Archives of Toxicology

, Volume 90, Issue 9, pp 2173–2186 | Cite as

Full biological characterization of human pluripotent stem cells will open the door to translational research

  • Nina Kramer
  • Margit Rosner
  • Boris Kovacic
  • Markus HengstschlägerEmail author
Review Article


Since the discovery of human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC), great hopes were held for their therapeutic application including disease modeling, drug discovery screenings, toxicological screenings and regenerative therapy. hESC and hiPSC have the advantage of indefinite self-renewal, thereby generating an inexhaustible pool of cells with, e.g., specific genotype for developing putative treatments; they can differentiate into derivatives of all three germ layers enabling autologous transplantation, and via donor-selection they can express various genotypes of interest for better disease modeling. Furthermore, drug screenings and toxicological screenings in hESC and hiPSC are more pertinent to identify drugs or chemical compounds that are harmful for human, than a mouse model could predict. Despite continuing research in the wide field of therapeutic applications, further understanding of the underlying basic mechanisms of stem cell function is necessary. Here, we summarize current knowledge concerning pluripotency, self-renewal, apoptosis, motility, epithelial-to-mesenchymal transition and differentiation of pluripotent stem cells.


Embryonic stem cells Induced pluripotent stem cells Self-renewal Apoptosis Motility Epithelial-to-mesenchymal transition 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C (2007) Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 15:2027–2036. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  2. Bajpai VK, Mistriotis P, Loh YH, Daley GQ, Andreadis ST (2012) Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates. Cardiovasc Res 96:391–400. doi: 10.1093/cvr/cvs253 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baker DE et al (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25:207–215. doi: 10.1038/nbt1285 CrossRefPubMedGoogle Scholar
  4. Bakre MM, Hoi A, Mong JC, Koh YY, Wong KY, Stanton LW (2007) Generation of multipotential mesendodermal progenitors from mouse embryonic stem cells via sustained Wnt pathway activation. J Biol Chem 282:31703–31712. doi: 10.1074/jbc.M704287200 CrossRefPubMedGoogle Scholar
  5. Barta T et al (2010) Human embryonic stem cells are capable of executing G1/S checkpoint activation. Stem Cells 28:1143–1152. doi: 10.1002/stem.451 CrossRefPubMedGoogle Scholar
  6. Beattie GM, Lopez AD, Bucay N, Hinton A, Firpo MT, King CC, Hayek A (2005) Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23:489–495. doi: 10.1634/stemcells.2004-0279 CrossRefPubMedGoogle Scholar
  7. Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, Stein GS (2006) Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol 209:883–893. doi: 10.1002/jcp.20776 CrossRefPubMedGoogle Scholar
  8. Becker KA, Stein JL, Lian JB, van Wijnen AJ, Stein GS (2007) Establishment of histone gene regulation and cell cycle checkpoint control in human embryonic stem cells. J Cell Physiol 210:517–526. doi: 10.1002/jcp.20903 CrossRefPubMedGoogle Scholar
  9. Bendall SC et al (2007) IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448:1015–1021. doi: 10.1038/nature06027 CrossRefPubMedGoogle Scholar
  10. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277. doi: 10.1038/nrc3034 CrossRefPubMedGoogle Scholar
  11. Ben-David U et al (2013) Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 12:167–179. doi: 10.1016/j.stem.2012.11.015 CrossRefGoogle Scholar
  12. Bertero A et al (2015) Activin/nodal signaling and NANOG orchestrate human embryonic stem cell fate decisions by controlling the H3K4me3 chromatin mark. Genes Dev 29:702–717. doi: 10.1101/gad.255984.114 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Blum B, Benvenisty N (2009) The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle 8:3822–3830. doi: 10.4161/cc.8.23.10067 CrossRefPubMedGoogle Scholar
  14. Bock C et al (2011) Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144:439–452. doi: 10.1016/j.cell.2010.12.032 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brons IG et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195. doi: 10.1038/nature05950 CrossRefPubMedGoogle Scholar
  16. Caxaria S, Arthold S, Nathwani AC, Goh PA (2016) Generation of integration-free patient specific iPS cells using episomal plasmids under feeder free conditions. Methods Mol Biol 1353:355–366. doi: 10.1007/7651_2015_204 CrossRefPubMedGoogle Scholar
  17. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655CrossRefGoogle Scholar
  18. Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9:730–736. doi: 10.1038/nrm2453 CrossRefPubMedGoogle Scholar
  19. Chen X et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117. doi: 10.1016/j.cell.2008.04.043 CrossRefPubMedGoogle Scholar
  20. Chen G, Hou Z, Gulbranson DR, Thomson JA (2010) Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell 7:240–248. doi: 10.1016/j.stem.2010.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Chen G, Gulbranson DR, Yu P, Hou Z, Thomson JA (2012) Thermal stability of fibroblast growth factor protein is a determinant factor in regulating self-renewal, differentiation, and reprogramming in human pluripotent stem cells. Stem Cells 30:623–630. doi: 10.1002/stem.1021 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Choo AB et al (2008) Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26:1454–1463. doi: 10.1634/stemcells.2007-0576 CrossRefPubMedGoogle Scholar
  23. Chung S et al (2006) Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J Neurochem 97:1467–1480. doi: 10.1111/j.1471-4159.2006.03841.x CrossRefPubMedPubMedCentralGoogle Scholar
  24. Conklin JF, Baker J, Sage J (2012) The RB family is required for the self-renewal and survival of human embryonic stem cells. Nat Commun 3:1244. doi: 10.1038/ncomms2254 CrossRefPubMedGoogle Scholar
  25. Dailey L, Basilico C (2001) Coevolution of HMG domains and homeodomains and the generation of transcriptional regulation by Sox/POU complexes. J Cell Physiol 186:315–328. doi: 10.1002/1097-4652(2001)9999:9999<000:AID-JCP1046>3.0.CO;2-Y CrossRefPubMedGoogle Scholar
  26. Damjanov I, Andrews PW (2007) The terminology of teratocarcinomas and teratomas. Nat Biotechnol 25:1212. doi: 10.1038/nbt1107-1212a (discussion 1212) CrossRefPubMedGoogle Scholar
  27. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541. doi: 10.1038/nbt1163 CrossRefPubMedGoogle Scholar
  28. Dannenmann B et al (2015) High glutathione and glutathione peroxidase-2 levels mediate cell-type-specific DNA damage protection in human induced pluripotent stem cells. Stem Cell Rep 4:886–898. doi: 10.1016/j.stemcr.2015.04.004 CrossRefGoogle Scholar
  29. De Los Angeles A et al (2015) Hallmarks of pluripotency. Nature 525:469–478. doi: 10.1038/nature15515 CrossRefPubMedGoogle Scholar
  30. Dimmeler S, Ding S, Rando TA, Trounson A (2014) Translational strategies and challenges in regenerative medicine. Nat Med 20:814–821. doi: 10.1038/nm.3627 CrossRefPubMedGoogle Scholar
  31. Dubois NC et al (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29:1011–1018. doi: 10.1038/nbt.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Dumitru R, Gama V, Fagan BM, Bower JJ, Swahari V, Pevny LH, Deshmukh M (2012) Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis. Mol Cell 46:573–583. doi: 10.1016/j.molcel.2012.04.002 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Eastham AM, Spencer H, Soncin F, Ritson S, Merry CL, Stern PL, Ward CM (2007) Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res 67:11254–11262. doi: 10.1158/0008-5472.CAN-07-2253 CrossRefPubMedGoogle Scholar
  34. Ebert AD, Liang P, Wu JC (2012) Induced pluripotent stem cells as a disease modeling and drug screening platform. J Cardiovasc Pharmacol 60:408–416. doi: 10.1097/FJC.0b013e318247f642 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Eiges R, Schuldiner M, Drukker M, Yanuka O, Itskovitz-Eldor J, Benvenisty N (2001) Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol 11:514–518CrossRefGoogle Scholar
  36. Eiselleova L et al (2009) A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells. Stem Cells 27:1847–1857. doi: 10.1002/stem.128 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Fan J, Robert C, Jang YY, Liu H, Sharkis S, Baylin SB, Rassool FV (2011) Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining. Mutat Res 713:8–17. doi: 10.1016/j.mrfmmm.2011.05.018 CrossRefPubMedGoogle Scholar
  38. Filion TM et al (2009) Survival responses of human embryonic stem cells to DNA damage. J Cell Physiol 220:586–592. doi: 10.1002/jcp.21735 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Filipczyk AA, Laslett AL, Mummery C, Pera MF (2007) Differentiation is coupled to changes in the cell cycle regulatory apparatus of human embryonic stem cells. Stem Cell Res 1:45–60. doi: 10.1016/j.scr.2007.09.002 CrossRefPubMedGoogle Scholar
  40. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362CrossRefGoogle Scholar
  41. Garcia CP, Videla Richardson GA, Romorini L, Miriuka SG, Sevlever GE, Scassa ME (2014) Topoisomerase I inhibitor, camptothecin, induces apoptogenic signaling in human embryonic stem cells. Stem Cell Res 12:400–414. doi: 10.1016/j.scr.2013.12.002 CrossRefPubMedGoogle Scholar
  42. Ghule PN et al (2011) Reprogramming the pluripotent cell cycle: restoration of an abbreviated G1 phase in human induced pluripotent stem (iPS) cells. J Cell Physiol 226:1149–1156. doi: 10.1002/jcp.22440 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Goke J, Chan YS, Yan J, Vingron M, Ng HH (2013) Genome-wide kinase-chromatin interactions reveal the regulatory network of ERK signaling in human embryonic stem cells. Mol Cell 50:844–855. doi: 10.1016/j.molcel.2013.04.030 CrossRefPubMedGoogle Scholar
  44. Gonzales KA et al (2015) Deterministic restriction on pluripotent state dissolution by cell-cycle pathways. Cell 162:564–579. doi: 10.1016/j.cell.2015.07.001 CrossRefPubMedGoogle Scholar
  45. Grandela C, Pera MF, Grimmond SM, Kolle G, Wolvetang EJ (2007) p53 is required for etoposide-induced apoptosis of human embryonic stem cells. Stem Cell Res 1:116–128. doi: 10.1016/j.scr.2007.10.003 CrossRefPubMedGoogle Scholar
  46. Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458:1127–1130. doi: 10.1038/nature07986 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Gropp M et al (2012) Standardization of the teratoma assay for analysis of pluripotency of human ES cells and biosafety of their differentiated progeny. PLoS ONE 7:e45532. doi: 10.1371/journal.pone.0045532 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hara A, Aoki H, Taguchi A, Niwa M, Yamada Y, Kunisada T, Mori H (2008) Neuron-like differentiation and selective ablation of undifferentiated embryonic stem cells containing suicide gene with Oct-4 promoter. Stem Cells Dev 17:619–627. doi: 10.1089/scd.2007.0235 CrossRefPubMedGoogle Scholar
  49. Haston KM, Finkbeiner S (2016) Clinical trials in a dish: the potential of pluripotent stem cells to develop therapies for neurodegenerative diseases. Annu Rev Pharmacol Toxicol 56:489–510. doi: 10.1146/annurev-pharmtox-010715-103548 CrossRefPubMedGoogle Scholar
  50. Hay DC, Sutherland L, Clark J, Burdon T (2004) Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22:225–235. doi: 10.1634/stemcells.22-2-225 CrossRefPubMedGoogle Scholar
  51. Hentze H, Graichen R, Colman A (2007) Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol 25:24–32. doi: 10.1016/j.tibtech.2006.10.010 CrossRefPubMedGoogle Scholar
  52. Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2:198–210. doi: 10.1016/j.scr.2009.02.002 CrossRefPubMedGoogle Scholar
  53. Ho L et al (2015) ELABELA is an endogenous growth factor that sustains hESC self-renewal via the PI3K/AKT pathway. Cell Stem Cell 17:435–447. doi: 10.1016/j.stem.2015.08.010 CrossRefPubMedGoogle Scholar
  54. Hou P et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654. doi: 10.1126/science.1239278 CrossRefPubMedGoogle Scholar
  55. Huang G, Ye S, Zhou X, Liu D, Ying QL (2015) Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci 72:1741–1757. doi: 10.1007/s00018-015-1833-2 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Huber I et al (2007) Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J 21:2551–2563. doi: 10.1096/fj.05-5711com CrossRefPubMedGoogle Scholar
  57. International Stem Cell Banking I (2009) Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. Stem Cell Rev 5:301–314. doi: 10.1007/s12015-009-9085-x CrossRefGoogle Scholar
  58. Itoh F, Watabe T, Miyazono K (2014) Roles of TGF-beta family signals in the fate determination of pluripotent stem cells. Semin Cell Dev Biol 32:98–106. doi: 10.1016/j.semcdb.2014.05.017 CrossRefPubMedGoogle Scholar
  59. Itskovitz-Eldor J et al (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95CrossRefGoogle Scholar
  60. Jia F et al (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199. doi: 10.1038/nmeth.1426 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kajabadi NS et al (2015) The synergistic enhancement of cloning efficiency in individualized human pluripotent stem cells by peroxisome proliferative-activated receptor-gamma (PPARgamma) activation and rho-associated kinase (ROCK) inhibition. J Biol Chem 290:26303–26313. doi: 10.1074/jbc.M114.624841 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775. doi: 10.1038/nature07864 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119:1420–1428. doi: 10.1172/JCI39104 CrossRefPubMedGoogle Scholar
  64. Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061. doi: 10.1016/j.cell.2008.02.039 CrossRefPubMedGoogle Scholar
  65. Kim D et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476. doi: 10.1016/j.stem.2009.05.005 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kim YS, Yi BR, Kim NH, Choi KC (2014) Role of the epithelial-mesenchymal transition and its effects on embryonic stem cells. Exp Mol Med 46:e108. doi: 10.1038/emm.2014.44 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschlager M, Dolznig H (2012) In vitro cell migration and invasion assays. Mutat Res. doi: 10.1016/j.mrrev.2012.08.001 CrossRefPubMedGoogle Scholar
  68. Kuhl SJ, Kuhl M (2013) On the role of Wnt/beta-catenin signaling in stem cells. Biochim Biophys Acta 1830:2297–2306. doi: 10.1016/j.bbagen.2012.08.010 CrossRefPubMedGoogle Scholar
  69. Lam MT, Longaker MT (2012) Comparison of several attachment methods for human iPS, embryonic and adipose-derived stem cells for tissue engineering. J Tissue Eng Regen Med 6(Suppl 3):s80–s86. doi: 10.1002/term.1499 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV (2014) Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol 25:1211–1225. doi: 10.1681/ASN.2013080831 CrossRefPubMedGoogle Scholar
  71. Lanner F, Rossant J (2010) The role of FGF/Erk signaling in pluripotent cells. Development 137:3351–3360. doi: 10.1242/dev.050146 CrossRefPubMedGoogle Scholar
  72. Laustriat D, Gide J, Peschanski M (2010) Human pluripotent stem cells in drug discovery and predictive toxicology. Biochem Soc Trans 38:1051–1057. doi: 10.1042/bst0381051 CrossRefPubMedGoogle Scholar
  73. Lee MO et al (2013) Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci USA 110:E3281–E3290. doi: 10.1073/pnas.1303669110 CrossRefPubMedGoogle Scholar
  74. Lee N et al (2014) Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system. Mol Cells 37:497–502. doi: 10.14348/molcells.2014.0137 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Lefort N, Perrier AL, Laabi Y, Varela C, Peschanski M (2009) Human embryonic stem cells and genomic instability. Regen Med 4:899–909. doi: 10.2217/rme.09.63 CrossRefPubMedGoogle Scholar
  76. Li W, Xiang AP (2013) Safeguarding clinical translation of pluripotent stem cells with suicide genes. Organogenesis 9:34–39. doi: 10.4161/org.24317 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Liedtke S, Stephan M, Kogler G (2008) Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research. Biol Chem 389:845–850. doi: 10.1515/BC.2008.098 CrossRefPubMedGoogle Scholar
  78. Lindsley RC, Gill JG, Kyba M, Murphy TL, Murphy KM (2006) Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development 133:3787–3796. doi: 10.1242/dev.02551 CrossRefPubMedGoogle Scholar
  79. Liu JC et al (2013) High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. Cell Stem Cell 13:483–491. doi: 10.1016/j.stem.2013.07.018 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Liu JC, Lerou PH, Lahav G (2014) Stem cells: balancing resistance and sensitivity to DNA damage. Trends Cell Biol 24:268–274. doi: 10.1016/j.tcb.2014.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lobrich M et al (2010) gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9:662–669. doi: 10.4161/cc.9.4.10764 CrossRefPubMedGoogle Scholar
  82. Lowell S, Benchoua A, Heavey B, Smith AG (2006) Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol 4:e121. doi: 10.1371/journal.pbio.0040121 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA (2006) Feeder-independent culture of human embryonic stem cells. Nat Methods 3:637–646. doi: 10.1038/nmeth902 CrossRefPubMedGoogle Scholar
  84. Luo LZ et al (2012) DNA repair in human pluripotent stem cells is distinct from that in non-pluripotent human cells. PLoS ONE 7:e30541. doi: 10.1371/journal.pone.0030541 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Maeda M, Johnson KR, Wheelock MJ (2005) Cadherin switching: essential for behavioral but not morphological changes during an epithelium-to-mesenchyme transition. J Cell Sci 118:873–887. doi: 10.1242/jcs.01634 CrossRefPubMedGoogle Scholar
  86. Martin M, Terradas M, Tusell L, Genesca A (2012) ATM and DNA-PKcs make a complementary couple in DNA double strand break repair. Mutat Res. doi: 10.1016/j.mrrev.2011.12.006 CrossRefPubMedGoogle Scholar
  87. Maynard S et al (2008) Human embryonic stem cells have enhanced repair of multiple forms of DNA damage. Stem Cells 26:2266–2274. doi: 10.1634/stemcells.2007-1041 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Mitsui K et al (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642CrossRefGoogle Scholar
  89. Mitsumoto H, Brooks BR, Silani V (2014) Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol 13:1127–1138. doi: 10.1016/S1474-4422(14)70129-2 CrossRefPubMedGoogle Scholar
  90. Momcilovic O, Choi S, Varum S, Bakkenist C, Schatten G, Navara C (2009) Ionizing radiation induces ataxia telangiectasia mutated-dependent checkpoint signaling and G(2) but not G(1) cell cycle arrest in pluripotent human embryonic stem cells. Stem Cells 27:1822–1835. doi: 10.1002/stem.123 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Momcilovic O, Knobloch L, Fornsaglio J, Varum S, Easley C, Schatten G (2010) DNA damage responses in human induced pluripotent stem cells and embryonic stem cells. PLoS ONE 5:e13410. doi: 10.1371/journal.pone.0013410 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Mullard A (2015) Stem-cell discovery platforms yield first clinical candidates. Nat Rev Drug Discov 14:589–591. doi: 10.1038/nrd4708 CrossRefPubMedGoogle Scholar
  93. Mullin R (2014) Tufts study finds big rise in cost of drug development. Chem Eng News. Accessed May 2016
  94. Neganova I, Zhang X, Atkinson S, Lako M (2009) Expression and functional analysis of G1 to S regulatory components reveals an important role for CDK2 in cell cycle regulation in human embryonic stem cells. Oncogene 28:20–30. doi: 10.1038/onc.2008.358 CrossRefPubMedGoogle Scholar
  95. Neganova I et al (2011) An important role for CDK2 in G1 to S checkpoint activation and DNA damage response in human embryonic stem cells. Stem Cells 29:651–659. doi: 10.1002/stem.620 CrossRefPubMedGoogle Scholar
  96. Ng HH, Surani MA (2011) The transcriptional and signalling networks of pluripotency. Nat Cell Biol 13:490–496. doi: 10.1038/ncb0511-490 CrossRefPubMedGoogle Scholar
  97. Nichols J et al (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391CrossRefGoogle Scholar
  98. Nieto MA (2011) The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 27:347–376. doi: 10.1146/annurev-cellbio-092910-154036 CrossRefPubMedGoogle Scholar
  99. Nishimura K et al (2011) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286:4760–4771. doi: 10.1074/jbc.M110.183780 CrossRefPubMedGoogle Scholar
  100. Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376. doi: 10.1038/74199 CrossRefPubMedGoogle Scholar
  101. Ohgushi M et al (2010) Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell 7:225–239. doi: 10.1016/j.stem.2010.06.018 CrossRefPubMedGoogle Scholar
  102. Ohgushi M, Minaguchi M, Sasai Y (2015) Rho-signaling-directed YAP/TAZ activity underlies the long-term survival and expansion of human embryonic stem cells. Cell Stem Cell 17:448–461. doi: 10.1016/j.stem.2015.07.009 CrossRefPubMedGoogle Scholar
  103. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317. doi: 10.1038/nature05934 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953. doi: 10.1126/science.1164270 CrossRefPubMedGoogle Scholar
  105. Osafune K et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313–315. doi: 10.1038/nbt1383 CrossRefPubMedGoogle Scholar
  106. Pauklin S, Vallier L (2013) The cell-cycle state of stem cells determines cell fate propensity. Cell 155:135–147. doi: 10.1016/j.cell.2013.08.031 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Pauklin S, Vallier L (2015) Activin/Nodal signalling in stem cells. Development 142:607–619. doi: 10.1242/dev.091769 CrossRefPubMedGoogle Scholar
  108. Pauklin S, Madrigal P, Bertero A, Vallier L (2016) Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D. Genes Dev 30:421–433. doi: 10.1101/gad.271452.115 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415–428. doi: 10.1038/nrc2131 CrossRefPubMedGoogle Scholar
  110. Peterson SE, Loring JF (2014) Genomic instability in pluripotent stem cells: implications for clinical applications. J Biol Chem 289:4578–4584. doi: 10.1074/jbc.R113.516419 CrossRefPubMedGoogle Scholar
  111. Prokhorova TA, Harkness LM, Frandsen U, Ditzel N, Schroder HD, Burns JS, Kassem M (2009) Teratoma formation by human embryonic stem cells is site dependent and enhanced by the presence of Matrigel. Stem Cells Dev 18:47–54. doi: 10.1089/scd.2007.0266 CrossRefPubMedGoogle Scholar
  112. Qin H et al (2007) Regulation of apoptosis and differentiation by p53 in human embryonic stem cells. J Biol Chem 282:5842–5852. doi: 10.1074/jbc.M610464200 CrossRefPubMedGoogle Scholar
  113. Richards M et al (2014) A new class of pluripotent stem cell cytotoxic small molecules. PLoS ONE 9:e85039. doi: 10.1371/journal.pone.0085039 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Richter A et al (2014) BMP4 promotes EMT and mesodermal commitment in human embryonic stem cells via SLUG and MSX2. Stem Cells 32:636–648. doi: 10.1002/stem.1592 CrossRefPubMedGoogle Scholar
  115. Ritner C et al (2011) An engineered cardiac reporter cell line identifies human embryonic stem cell-derived myocardial precursors. PLoS ONE 6:e16004. doi: 10.1371/journal.pone.0016004 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Rizzino A (2013) Concise review: the Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 31:1033–1039. doi: 10.1002/stem.1352 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Rong Z, Fu X, Wang M, Xu Y (2012) A scalable approach to prevent teratoma formation of human embryonic stem cells. J Biol Chem 287:32338–32345. doi: 10.1074/jbc.M112.383810 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Rosler ES, Fisk GJ, Ares X, Irving J, Miura T, Rao MS, Carpenter MK (2004) Long-term culture of human embryonic stem cells in feeder-free conditions. Dev Dyn 229:259–274. doi: 10.1002/dvdy.10430 CrossRefPubMedGoogle Scholar
  119. Rosner M, Schipany K, Hengstschlager M (2014) The decision on the “optimal” human pluripotent stem cell. Stem Cells Transl Med 3:553–559. doi: 10.5966/sctm.2013-0194 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Sanz-Moreno V et al (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135:510–523. doi: 10.1016/j.cell.2008.09.043 CrossRefPubMedGoogle Scholar
  121. Sartipy P, Bjorquist P (2011) Concise review: human pluripotent stem cell-based models for cardiac and hepatic toxicity assessment. Stem Cells 29:744–748. doi: 10.1002/stem.631 CrossRefPubMedGoogle Scholar
  122. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63. doi: 10.1038/nm979 CrossRefPubMedGoogle Scholar
  123. Schuldiner M, Itskovitz-Eldor J, Benvenisty N (2003) Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 21:257–265. doi: 10.1634/stemcells.21-3-257 CrossRefPubMedGoogle Scholar
  124. Sherbert G (2011) Growth factors and their receptors in cell differentiation, cancer and cancer therapy. Elsevier, AmsterdamGoogle Scholar
  125. Singh AM, Dalton S (2009) The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell 5:141–149. doi: 10.1016/j.stem.2009.07.003 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Singh VK, Kalsan M, Kumar N, Saini A, Chandra R (2015) Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 3:2. doi: 10.3389/fcell.2015.00002 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Singla DK, Schneider DJ, LeWinter MM, Sobel BE (2006) wnt3a but not wnt11 supports self-renewal of embryonic stem cells. Biochem Biophys Res Commun 345:789–795. doi: 10.1016/j.bbrc.2006.04.125 CrossRefPubMedGoogle Scholar
  128. Solozobova V, Rolletschek A, Blattner C (2009) Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage. BMC Cell Biol 10:46. doi: 10.1186/1471-2121-10-46 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949. doi: 10.1126/science.1162494 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17:183–193. doi: 10.1038/nrm.2016.8 CrossRefPubMedGoogle Scholar
  131. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi: 10.1016/j.cell.2007.11.019 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Tan HL, Fong WJ, Lee EH, Yap M, Choo A (2009) mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis. Stem Cells 27:1792–1801. doi: 10.1002/stem.109 CrossRefPubMedGoogle Scholar
  133. Tang C et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834. doi: 10.1038/nbt.1947 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Tateno H et al (2015) Elimination of tumorigenic human pluripotent stem cells by a recombinant lectin-toxin fusion protein. Stem Cell Rep 4:811–820. doi: 10.1016/j.stemcr.2015.02.016 CrossRefGoogle Scholar
  135. Tesar PJ et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199. doi: 10.1038/nature05972 CrossRefPubMedGoogle Scholar
  136. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890. doi: 10.1016/j.cell.2009.11.007 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147. doi: 10.1126/science.282.5391.1145 CrossRefPubMedGoogle Scholar
  138. Tomizawa M, Shinozaki F, Sugiyama T, Yamamoto S, Sueishi M, Yoshida T (2011) Activin A maintains pluripotency markers and proliferative potential of human induced pluripotent stem cells. Exp Ther Med 2:405–408. doi: 10.3892/etm.2011.219 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Topol A, Tran NN, Brennand KJ (2015) A guide to generating and using hiPSC derived NPCs for the study of neurological diseases. J Vis Exp JoVE. doi: 10.3791/52495 CrossRefPubMedGoogle Scholar
  140. Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17:11–22. doi: 10.1016/j.stem.2015.06.007 CrossRefGoogle Scholar
  141. Ullmann U et al (2007) Epithelial-mesenchymal transition process in human embryonic stem cells cultured in feeder-free conditions. Mol Hum Reprod 13:21–32. doi: 10.1093/molehr/gal091 CrossRefPubMedGoogle Scholar
  142. Ullmann U, Gilles C, De Rycke M, Van de Velde H, Sermon K, Liebaers I (2008) GSK-3-specific inhibitor-supplemented hESC medium prevents the epithelial-mesenchymal transition process and the up-regulation of matrix metalloproteinases in hESCs cultured in feeder-free conditions. Mol Hum Reprod 14:169–179. doi: 10.1093/molehr/gan001 CrossRefPubMedGoogle Scholar
  143. Vallier L, Alexander M, Pedersen RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495–4509. doi: 10.1242/jcs.02553 CrossRefPubMedGoogle Scholar
  144. Vallier L et al (2009) Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development 136:1339–1349. doi: 10.1242/dev.033951 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283. doi: 10.1038/nrm2147 CrossRefPubMedGoogle Scholar
  146. Wang L et al (2007) Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110:4111–4119. doi: 10.1182/blood-2007-03-082586 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Warren L et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630. doi: 10.1016/j.stem.2010.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Watabe T, Miyazono K (2009) Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res 19:103–115. doi: 10.1038/cr.2008.323 CrossRefPubMedGoogle Scholar
  149. Westphal D, Kluck RM, Dewson G (2014) Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 21:196–205. doi: 10.1038/cdd.2013.139 CrossRefPubMedGoogle Scholar
  150. Woltjen K et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770. doi: 10.1038/nature07863 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Wray J, Hartmann C (2012) WNTing embryonic stem cells. Trends Cell Biol 22:159–168. doi: 10.1016/j.tcb.2011.11.004 CrossRefPubMedGoogle Scholar
  152. Wyles SP et al (2014) Inhibition of DNA topoisomerase II selectively reduces the threat of tumorigenicity following induced pluripotent stem cell-based myocardial therapy. Stem Cells Dev 23:2274–2282. doi: 10.1089/scd.2014.0259 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974. doi: 10.1038/nbt1001-971 CrossRefPubMedGoogle Scholar
  154. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185–190. doi: 10.1038/nmeth744 CrossRefPubMedGoogle Scholar
  155. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172. doi: 10.1038/cr.2009.5 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Yang S et al (2008) Tumor progression of culture-adapted human embryonic stem cells during long-term culture. Genes Chromosom Cancer 47:665–679. doi: 10.1002/gcc.20574 CrossRefPubMedGoogle Scholar
  157. Yang L et al (2016) Differentiation of human induced-pluripotent stem cells into smooth-muscle cells: two novel protocols. PLoS ONE 11:e0147155. doi: 10.1371/journal.pone.0147155 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59. doi: 10.1038/nrm2308 CrossRefPubMedGoogle Scholar
  159. Young RA (2011) Control of the embryonic stem cell state. Cell 144:940–954. doi: 10.1016/j.cell.2011.01.032 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Yu CY, Kuo HC (2016) The trans-spliced long noncoding RNA tsRMST impedes human ESC differentiation through WNT5A-mediated inhibition of the epithelial-to-mesenchymal transition. Stem Cells. doi: 10.1002/stem.2386 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801. doi: 10.1126/science.1172482 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363–369. doi: 10.1038/nmeth.1323 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Zaehres H, Lensch MW, Daheron L, Stewart SA, Itskovitz-Eldor J, Daley GQ (2005) High-efficiency RNA interference in human embryonic stem cells. Stem Cells 23:299–305. doi: 10.1634/stemcells.2004-0252 CrossRefPubMedGoogle Scholar
  164. Zhang X et al (2009) A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. J Cell Biol 184:67–82. doi: 10.1083/jcb.200801009 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nina Kramer
    • 1
  • Margit Rosner
    • 1
  • Boris Kovacic
    • 1
  • Markus Hengstschläger
    • 1
    Email author
  1. 1.Institute of Medical GeneticsMedical University of ViennaViennaAustria

Personalised recommendations