbiotec.2015.02.002 PubMedCrossRefGoogle Scholar
  181. McConnell ER, McClain MA, Ross J et al (2012) Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set. Neurotoxicology 33:1048–1057. doi: 10.1016/j.neuro.2012.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  182. McKenna BK, Evans JG, Cheung MC, Ehrlich DJ (2011) A parallel microfluidic flow cytometer for high content screening. Nat Methods 8:401–403. doi: 10.1038/nmeth.1595 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Meganathan K, Jagtap S, Srinivasan SP et al (2015) Neuronal developmental gene and miRNA signatures induced by histone deacetylase inhibitors in human embryonic stem cells. Cell Death Dis 6:e1756. doi: 10.1038/cddis.2015.121 PubMedPubMedCentralCrossRefGoogle Scholar
  184. Meijer M, Brandsema JAR, Nieuwenhuis D et al (2015) Inhibition of voltage-gated calcium channels after subchronic and repeated exposure of PC12 cells to different classes of insecticides. Toxicol Sci Off J Soc Toxicol 147:607–617. doi: 10.1093/toxsci/kfv154 CrossRefGoogle Scholar
  185. Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738. doi: 10.4049/jimmunol.172.5.2731 PubMedCrossRefGoogle Scholar
  186. Miljan EA, Hines SJ, Pande P et al (2009) Implantation of c-mycER TAM immortalized human mesencephalic-derived clonal cell lines ameliorates behavior dysfunction in a rat model of Parkinson’s disease. Stem Cells Dev 18:307–319. doi: 10.1089/scd.2008.0078 PubMedCrossRefGoogle Scholar
  187. Miller RH (2002) Regulation of oligodendrocyte development in the vertebrate CNS. Prog Neurobiol 67:451–467PubMedCrossRefGoogle Scholar
  188. Miranda RC, Pietrzykowski AZ, Tang Y et al (2010) MicroRNAs: master regulators of ethanol abuse and toxicity? Alcohol Clin Exp Res 34:575–587. doi: 10.1111/j.1530-0277.2009.01126.x PubMedPubMedCentralCrossRefGoogle Scholar
  189. Mitra K, Lippincott-Schwartz J (2010) Analysis of mitochondrial dynamics and functions using imaging approaches. Curr Protoc Cell Biol. Chap 4: Unit 4.25.1–21. doi: 10.1002/0471143030.cb0425s46
  190. Miyata S (2015) New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front Neurosci 9:390. doi: 10.3389/fnins.2015.00390 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Monnet-Tschudi F, Zurich MG, Schilter B et al (2000) Maturation-dependent effects of chlorpyrifos and parathion and their oxygen analogs on acetylcholinesterase and neuronal and glial markers in aggregating brain cell cultures. Toxicol Appl Pharmacol 165:175–183. doi: 10.1006/taap.2000.8934 PubMedCrossRefGoogle Scholar
  192. Monnet-Tschudi F, Zurich M-G, Honegger P (2007) Neurotoxicant-induced inflammatory response in three-dimensional brain cell cultures. Hum Exp Toxicol 26:339–346. doi: 10.1177/0960327107074589 PubMedCrossRefGoogle Scholar
  193. Moors M, Rockel TD, Abel J et al (2009) Human neurospheres as three-dimensional cellular systems for developmental neurotoxicity testing. Environ Health Perspect 117:1131–1138. doi: 10.1289/ehp.0800207 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Moreno EL, Hachi S, Hemmer K et al (2015) Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture. Lab Chip 15:2419–2428. doi: 10.1039/c5lc00180c PubMedCrossRefGoogle Scholar
  195. Müller F-J, Schuldt BM, Williams R et al (2011) A bioinformatic assay for pluripotency in human cells. Nat Methods 8:315–317. doi: 10.1038/nmeth.1580 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Mundy WR, Radio NM, Freudenrich TM (2010) Neuronal models for evaluation of proliferation in vitro using high content screening. Toxicology 270:121–130. doi: 10.1016/j.tox.2010.02.004 PubMedCrossRefGoogle Scholar
  197. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785. doi: 10.1038/nbt.2958 PubMedCrossRefGoogle Scholar
  198. Naik P, Cucullo L (2012) In vitro blood–brain barrier models: current and perspective technologies. J Pharm Sci 101:1337–1354. doi: 10.1002/jps.23022 PubMedCrossRefGoogle Scholar
  199. Nau H (1986) Species differences in pharmacokinetics and drug teratogenesis. Environ Health Perspect 70:113–129PubMedPubMedCentralCrossRefGoogle Scholar
  200. Nave K-A, Salzer JL (2006) Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 16:492–500. doi: 10.1016/j.conb.2006.08.008 PubMedCrossRefGoogle Scholar
  201. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530. doi: 10.1016/j.tins.2003.08.008 PubMedCrossRefGoogle Scholar
  202. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802PubMedCrossRefGoogle Scholar
  203. Nguyen HX, Nekanti U, Haus DL et al (2014) Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions. J Comp Neurol 522:2767–2783. doi: 10.1002/cne.23604 PubMedCrossRefGoogle Scholar
  204. Ni M, Li X, Rocha JBT et al (2012) Glia and methylmercury neurotoxicity. J Toxicol Environ Health A 75:1091–1101. doi: 10.1080/15287394.2012.697840 PubMedPubMedCentralCrossRefGoogle Scholar
  205. Nicholas CR, Chen J, Tang Y et al (2013) Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12:573–586. doi: 10.1016/j.stem.2013.04.005 PubMedPubMedCentralCrossRefGoogle Scholar
  206. Novellino A, Scelfo B, Palosaari T et al (2011) Development of micro-electrode array based tests for neurotoxicity: assessment of interlaboratory reproducibility with neuroactive chemicals. Front Neuroeng 4:4. doi: 10.3389/fneng.2011.00004 PubMedPubMedCentralCrossRefGoogle Scholar
  207. O’Callaghan JP, Sriram K (2005) Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Expert Opin Drug Saf 4:433–442. doi: 10.1517/14740338.4.3.433 PubMedCrossRefGoogle Scholar
  208. Oberheim NA, Takano T, Han X et al (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287. doi: 10.1523/JNEUROSCI.4707-08.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Olson H, Betton G, Robinson D et al (2000) Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 32:56–67. doi: 10.1006/rtph.2000.1399 PubMedCrossRefGoogle Scholar
  210. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565. doi: 10.1038/nrm1150 PubMedCrossRefGoogle Scholar
  211. Påhlman S, Ruusala AI, Abrahamsson L et al (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolester-induced differentiation. Cell Differ 14:135–144PubMedCrossRefGoogle Scholar
  212. Pak YL, Swamy KMK, Yoon J (2015) Recent progress in fluorescent imaging probes. Sensors 15:24374–24396. doi: 10.3390/s150924374 PubMedPubMedCentralCrossRefGoogle Scholar
  213. Pal R, Mamidi MK, Das AK, Bhonde R (2011) Human embryonic stem cell proliferation and differentiation as parameters to evaluate developmental toxicity. J Cell Physiol 226:1583–1595. doi: 10.1002/jcp.22484 PubMedCrossRefGoogle Scholar
  214. Pallocca G, Fabbri M, Sacco MG et al (2013) miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing. Cell Biol Toxicol 29:239–257. doi: 10.1007/s10565-013-9250-5 PubMedCrossRefGoogle Scholar
  215. Pallocca G, Grinberg M, Henry M et al (2016) Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol 90:159–180. doi: 10.1007/s00204-015-1658-7 PubMedCrossRefGoogle Scholar
  216. Palm T, Bolognin S, Meiser J et al (2015) Rapid and robust generation of long-term self-renewing human neural stem cells with the ability to generate mature astroglia. Sci Rep 5:16321. doi: 10.1038/srep16321 PubMedPubMedCentralCrossRefGoogle Scholar
  217. Palmer JA, Poenitzsch AM, Smith SM et al (2012) Metabolic biomarkers of prenatal alcohol exposure in human embryonic stem cell-derived neural lineages. Alcohol Clin Exp Res 36:1314–1324. doi: 10.1111/j.1530-0277.2011.01732.x PubMedPubMedCentralCrossRefGoogle Scholar
  218. Pamies D, Sogorb MA, Fabbri M et al (2014) Genomic and phenotypic alterations of the neuronal-like cells derived from human embryonal carcinoma stem cells (NT2) caused by exposure to organophosphorus compounds paraoxon and mipafox. Int J Mol Sci 15:905–926. doi: 10.3390/ijms15010905 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Parham F, Austin C, Southall N et al (2009) Dose-response modeling of high-throughput screening data. J Biomol Screen 14:1216–1227. doi: 10.1177/1087057109349355 PubMedPubMedCentralCrossRefGoogle Scholar
  220. Paşca AM, Sloan SA, Clarke LE et al (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12:671–678. doi: 10.1038/nmeth.3415 PubMedPubMedCentralCrossRefGoogle Scholar
  221. Paul G, Christophersen NS, Raymon H et al (2007) Tyrosine hydroxylase expression is unstable in a human immortalized mesencephalic cell line–studies in vitro and after intracerebral grafting in vivo. Mol Cell Neurosci 34:390–399. doi: 10.1016/j.mcn.2006.11.010 PubMedCrossRefGoogle Scholar
  222. Pei Y, Peng J, Behl M et al (2015) Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes. Brain Res. doi: 10.1016/j.brainres.2015.07.048 Google Scholar
  223. Pellizzer C, Bremer S, Hartung T (2005) Developmental toxicity testing from animal towards embryonic stem cells. ALTEX 22:47–57PubMedGoogle Scholar
  224. Penschuck S, Flagstad P, Didriksen M et al (2006) Decrease in parvalbumin-expressing neurons in the hippocampus and increased phencyclidine-induced locomotor activity in the rat methylazoxymethanol (MAM) model of schizophrenia. Eur J Neurosci 23:279–284. doi: 10.1111/j.1460-9568.2005.04536.x PubMedCrossRefGoogle Scholar
  225. Pfisterer U, Kirkeby A, Torper O et al (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci USA 108:10343–10348. doi: 10.1073/pnas.1105135108 PubMedPubMedCentralCrossRefGoogle Scholar
  226. Pham AH, Meng S, Chu QN, Chan DC (2012) Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum Mol Genet 21:4817–4826. doi: 10.1093/hmg/dds311 PubMedPubMedCentralCrossRefGoogle Scholar
  227. Phillips BW, Crook JM (2010) Pluripotent human stem cells: a novel tool in drug discovery. BioDrugs Clin Immunother Biopharm Gene Ther 24:99–108. doi: 10.2165/11532270-000000000-00000 Google Scholar
  228. Piersma AH, Hernandez LG, van Benthem J et al (2011) Reproductive toxicants have a threshold of adversity. Crit Rev Toxicol 41:545–554. doi: 10.3109/10408444.2011.554794 PubMedCrossRefGoogle Scholar
  229. Pöltl D, Schildknecht S, Karreman C, Leist M (2012) Uncoupling of ATP-depletion and cell death in human dopaminergic neurons. Neurotoxicology 33:769–779. doi: 10.1016/j.neuro.2011.12.007 PubMedCrossRefGoogle Scholar
  230. Prasad RY, McGee JK, Killius MG et al (2013) Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Toxicol In Vitro 27:2013–2021. doi: 10.1016/j.tiv.2013.07.005 PubMedCrossRefGoogle Scholar
  231. Preynat-Seauve O, Suter DM, Tirefort D et al (2009) Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture. Stem Cells 27:509–520. doi: 10.1634/stemcells.2008-0600 PubMedCrossRefGoogle Scholar
  232. Prieto P, Blaauboer BJ, de Boer AG et al (2004) Blood–brain barrier in vitro models and their application in toxicology. The report and recommendations of ECVAM Workshop 49. Altern Lab Anim 32:37–50PubMedGoogle Scholar
  233. Quasthoff S, Hartung HP (2002) Chemotherapy-induced peripheral neuropathy. J Neurol 249:9–17PubMedCrossRefGoogle Scholar
  234. Raab S, Klingenstein M, Liebau S, Linta L (2014) A comparative view on human somatic cell sources for iPSC generation. Stem Cells Int 2014:768391. doi: 10.1155/2014/768391 PubMedPubMedCentralCrossRefGoogle Scholar
  235. Radio NM, Breier JM, Shafer TJ, Mundy WR (2008) Assessment of chemical effects on neurite outgrowth in PC12 cells using high content screening. Toxicol Sci 105:106–118. doi: 10.1093/toxsci/kfn114 PubMedCrossRefGoogle Scholar
  236. Ramirez T, Daneshian M, Kamp H et al (2013) Metabolomics in toxicology and preclinical research. ALTEX 30(2):209–225PubMedPubMedCentralCrossRefGoogle Scholar
  237. Rempel E, Hoelting L, Waldmann T et al (2015) A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol 89:1599–1618. doi: 10.1007/s00204-015-1573-y PubMedPubMedCentralCrossRefGoogle Scholar
  238. Repetto G, Sanz P, Repetto M (1994) Comparative in vitro effects of sodium arsenite and sodium arsenate on neuroblastoma cells. Toxicology 92:143–153PubMedCrossRefGoogle Scholar
  239. Rice D, Barone S (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533PubMedPubMedCentralCrossRefGoogle Scholar
  240. Robinson JF, Piersma AH (2013) Toxicogenomic approaches in developmental toxicology testing. Methods Mol Biol 947:451–473. doi: 10.1007/978-1-62703-131-8_31 PubMedCrossRefGoogle Scholar
  241. Roqué PJ, Guizzetti M, Giordano G, Costa LG (2011) Quantification of synaptic structure formation in cocultures of astrocytes and hippocampal neurons. Methods Mol Biol Clifton NJ 758:361–390. doi: 10.1007/978-1-61779-170-3_25 CrossRefGoogle Scholar
  242. Rossini GP (2012) Towards tailored assays for cell-based approaches to toxicity testing. ALTEX 29:359–372. doi: 10.14573/altex.2012.4.359 PubMedCrossRefGoogle Scholar
  243. Rovida C, Alépée N, Api AM et al (2015) Integrated testing strategies (ITS) for safety assessment. ALTEX 32:25–40. doi: 10.14573/altex.1411011 PubMedCrossRefGoogle Scholar
  244. Roy NS, Chandler-Militello D, Lu G et al (2007) Retrovirally mediated telomerase immortalization of neural progenitor cells. Nat Protoc 2:2815–2825. doi: 10.1038/nprot.2007.402 PubMedCrossRefGoogle Scholar
  245. Rudén C, Hansson SO (2010) Registration, evaluation, and authorization of chemicals (REACH) is but the first step-how far will it take us? Six further steps to improve the European chemicals legislation. Environ Health Perspect 118:6–10. doi: 10.1289/ehp.0901157 PubMedGoogle Scholar
  246. Sandström von Tobel J, Zoia D, Althaus J et al (2014) Immediate and delayed effects of subchronic Paraquat exposure during an early differentiation stage in 3D-rat brain cell cultures. Toxicol Lett 230:188–197. doi: 10.1016/j.toxlet.2014.02.001 PubMedCrossRefGoogle Scholar
  247. Schildknecht S, Pöltl D, Nagel DM et al (2009) Requirement of a dopaminergic neuronal phenotype for toxicity of low concentrations of 1-methyl-4-phenylpyridinium to human cells. Toxicol Appl Pharmacol 241:23–35. doi: 10.1016/j.taap.2009.07.027 PubMedCrossRefGoogle Scholar
  248. Schildknecht S, Pape R, Müller N et al (2011) Neuroprotection by minocycline caused by direct and specific scavenging of peroxynitrite. J Biol Chem 286:4991–5002. doi: 10.1074/jbc.M110.169565 PubMedCrossRefGoogle Scholar
  249. Schildknecht S, Kirner S, Henn A et al (2012) Characterization of mouse cell line IMA 2.1 as a potential model system to study astrocyte functions. ALTEX 29:261–274PubMedCrossRefGoogle Scholar
  250. Schildknecht S, Karreman C, Pöltl D et al (2013) Generation of genetically-modified human differentiated cells for toxicological tests and the study of neurodegenerative diseases. ALTEX 30:427–444PubMedCrossRefGoogle Scholar
  251. Schildknecht S, Pape R, Meiser J et al (2015) Preferential extracellular generation of the active Parkinsonian toxin MPP(+) by transporter-independent export of the intermediate MPDP(+). Antioxid Redox Signal 23:1001–1016. doi: 10.1089/ars.2015.6297 PubMedPubMedCentralCrossRefGoogle Scholar
  252. Schmidt M, Raghavan B, Müller V et al (2010) Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol 11:814–819. doi: 10.1038/ni.1919 PubMedCrossRefGoogle Scholar
  253. Scholz D, Pöltl D, Genewsky A et al (2011) Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. J Neurochem 119:957–971. doi: 10.1111/j.1471-4159.2011.07255.x PubMedCrossRefGoogle Scholar
  254. Schreiber T, Gassmann K, Götz C et al (2010) Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: evidence for endocrine disruption. Environ Health Perspect 118:572–578. doi: 10.1289/ehp.0901435 PubMedCrossRefGoogle Scholar
  255. Schultz L, Zurich M-G, Culot M et al (2015) Evaluation of drug-induced neurotoxicity based on metabolomics, proteomics and electrical activity measurements in complementary CNS in vitro models. Toxicol In Vitro. doi: 10.1016/j.tiv.2015.05.016 Google Scholar
  256. Schwartz MP, Hou Z, Propson NE et al (2015) Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc Natl Acad Sci 112:12516–12521. doi: 10.1073/pnas.1516645112 PubMedPubMedCentralCrossRefGoogle Scholar
  257. Seeley WW, Carlin DA, Allman JM et al (2006) Early frontotemporal dementia targets neurons unique to apes and humans. Ann Neurol 60:660–667. doi: 10.1002/ana.21055 PubMedCrossRefGoogle Scholar
  258. Seiler AEM, Spielmann H (2011) The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc 6:961–978. doi: 10.1038/nprot.2011.348 PubMedCrossRefGoogle Scholar
  259. Selenica M-L, Jensen HS, Larsen AK et al (2007) Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation. Br J Pharmacol 152:959–979. doi: 10.1038/sj.bjp.0707471 PubMedPubMedCentralCrossRefGoogle Scholar
  260. Senatorov VV, Damadzic R, Mann CL et al (2015) Reduced anterior insula, enlarged amygdala in alcoholism and associated depleted von Economo neurons. Brain J Neurol 138:69–79. doi: 10.1093/brain/awu305 CrossRefGoogle Scholar
  261. Sendrowski K, Rusak M, Sobaniec P et al (2013) Study of the protective effect of calcium channel blockers against neuronal damage induced by glutamate in cultured hippocampal neurons. Pharmacol Rep PR 65:730–736PubMedCrossRefGoogle Scholar
  262. Seok J, Warren HS, Cuenca AG et al (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 110:3507–3512. doi: 10.1073/pnas.1222878110 PubMedPubMedCentralCrossRefGoogle Scholar
  263. Shinde V, Klima S, Sureshkumar PS et al (2015) Human pluripotent stem cell based developmental toxicity assays for chemical safety screening and systems biology data generation. J Vis Exp JoVE 100:e52333. doi: 10.3791/52333 Google Scholar
  264. Simão D, Pinto C, Piersanti S et al (2015) Modeling human neural functionality in vitro: three-dimensional culture for dopaminergic differentiation. Tissue Eng Part A 21:654–668. doi: 10.1089/ten.TEA.2014.0079 PubMedCrossRefGoogle Scholar
  265. Simão D, Pinto C, Fernandes P et al (2016) Evaluation of helper-dependent canine adenovirus vectors in a 3D human CNS model. Gene Ther 23:86–94. doi: 10.1038/gt.2015.75 PubMedCrossRefGoogle Scholar
  266. Simcox EM, Reeve A, Turnbull D (2013) Monitoring mitochondrial dynamics and complex I dysfunction in neurons: implications for Parkinson’s disease. Biochem Soc Trans 41:1618–1624. doi: 10.1042/BST20130189 PubMedCrossRefGoogle Scholar
  267. Sisnaiske J, Hausherr V, Krug AK et al (2014) Acrylamide alters neurotransmitter induced calcium responses in murine ESC-derived and primary neurons. Neurotoxicology 43:117–126. doi: 10.1016/j.neuro.2014.03.010 PubMedCrossRefGoogle Scholar
  268. Smirnova L, Sittka A, Luch A (2012) On the role of low-dose effects and epigenetics in toxicology. EXS 101:499–550. doi: 10.1007/978-3-7643-8340-4_18 PubMedGoogle Scholar
  269. Smirnova L, Block K, Sittka A et al (2014a) MicroRNA profiling as tool for in vitro developmental neurotoxicity testing: the case of sodium valproate. PLoS One 9:e98892. doi: 10.1371/journal.pone.0098892 PubMedPubMedCentralCrossRefGoogle Scholar
  270. Smirnova L, Hogberg HT, Leist M, Hartung T (2014b) Developmental neurotoxicity—challenges in the 21st century and in vitro opportunities. ALTEX 31:129–156. doi: 10.14573/altex.1403271 PubMedPubMedCentralGoogle Scholar
  271. Smirnova L, Harris G, Delp J et al (2015a) A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis. Arch Toxicol. doi: 10.1007/s00204-015-1637-z PubMedPubMedCentralGoogle Scholar
  272. Smirnova L, Harris G, Leist M, Hartung T (2015b) Cellular resilience. ALTEX 32:247–260PubMedCrossRefGoogle Scholar
  273. Smirnova L, Seiler AEM, Luch A (2015c) microRNA profiling as tool for developmental neurotoxicity testing (DNT). Curr Protoc Toxicol 64:20.9.1–20.9.22. doi: 10.1002/0471140856.tx2009s64 CrossRefGoogle Scholar
  274. Snyder EY, Deitcher DL, Walsh C et al (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51. doi: 10.1016/0092-8674(92)90204-P PubMedCrossRefGoogle Scholar
  275. Steinbach JP, Müller U, Leist M et al (1998) Hypersensitivity to seizures in beta-amyloid precursor protein deficient mice. Cell Death Differ 5:858–866. doi: 10.1038/sj.cdd.4400391 PubMedCrossRefGoogle Scholar
  276. Stettner M, Wolffram K, Mausberg AK et al (2013) Promoting myelination in an in vitro mouse model of the peripheral nerve system: the effect of wine ingredients. PLoS One. doi: 10.1371/journal.pone.0066079 Google Scholar
  277. Stiegler NV, Krug AK, Matt F, Leist M (2011) Assessment of chemical-induced impairment of human neurite outgrowth by multiparametric live cell imaging in high-density cultures. Toxicol Sci 121:73–87. doi: 10.1093/toxsci/kfr034 PubMedCrossRefGoogle Scholar
  278. Stummann TC, Hareng L, Bremer S (2009) Hazard assessment of methylmercury toxicity to neuronal induction in embryogenesis using human embryonic stem cells. Toxicology 257:117–126. doi: 10.1016/j.tox.2008.12.018 PubMedCrossRefGoogle Scholar
  279. Sundberg M, Skottman H, Suuronen R, Narkilahti S (2010) Production and isolation of NG2+ oligodendrocyte precursors from human embryonic stem cells in defined serum-free medium. Stem Cell Res 5:91–103. doi: 10.1016/j.scr.2010.04.005 PubMedCrossRefGoogle Scholar
  280. Suñol C, Babot Z, Fonfría E et al (2008) Studies with neuronal cells: from basic studies of mechanisms of neurotoxicity to the prediction of chemical toxicity. Toxicol In Vitro 22:1350–1355. doi: 10.1016/j.tiv.2008.03.009 PubMedCrossRefGoogle Scholar
  281. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi: 10.1016/j.cell.2006.07.024 PubMedCrossRefGoogle Scholar
  282. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi: 10.1016/j.cell.2007.11.019 PubMedCrossRefGoogle Scholar
  283. Takao K, Miyakawa T (2015) Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci 112:1167–1172. doi: 10.1073/pnas.1401965111 PubMedCrossRefGoogle Scholar
  284. Tal TL, Tanguay RL (2012) Non-coding RNAs–novel targets in neurotoxicity. Neurotoxicology 33:530–544. doi: 10.1016/j.neuro.2012.02.013 PubMedPubMedCentralCrossRefGoogle Scholar
  285. Terrasso AP, Pinto C, Serra M et al (2015) Novel scalable 3D cell based model for in vitro neurotoxicity testing: combining human differentiated neurospheres with gene expression and functional endpoints. J Biotechnol 205:82–92. doi: 10.1016/j.jbiotec.2014.12.011 PubMedCrossRefGoogle Scholar
  286. Theunissen PT, Schulpen SHW, van Dartel DAM et al (2010) An abbreviated protocol for multilineage neural differentiation of murine embryonic stem cells and its perturbation by methyl mercury. Reprod Toxicol 29:383–392. doi: 10.1016/j.reprotox.2010.04.003 PubMedCrossRefGoogle Scholar
  287. Theunissen PT, Robinson JF, Pennings JLA et al (2012) Transcriptomic concentration-response evaluation of valproic acid, cyproconazole, and hexaconazole in the neural embryonic stem cell test (ESTn). Toxicol Sci 125:430–438. doi: 10.1093/toxsci/kfr293 PubMedCrossRefGoogle Scholar
  288. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147. doi: 10.1126/science.282.5391.1145 PubMedCrossRefGoogle Scholar
  289. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316PubMedCrossRefGoogle Scholar
  290. Tice RR, Austin CP, Kavlock RJ, Bucher JR (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Perspect 121:756–765. doi: 10.1289/ehp.1205784 PubMedPubMedCentralCrossRefGoogle Scholar
  291. Tieng V, Stoppini L, Villy S et al (2014) Engineering of midbrain organoids containing long-lived dopaminergic neurons. Stem Cells Dev 23:1535–1547. doi: 10.1089/scd.2013.0442 PubMedCrossRefGoogle Scholar
  292. Tischler AS, Greene LA (1975) Nerve growth factor-induced process formation by cultured rat pheochromocytoma cells. Nature 258:341–342PubMedCrossRefGoogle Scholar
  293. Toggas SM, Krady JK, Billingsley ML (1992) Molecular neurotoxicology of trimethyltin: identification of stannin, a novel protein expressed in trimethyltin-sensitive cells. Mol Pharmacol 42:44–56PubMedGoogle Scholar
  294. Tollefsen KE, Scholz S, Cronin MT et al (2014) Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul Toxicol Pharmacol 70:629–640. doi: 10.1016/j.yrtph.2014.09.009 PubMedCrossRefGoogle Scholar
  295. Tong Z-B, Hogberg H, Kuo D et al (2016) Characterization of three human cell line models for high-throughput neuronal cytotoxicity screening. J Appl Toxicol JAT. doi: 10.1002/jat.3334 Google Scholar
  296. Tsankov AM, Akopian V, Pop R et al (2015) A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nat Biotechnol 33:1182–1192. doi: 10.1038/nbt.3387 PubMedPubMedCentralCrossRefGoogle Scholar
  297. Valdivia P, Martin M, LeFew WR et al (2014) Multi-well microelectrode array recordings detect neuroactivity of ToxCast compounds. Neurotoxicology 44:204–217. doi: 10.1016/j.neuro.2014.06.012 PubMedCrossRefGoogle Scholar
  298. van Thriel C, Westerink RHS, Beste C et al (2012) Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology 33:911–924. doi: 10.1016/j.neuro.2011.10.002 PubMedCrossRefGoogle Scholar
  299. van Vliet E, Daneshian M, Beilmann M et al (2014) Current approaches and future role of high content imaging in safety sciences and drug discovery. ALTEX 4:479–493Google Scholar
  300. Vassallo A, Chiappalone M, De Camargos Lopes R et al (2016) A multi-laboratory evaluation of microelectrode array-based measurements of neural network activity for acute neurotoxicity testing. Neurotoxicology. doi: 10.1016/j.neuro.2016.03.019 Google Scholar
  301. Vazin T, Ball KA, Lu H et al (2014) Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: a model system to study neurotoxicity in Alzheimer’s disease. Neurobiol Dis 62:62–72. doi: 10.1016/j.nbd.2013.09.005 PubMedCrossRefGoogle Scholar
  302. Villa A, Liste I, Courtois ET et al (2009) Generation and properties of a new human ventral mesencephalic neural stem cell line. Exp Cell Res 315:1860–1874. doi: 10.1016/j.yexcr.2009.03.011 PubMedCrossRefGoogle Scholar
  303. Vinken M (2013) The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology 312:158–165. doi: 10.1016/j.tox.2013.08.011 PubMedCrossRefGoogle Scholar
  304. Visan A, Hayess K, Sittner D et al (2012) Neural differentiation of mouse embryonic stem cells as a tool to assess developmental neurotoxicity in vitro. Neurotoxicology 33:1135–1146. doi: 10.1016/j.neuro.2012.06.006 PubMedCrossRefGoogle Scholar
  305. Volbracht C, Leist M, Nicotera P (1999) ATP controls neuronal apoptosis triggered by microtubule breakdown or potassium deprivation. Mol Med 5:477–489PubMedPubMedCentralGoogle Scholar
  306. Waldmann T, Rempel E, Balmer NV et al (2014) Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol 27:408–420. doi: 10.1021/tx400402j PubMedPubMedCentralCrossRefGoogle Scholar
  307. Wang K, Yuan Y, Li H et al (2013) The spectrum of circulating RNA: a window into systems toxicology. Toxicol Sci 132:478–492. doi: 10.1093/toxsci/kft014 PubMedCrossRefGoogle Scholar
  308. Wang G-Y, Wang N, Liao H-N (2015) Effects of muscone on the expression of P-gp, MMP-9 on blood–brain barrier model in vitro. Cell Mol Neurobiol. doi: 10.1007/s10571-015-0204-8 Google Scholar
  309. Wapinski OL, Vierbuchen T, Qu K et al (2013) Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155:621–635. doi: 10.1016/j.cell.2013.09.028 PubMedCrossRefGoogle Scholar
  310. Warren HS, Tompkins RG, Moldawer LL et al (2015) Mice are not men. Proc Natl Acad Sci 112:E345–E345. doi: 10.1073/pnas.1414857111 PubMedCrossRefGoogle Scholar
  311. Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741. doi: 10.1373/clinchem.2010.147405 PubMedPubMedCentralCrossRefGoogle Scholar
  312. West PR, Weir AM, Smith AM et al (2010) Predicting human developmental toxicity of pharmaceuticals using human embryonic stem cells and metabolomics. Toxicol Appl Pharmacol 247:18–27. doi: 10.1016/j.taap.2010.05.007 PubMedCrossRefGoogle Scholar
  313. Westerink RHS (2013) Do we really want to REACH out to in vitro? Neurotoxicology 39:169–172. doi: 10.1016/j.neuro.2013.10.001 PubMedCrossRefGoogle Scholar
  314. Wheeler HE, Wing C, Delaney SM et al (2015) Modeling chemotherapeutic neurotoxicity with human induced pluripotent stem cell-derived neuronal cells. PLoS One 10:e0118020. doi: 10.1371/journal.pone.0118020 PubMedPubMedCentralCrossRefGoogle Scholar
  315. Wobus AM, Löser P (2011) Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 85:79–117. doi: 10.1007/s00204-010-0641-6 PubMedPubMedCentralCrossRefGoogle Scholar
  316. Wong JK, Kennedy PR, Belcher SM (2001) Simplified serum- and steroid-free culture conditions for high-throughput viability analysis of primary cultures of cerebellar granule neurons. J Neurosci Methods 110:45–55PubMedCrossRefGoogle Scholar
  317. Yan Y, Shin S, Jha BS et al (2013) Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells. Stem Cells Transl Med 2:862–870. doi: 10.5966/sctm.2013-0080 PubMedPubMedCentralCrossRefGoogle Scholar
  318. Yang D, Kania-Korwel I, Ghogha A et al (2014) PCB 136 atropselectively alters morphometric and functional parameters of neuronal connectivity in cultured rat hippocampal neurons via ryanodine receptor-dependent mechanisms. Toxicol Sci 138:379–392. doi: 10.1093/toxsci/kft334 PubMedPubMedCentralCrossRefGoogle Scholar
  319. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. doi: 10.1126/science.1151526 PubMedCrossRefGoogle Scholar
  320. Zeng X, Chen J, Deng X et al (2006) An in vitro model of human dopaminergic neurons derived from embryonic stem cells: MPP+ toxicity and GDNF neuroprotection. Neuropsychopharmacology 31:2708–2715. doi: 10.1038/sj.npp.1301125 PubMedPubMedCentralCrossRefGoogle Scholar
  321. Zhang Y, Pak C, Han Y et al (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78:785–798. doi: 10.1016/j.neuron.2013.05.029 PubMedPubMedCentralCrossRefGoogle Scholar
  322. Zhang Y, Sloan SA, Clarke LE et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89:37–53. doi: 10.1016/j.neuron.2015.11.013 PubMedCrossRefGoogle Scholar
  323. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV (2015) Establishment and dysfunction of the blood–brain barrier. Cell 163:1064–1078. doi: 10.1016/j.cell.2015.10.067 PubMedPubMedCentralCrossRefGoogle Scholar
  324. Zimmer B, Kuegler PB, Baudis B et al (2011a) Coordinated waves of gene expression during neuronal differentiation of embryonic stem cells as basis for novel approaches to developmental neurotoxicity testing. Cell Death Differ 18:383–395. doi: 10.1038/cdd.2010.109 PubMedCrossRefGoogle Scholar
  325. Zimmer B, Schildknecht S, Kuegler PB et al (2011b) Sensitivity of dopaminergic neuron differentiation from stem cells to chronic low-dose methylmercury exposure. Toxicol Sci Off J Soc Toxicol 121:357–367. doi: 10.1093/toxsci/kfr054 CrossRefGoogle Scholar
  326. Zimmer B, Lee G, Balmer NV et al (2012) Evaluation of developmental toxicants and signaling pathways in a functional test based on the migration of human neural crest cells. Environ Health Perspect 120:1116–1122. doi: 10.1289/ehp.1104489 PubMedPubMedCentralCrossRefGoogle Scholar
  327. Zimmer B, Pallocca G, Dreser N et al (2014) Profiling of drugs and environmental chemicals for functional impairment of neural crest migration in a novel stem cell-based test battery. Arch Toxicol 88:1109–1126. doi: 10.1007/s00204-014-1231-9 PubMedPubMedCentralGoogle Scholar
  328. Zsurka G, Kunz WS (2015) Mitochondrial dysfunction and seizures: the neuronal energy crisis. Lancet Neurol 14:956–966. doi: 10.1016/S1474-4422(15)00148-9 PubMedCrossRefGoogle Scholar
  329. Zurich MG, Monnet-Tschudi F (2009) Contribution of in vitro neurotoxicology studies to the elucidation of neurodegenerative processes. Brain Res Bull 80:211–216. doi: 10.1016/j.brainresbull.2009.06.008 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Béla Z. Schmidt
    • 1
    • 2
  • Martin Lehmann
    • 1
    • 3
  • Simon Gutbier
    • 4
  • Erastus Nembo
    • 1
    • 3
  • Sabrina Noel
    • 5
  • Lena Smirnova
    • 6
  • Anna Forsby
    • 7
    • 8
  • Jürgen Hescheler
    • 3
  • Hasan X. Avci
    • 1
    • 9
  • Thomas Hartung
    • 6
  • Marcel Leist
    • 4
  • Julianna Kobolák
    • 1
  • András Dinnyés
    • 1
    • 10
    Email author
  1. 1.BioTalentum Ltd.GödöllőHungary
  2. 2.Stem Cell Biology and Embryology Unit, Department of Development and Regeneration, Stem Cell Institute LeuvenKU LeuvenLeuvenBelgium
  3. 3.Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
  4. 4.Doerenkamp-Zbinden Chair for In Vitro Toxicology and BiomedicineUniversity of KonstanzConstanceGermany
  5. 5.Louvain Centre for Toxicology and Applied PharmacologyUniversité Catholique de LouvainBrusselsBelgium
  6. 6.Center for Alternatives to Animal Testing, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreUSA
  7. 7.Swedish Toxicology Research Center (Swetox)SödertäljeSweden
  8. 8.Department of NeurochemistryStockholm UniversityStockholmSweden
  9. 9.Department of Medical ChemistryUniversity of SzegedSzegedHungary
  10. 10.Molecular Animal Biotechnology LaboratorySzent István UniversityGödöllőHungary

Personalised recommendations