Advertisement

Archives of Toxicology

, Volume 90, Issue 7, pp 1585–1604 | Cite as

Antibiotic resistance mechanisms in M. tuberculosis: an update

  • Liem NguyenEmail author
Review Article

Abstract

Treatment of tuberculosis (TB) has been a therapeutic challenge because of not only the naturally high resistance level of Mycobacterium tuberculosis to antibiotics but also the newly acquired mutations that confer further resistance. Currently standardized regimens require patients to daily ingest up to four drugs under direct observation of a healthcare worker for a period of 6–9 months. Although they are quite effective in treating drug susceptible TB, these lengthy treatments often lead to patient non-adherence, which catalyzes for the emergence of M. tuberculosis strains that are increasingly resistant to the few available anti-TB drugs. The rapid evolution of M. tuberculosis, from mono-drug-resistant to multiple drug-resistant, extensively drug-resistant and most recently totally drug-resistant strains, is threatening to make TB once again an untreatable disease if new therapeutic options do not soon become available. Here, I discuss the molecular mechanisms by which M. tuberculosis confers its profound resistance to antibiotics. This knowledge may help in developing novel strategies for weakening drug resistance, thus enhancing the potency of available antibiotics against both drug susceptible and resistant M. tuberculosis strains.

Keywords

Tuberculosis Drug resistance Antibiotic Mycobacterium Mechanism Bactericidal 

Notes

Acknowledgments

Work in the Nguyen laboratory is supported by NIH Grants R01AI087903 and R21AI119287.

References

  1. Adams KN, Takaki K, Connolly LE et al (2011) Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145(1):39–53. doi: 10.1016/j.cell.2011.02.022 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adilakshmi T, Ayling PD, Ratledge C (2000) Mutational analysis of a role for salicylic acid in iron metabolism of Mycobacterium smegmatis. J Bacteriol 182(2):264–271PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ainsa JA, Blokpoel MC, Otal I, Young DB, De Smet KA, Martin C (1998) Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J Bacteriol 180(22):5836–5843PubMedPubMedCentralGoogle Scholar
  4. Alekshun MN, Levy SB (1997) Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother 41(10):2067–2075PubMedPubMedCentralGoogle Scholar
  5. Alexander DC, Ma JH, Guthrie JL, Blair J, Chedore P, Jamieson FB (2012) Gene sequencing for routine verification of pyrazinamide resistance in Mycobacterium tuberculosis: a role for pncA but not rpsA. J Clin Microbiol 50(11):3726–3728. doi: 10.1128/JCM.00620-12 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Andersson DI (2006) The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol 9(5):461–465. doi: 10.1016/j.mib.2006.07.002 PubMedCrossRefGoogle Scholar
  7. Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8(4):260–271. doi: 10.1038/nrmicro2319 PubMedGoogle Scholar
  8. Andersson DI, Levin BR (1999) The biological cost of antibiotic resistance. Curr Opin Microbiol 2(5):489–493PubMedCrossRefGoogle Scholar
  9. Andini N, Nash KA (2006) Intrinsic macrolide resistance of the Mycobacterium tuberculosis complex is inducible. Antimicrob Agents Chemother 50(7):2560–2562. doi: 10.1128/AAC.00264-06 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Andriole VT (2005) The quinolones: past, present, and future. Clin Infect Dis 41(Suppl 2):S113–S119PubMedCrossRefGoogle Scholar
  11. Bamaga M, Wright DJ, Zhang H (2002) Selection of in vitro mutants of pyrazinamide-resistant Mycobacterium tuberculosis. Int J Antimicrob Agents 20(4):275–281PubMedCrossRefGoogle Scholar
  12. Bartek IL, Woolhiser LK, Baughn AD et al (2014) Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence. MBio 5(3):e01106–e01114. doi: 10.1128/mBio.01106-14 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS (1997) Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276(5317):1420–1422PubMedCrossRefGoogle Scholar
  14. Bernheim F (1940) The effect of salicylate on the oxygen uptake of the tubercle bacillus. Science 92(2383):204. doi: 10.1126/science.92.2383.204 PubMedCrossRefGoogle Scholar
  15. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43(3):717–731PubMedCrossRefGoogle Scholar
  16. Birnbaum M, Koch R, Brendecke F (1891) Prof. Koch’s method to cure tuberculosis popularly treated. H.E. Haferkorn, MilwaukeeGoogle Scholar
  17. Boshoff HI, Mizrahi V (2000) Expression of Mycobacterium smegmatis pyrazinamidase in Mycobacterium tuberculosis confers hypersensitivity to pyrazinamide and related amides. J Bacteriol 182(19):5479–5485PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64:29–63PubMedCrossRefGoogle Scholar
  19. Buchmeier NA, Newton GL, Koledin T, Fahey RC (2003) Association of mycothiol with protection of Mycobacterium tuberculosis from toxic oxidants and antibiotics. Mol Microbiol 47(6):1723–1732PubMedCrossRefGoogle Scholar
  20. Burian J, Ramon-Garcia S, Sweet G, Gomez-Velasco A, Av-Gay Y, Thompson CJ (2012) The mycobacterial transcriptional regulator whiB7 gene links redox homeostasis and intrinsic antibiotic resistance. J Biol Chem 287(1):299–310. doi: 10.1074/jbc.M111.302588 PubMedCrossRefGoogle Scholar
  21. Burian J, Yim G, Hsing M et al (2013) The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV). Nucleic Acids Res 41(22):10062–10076. doi: 10.1093/nar/gkt751 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Buriankova K, Doucet-Populaire F, Dorson O et al (2004) Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother 48(1):143–150PubMedPubMedCentralCrossRefGoogle Scholar
  23. Campbell PJ, Morlock GP, Sikes RD et al (2011) Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother 55(5):2032–2041. doi: 10.1128/AAC.01550-10 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chakraborty S, Gruber T, Barry CE 3rd, Boshoff HI, Rhee KY (2013) Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science 339(6115):88–91. doi: 10.1126/science.1228980 PubMedCrossRefGoogle Scholar
  25. Chambers HF, Moreau D, Yajko D et al (1995) Can penicillins and other β-lactam antibiotics be used to treat tuberculosis? Antimicrob Agents Chemother 39(12):2620–2624PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chao J, Wong D, Zheng X et al (2010) Protein kinase and phosphatase signaling in Mycobacterium tuberculosis physiology and pathogenesis. Biochim Biophys Acta 1804(3):620–627. doi: 10.1016/j.bbapap.2009.09.008 PubMedCrossRefGoogle Scholar
  27. Chen W, Biswas T, Porter VR, Tsodikov OV, Garneau-Tsodikova S (2011) Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. Proc Natl Acad Sci USA 108(24):9804–9808. doi: 10.1073/pnas.1105379108 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Colangeli R, Helb D, Sridharan S et al (2005) The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol Microbiol 55(6):1829–1840PubMedCrossRefGoogle Scholar
  29. Colangeli R, Helb D, Vilcheze C et al (2007) Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog 3(6):e87PubMedPubMedCentralCrossRefGoogle Scholar
  30. Colangeli R, Haq A, Arcus VL et al (2009) The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc Natl Acad Sci USA 106(11):4414–4418. doi: 10.1073/pnas.0810126106 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Comas I, Borrell S, Roetzer A et al (2012) Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44(1):106–110. doi: 10.1038/ng.1038 CrossRefGoogle Scholar
  32. Corbett EL, Watt CJ, Walker N et al (2003) The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163(9):1009–1021. doi: 10.1001/archinte.163.9.1009 PubMedCrossRefGoogle Scholar
  33. D’Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311(5759):374–377. doi: 10.1126/science.1120800 PubMedCrossRefGoogle Scholar
  34. D’Costa VM, King CE, Kalan L et al (2011) Antibiotic resistance is ancient. Nature 477(7365):457–461. doi: 10.1038/nature10388 PubMedCrossRefGoogle Scholar
  35. da Silva PE, Von Groll A, Martin A, Palomino JC (2011) Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol 63(1):1–9. doi: 10.1111/j.1574-695X.2011.00831.x PubMedCrossRefGoogle Scholar
  36. Danilchanka O, Pavlenok M, Niederweis M (2008) Role of porins for uptake of antibiotics by Mycobacterium smegmatis. Antimicrob Agents Chemother 52(9):3127–3134. doi: 10.1128/AAC.00239-08 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Darzins E (1958) The bacteriology of tuberculosis. University of Minnesota Press, Minneapolis, pp 99–114Google Scholar
  38. De Voss JJ, Rutter K, Schroeder BG, Su H, Zhu Y, Barry CE 3rd (2000) The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci USA 97(3):1252–1257PubMedPubMedCentralCrossRefGoogle Scholar
  39. Demple B (2005) The nexus of oxidative stress responses and antibiotic resistance mechanisms in Escherichia coli and Salmonella. In: White DG, Alekshun MN, McDermott PF, Levy SB (eds) Frontiers in antimicrobial resistance: a tribute to Stuart B Levy. American Society for Microbiology, Washington, pp 191–197CrossRefGoogle Scholar
  40. Dhar N, McKinney JD (2010) Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc Natl Acad Sci USA 107(27):12275–12280. doi: 10.1073/pnas.1003219107 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dorman SE, Chaisson RE (2007) From magic bullets back to the magic mountain: the rise of extensively drug-resistant tuberculosis. Nat Med 13(3):295–298. doi: 10.1038/nm0307-295 PubMedCrossRefGoogle Scholar
  42. Duncan K, Barry CE 3rd (2004) Prospects for new antitubercular drugs. Curr Opin Microbiol 7(5):460–465PubMedCrossRefGoogle Scholar
  43. Engstrom A, Perskvist N, Werngren J, Hoffner SE, Jureen P (2011) Comparison of clinical isolates and in vitro selected mutants reveals that tlyA is not a sensitive genetic marker for capreomycin resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 66(6):1247–1254. doi: 10.1093/jac/dkr109 PubMedCrossRefGoogle Scholar
  44. Ferber D (2005) Biochemistry. Protein that mimics DNA helps tuberculosis bacteria resist antibiotics. Science 308(5727):1393PubMedCrossRefGoogle Scholar
  45. Flores AR, Parsons LM, Pavelka MS Jr (2005) Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to β-lactam antibiotics. Microbiology 151(Pt 2):521–532PubMedCrossRefGoogle Scholar
  46. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJ (2006) The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312(5782):1944–1946. doi: 10.1126/science.1124410 PubMedCrossRefGoogle Scholar
  47. Gao LY, Laval F, Lawson EH et al (2003) Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49(6):1547–1563PubMedCrossRefGoogle Scholar
  48. Garton NJ, Waddell SJ, Sherratt AL et al (2008) Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5(4):e75. doi: 10.1371/journal.pmed.0050075 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gengenbacher M, Kaufmann SH (2012) Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev 36(3):514–532. doi: 10.1111/j.1574-6976.2012.00331.x PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gillespie SH, Billington OJ, Breathnach A, McHugh TD (2002) Multiple drug-resistant Mycobacterium tuberculosis: evidence for changing fitness following passage through human hosts. Microb Drug Resist 8(4):273–279. doi: 10.1089/10766290260469534 PubMedCrossRefGoogle Scholar
  51. Gomez JE, McKinney JD (2004) M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis 84(1–2):29–44PubMedCrossRefGoogle Scholar
  52. Han JS, Lee JJ, Anandan T et al (2010) Characterization of a chromosomal toxin–antitoxin, Rv1102c–Rv1103c system in Mycobacterium tuberculosis. Biochem Biophys Res Commun 400(3):293–298. doi: 10.1016/j.bbrc.2010.08.023 PubMedCrossRefGoogle Scholar
  53. Hansen S, Lewis K, Vulic M (2008) Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52(8):2718–2726. doi: 10.1128/AAC.00144-08 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hedgecock LW (1958) Mechanisms involved in the resistance of Mycobacterium tuberculosis to para-aminosalicylic acid. J Bacteriol 75(3):345–350PubMedPubMedCentralGoogle Scholar
  55. Hegde SS, Vetting MW, Roderick SL et al (2005) A fluoroquinolone resistance protein from Mycobacterium tuberculosis that mimics DNA. Science 308(5727):1480–1483PubMedCrossRefGoogle Scholar
  56. Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66(3):373–395PubMedPubMedCentralCrossRefGoogle Scholar
  57. Henry RJ (1943) The mode of action of sulfonamides. Bacteriol Rev 7(4):175–262PubMedPubMedCentralGoogle Scholar
  58. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci USA 105(10):3963–3967. doi: 10.1073/pnas.0709530105 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Houghton JL, Green KD, Pricer RE, Mayhoub AS, Garneau-Tsodikova S (2013) Unexpected N-acetylation of capreomycin by mycobacterial Eis enzymes. J Antimicrob Chemother 68(4):800–805. doi: 10.1093/jac/dks497 PubMedCrossRefGoogle Scholar
  60. Huang WL, Chi TL, Wu MH, Jou R (2011) Performance assessment of the GenoType MTBDRsl test and DNA sequencing for detection of second-line and ethambutol drug resistance among patients infected with multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol 49(7):2502–2508. doi: 10.1128/JCM.00197-11 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hugonnet JE, Blanchard JS (2007) Irreversible inhibition of the Mycobacterium tuberculosis β-lactamase by clavulanate. Biochemistry 46(43):11998–12004. doi: 10.1021/bi701506h PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ito K, Yamamoto K, Kawanishi S (1992) Manganese-mediated oxidative damage of cellular and isolated DNA by isoniazid and related hydrazines: non-Fenton-type hydroxyl radical formation. Biochemistry 31(46):11606–11613PubMedCrossRefGoogle Scholar
  63. Ivanovics G (1949) Antagonism between effects of p-aminosalicylic acid and salicylic acid on growth on M. tuberculosis. Proc Soc Exp Biol Med Soc Exp Biol Med 70(3):462CrossRefGoogle Scholar
  64. Jarlier V, Gutmann L, Nikaido H (1991) Interplay of cell wall barrier and β-lactamase activity determines high resistance to β-lactam antibiotics in Mycobacterium chelonae. Antimicrob Agents Chemother 35(9):1937–1939PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jindani A, Aber VR, Edwards EA, Mitchison DA (1980) The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am Rev Respir Dis 121(6):939–949. doi: 10.1164/arrd.1980.121.6.939 PubMedGoogle Scholar
  66. Johansen SK, Maus CE, Plikaytis BB, Douthwaite S (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol Cell 23(2):173–182. doi: 10.1016/j.molcel.2006.05.044 PubMedCrossRefGoogle Scholar
  67. Kasik JE (1979) Mycobacterial β-Lactamases. In: Hamilton-Miller JMT, Smith JT (eds) β-Lactamases. Academic Press, London, p 500Google Scholar
  68. Kasik JE, Peacham L (1968) Properties of β-lactamases produced by three species of mycobacteria. Biochem J 107(5):675–682PubMedPubMedCentralCrossRefGoogle Scholar
  69. Keiler KC (2008) Biology of trans-translation. Annu Rev Microbiol 62:133–151. doi: 10.1146/annurev.micro.62.081307.162948 PubMedCrossRefGoogle Scholar
  70. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186(24):8172–8180. doi: 10.1128/JB.186.24.8172-8180.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Keren I, Minami S, Rubin E, Lewis K (2011) Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio 2(3):e00100–e00111. doi: 10.1128/mBio.00100-11 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kim KH, An DR, Song J et al (2012) Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc Natl Acad Sci USA 109(20):7729–7734. doi: 10.1073/pnas.1120251109 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810. doi: 10.1016/j.cell.2007.06.049 PubMedCrossRefGoogle Scholar
  74. Kohanski MA, DePristo MA, Collins JJ (2010a) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37(3):311–320. doi: 10.1016/j.molcel.2010.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kohanski MA, Dwyer DJ, Collins JJ (2010b) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8(6):423–435. doi: 10.1038/nrmicro2333 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lehmann J (1946) Para-aminosalicylic acid in the treatment of tuberculosis. Lancet 1(6384):15PubMedCrossRefGoogle Scholar
  77. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131PubMedGoogle Scholar
  78. Li Y, Zhang Y (2007) PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother 51(6):2092–2099. doi: 10.1128/AAC.00052-07 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liu J, Nikaido H (1999) A mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids accumulates meromycolates. Proc Natl Acad Sci USA 96(7):4011–4016PubMedPubMedCentralCrossRefGoogle Scholar
  80. Liu J, Rosenberg EY, Nikaido H (1995) Fluidity of the lipid domain of cell wall from Mycobacterium chelonae. Proc Natl Acad Sci USA 92(24):11254–11258PubMedPubMedCentralCrossRefGoogle Scholar
  81. Madsen CT, Jakobsen L, Buriankova K, Doucet-Populaire F, Pernodet JL, Douthwaite S (2005) Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis. J Biol Chem 280(47):38942–38947. doi: 10.1074/jbc.M505727200 PubMedCrossRefGoogle Scholar
  82. Mathys V, Wintjens R, Lefevre P et al (2009) Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 53(5):2100–2109. doi: 10.1128/AAC.01197-08 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Maus CE, Plikaytis BB, Shinnick TM (2005) Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49(2):571–577. doi: 10.1128/AAC.49.2.571-577.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  84. McCune RM Jr, Tompsett R (1956) Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J Exp Med 104(5):737–762PubMedPubMedCentralCrossRefGoogle Scholar
  85. McCune RM Jr, McDermott W, Tompsett R (1956) The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med 104(5):763–802PubMedPubMedCentralCrossRefGoogle Scholar
  86. McKenzie JL, Robson J, Berney M et al (2012) A VapBC toxin–antitoxin module is a posttranscriptional regulator of metabolic flux in mycobacteria. J Bacteriol 194(9):2189–2204. doi: 10.1128/JB.06790-11 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Michele TM, Ko C, Bishai WR (1999) Exposure to antibiotics induces expression of the Mycobacterium tuberculosis sigF gene: implications for chemotherapy against mycobacterial persistors. Antimicrob Agents Chemother 43(2):218–225PubMedPubMedCentralGoogle Scholar
  88. Montero C, Mateu G, Rodriguez R, Takiff H (2001) Intrinsic resistance of Mycobacterium smegmatis to fluoroquinolones may be influenced by new pentapeptide protein MfpA. Antimicrob Agents Chemother 45(12):3387–3392PubMedPubMedCentralCrossRefGoogle Scholar
  89. Morais Cabral JH, Jackson AP, Smith CV, Shikotra N, Maxwell A, Liddington RC (1997) Crystal structure of the breakage-reunion domain of DNA gyrase. Nature 388(6645):903–906PubMedCrossRefGoogle Scholar
  90. Morris RP, Nguyen L, Gatfield J et al (2005) Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 102(34):12200–12205PubMedPubMedCentralCrossRefGoogle Scholar
  91. Myers A (1963) Can tuberculosis be eradicated? Chest 43:327–329Google Scholar
  92. Nagachar N, Ratledge C (2010) Knocking out salicylate biosynthesis genes in Mycobacterium smegmatis induces hypersensitivity to p-aminosalicylate (PAS). FEMS Microbiol Lett 311(2):193–199. doi: 10.1111/j.1574-6968.2010.02091.x PubMedCrossRefGoogle Scholar
  93. Nampoothiri KM, Rubex R, Patel AK et al (2008) Molecular cloning, overexpression and biochemical characterization of hypothetical β-lactamases of Mycobacterium tuberculosis H37Rv. J Appl Microbiol 105(1):59–67. doi: 10.1111/j.1365-2672.2007.03721.x PubMedCrossRefGoogle Scholar
  94. Nash KA (2003) Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38). Antimicrob Agents Chemother 47(10):3053–3060PubMedPubMedCentralCrossRefGoogle Scholar
  95. Nash KA, Zhang Y, Brown-Elliott BA, Wallace RJ Jr (2005) Molecular basis of intrinsic macrolide resistance in clinical isolates of Mycobacterium fortuitum. J Antimicrob Chemother 55(2):170–177PubMedCrossRefGoogle Scholar
  96. Nguyen L (2012) Targeting antibiotic resistance mechanisms in Mycobacterium tuberculosis: recharging the old magic bullets. Expert Rev Anti Infect Ther. 10(9):963–965. doi: 10.1586/eri.12.85 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Nguyen L (2015) Microbes Cause Disease. In: Trefil J (ed) Discoveries in modern science: exploration, invention, technology, vol 2. Macmillan Reference USA, Farmington Hills, pp 695–699Google Scholar
  98. Nguyen L, Jacobs MR (2012) Counterattacking drug-resistant tuberculosis: molecular strategies and future directions. Expert Rev Anti Infect Ther 10(9):959–961. doi: 10.1586/eri.12.97 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Nguyen L, Pieters J (2009) Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu Rev Pharmacol Toxicol 49:427–453. doi: 10.1146/annurev-pharmtox-061008-103123 PubMedCrossRefGoogle Scholar
  100. Nguyen L, Chinnapapagari S, Thompson CJ (2005) FbpA-Dependent biosynthesis of trehalose dimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of Mycobacterium smegmatis. J Bacteriol 187(19):6603–6611PubMedPubMedCentralCrossRefGoogle Scholar
  101. Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281(18):12300–12307. doi: 10.1074/jbc.M512515200 PubMedCrossRefGoogle Scholar
  102. Niederweis M (2003) Mycobacterial porins—new channel proteins in unique outer membranes. Mol Microbiol 49(5):1167–1177PubMedCrossRefGoogle Scholar
  103. Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264(5157):382–388PubMedCrossRefGoogle Scholar
  104. Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183(20):5803–5812PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nopponpunth V, Sirawaraporn W, Greene PJ, Santi DV (1999) Cloning and expression of Mycobacterium tuberculosis and Mycobacterium leprae dihydropteroate synthase in Escherichia coli. J Bacteriol 181(21):6814–6821PubMedPubMedCentralGoogle Scholar
  106. Nott TJ, Kelly G, Stach L et al (2009) An intramolecular switch regulates phosphoindependent FHA domain interactions in Mycobacterium tuberculosis. Sci Signal 2(63):ra12. doi: 10.1126/scisignal.2000212 PubMedCrossRefGoogle Scholar
  107. O’Hare HM, Duran R, Cervenansky C et al (2008) Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol 70(6):1408–1423. doi: 10.1111/j.1365-2958.2008.06489.x PubMedCrossRefGoogle Scholar
  108. Ormerod LP (2005) Multidrug-resistant tuberculosis (MDR-TB): epidemiology, prevention and treatment. Br Med Bull 73–74:17–24. doi: 10.1093/bmb/ldh047 PubMedCrossRefGoogle Scholar
  109. Philalay JS, Palermo CO, Hauge KA, Rustad TR, Cangelosi GA (2004) Genes required for intrinsic multidrug resistance in Mycobacterium avium. Antimicrob Agents Chemother 48(9):3412–3418PubMedPubMedCentralCrossRefGoogle Scholar
  110. Quinting B, Reyrat JM, Monnaie D et al (1997) Contribution of β-lactamase production to the resistance of mycobacteria to β-lactam antibiotics. FEBS Lett 406(3):275–278PubMedCrossRefGoogle Scholar
  111. Ramon-Garcia S, Mick V, Dainese E et al (2012) Functional and genetic characterization of the tap efflux pump in Mycobacterium bovis BCG. Antimicrob Agents Chemother 56(4):2074–2083. doi: 10.1128/AAC.05946-11 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ramon-Garcia S, Ng C, Jensen PR et al (2013) WhiB7, an Fe–S-dependent transcription factor that activates species-specific repertoires of drug resistance determinants in actinobacteria. J Biol Chem 288(48):34514–34528. doi: 10.1074/jbc.M113.516385 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Ratledge C (2004) Iron, mycobacteria and tuberculosis. Tuberculosis (Edinb) 84(1–2):110–130CrossRefGoogle Scholar
  114. Rawat M, Newton GL, Ko M, Martinez GJ, Fahey RC, Av-Gay Y (2002) Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics. Antimicrob Agents Chemother 46(11):3348–3355PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rengarajan J, Sassetti CM, Naroditskaya V, Sloutsky A, Bloom BR, Rubin EJ (2004) The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol Microbiol 53(1):275–282. doi: 10.1111/j.1365-2958.2004.04120.x PubMedCrossRefGoogle Scholar
  116. Reynolds MG (2000) Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156(4):1471–1481PubMedPubMedCentralGoogle Scholar
  117. Saguy M, Gillet R, Skorski P, Hermann-Le Denmat S, Felden B (2007) Ribosomal protein S1 influences trans-translation in vitro and in vivo. Nucleic Acids Res 35(7):2368–2376. doi: 10.1093/nar/gkm100 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Sala C, Haouz A, Saul FA et al (2009) Genome-wide regulon and crystal structure of BlaI (Rv1846c) from Mycobacterium tuberculosis. Mol Microbiol 71(5):1102–1116. doi: 10.1111/j.1365-2958.2008.06583.x PubMedCrossRefGoogle Scholar
  119. Scanga CA, Mohan VP, Joseph H, Yu K, Chan J, Flynn JL (1999) Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect Immun 67(9):4531–4538PubMedPubMedCentralGoogle Scholar
  120. Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2(6):662–667PubMedCrossRefGoogle Scholar
  121. Scorpio A, Lindholm-Levy P, Heifets L et al (1997) Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 41(3):540–543PubMedPubMedCentralGoogle Scholar
  122. Seidel H, Bittner J (1902) Darstellung der βm Aminosalicysäure. Monatsh Chem 23:431–433CrossRefGoogle Scholar
  123. Senaratne RH, Mobasheri H, Papavinasasundaram KG, Jenner P, Lea EJ, Draper P (1998) Expression of a gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37Rv. J Bacteriol 180(14):3541–3547PubMedPubMedCentralGoogle Scholar
  124. Sergeev R, Colijn C, Murray M, Cohen T (2012) Modeling the dynamic relationship between HIV and the risk of drug-resistant tuberculosis. Sci Transl Med 4(135):135ra67. doi: 10.1126/scitranslmed.3003815 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sharp JD, Cruz JW, Raman S, Inouye M, Husson RN, Woychik NA (2012) Growth and translation inhibition through sequence-specific RNA binding by Mycobacterium tuberculosis VapC toxin. J Biol Chem 287(16):12835–12847. doi: 10.1074/jbc.M112.340109 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sherman DR, Mdluli K, Hickey MJ et al (1996) Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272(5268):1641–1643PubMedCrossRefGoogle Scholar
  127. Shi W, Zhang Y (2010) PhoY2 but not PhoY1 is the PhoU homologue involved in persisters in Mycobacterium tuberculosis. J Antimicrob Chemother 65(6):1237–1242. doi: 10.1093/jac/dkq103 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Shi W, Zhang X, Jiang X et al (2011) Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333(6049):1630–1632. doi: 10.1126/science.1208813 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Shiba T, Tsutsumi K, Yano H et al (1997) Inorganic polyphosphate and the induction of rpoS expression. Proc Natl Acad Sci USA 94(21):11210–11215PubMedPubMedCentralCrossRefGoogle Scholar
  130. Singh A, Jain S, Gupta S, Das T, Tyagi AK (2003) mymA operon of Mycobacterium tuberculosis: its regulation and importance in the cell envelope. FEMS Microbiol Lett 227(1):53–63PubMedCrossRefGoogle Scholar
  131. Singh A, Gupta R, Vishwakarma RA et al (2005) Requirement of the mymA operon for appropriate cell wall ultrastructure and persistence of Mycobacterium tuberculosis in the spleens of guinea pigs. J Bacteriol 187(12):4173–4186PubMedPubMedCentralCrossRefGoogle Scholar
  132. Siroy A, Mailaender C, Harder D et al (2008) Rv1698 of Mycobacterium tuberculosis represents a new class of channel-forming outer membrane proteins. J Biol Chem 283(26):17827–17837. doi: 10.1074/jbc.M800866200 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Stephan J, Mailaender C, Etienne G, Daffe M, Niederweis M (2004) Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis. Antimicrob Agents Chemother 48(11):4163–4170PubMedPubMedCentralCrossRefGoogle Scholar
  134. Tan Y, Hu Z, Zhang T et al (2014) Role of pncA and rpsA gene sequencing in detection of pyrazinamide resistance in Mycobacterium tuberculosis isolates from southern China. J Clin Microbiol 52(1):291–297. doi: 10.1128/JCM.01903-13 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Thayil SM, Morrison N, Schechter N, Rubin H, Karakousis PC (2011) The role of the novel exopolyphosphatase MT0516 in Mycobacterium tuberculosis drug tolerance and persistence. PLoS One 6(11):e28076. doi: 10.1371/journal.pone.0028076 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Tian J, Bryk R, Itoh M, Suematsu M, Nathan C (2005) Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of α-ketoglutarate decarboxylase. Proc Natl Acad Sci USA 102(30):10670–10675. doi: 10.1073/pnas.0501605102 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Tremblay LW, Fan F, Blanchard JS (2010) Biochemical and structural characterization of Mycobacterium tuberculosis β-lactamase with the carbapenems ertapenem and doripenem. Biochemistry 49(17):3766–3773. doi: 10.1021/bi100232q PubMedPubMedCentralCrossRefGoogle Scholar
  138. Trnka L, Mison P (1988) Drugs and treatment regimens/p-aminosalicylic acid (PAS). In: Bartmann K (ed) Antituberculosis drugs. Handbook of experimental pharmacology. Springer, Berlin, pp 51–68Google Scholar
  139. Udwadia ZF (2012) MDR, XDR, TDR tuberculosis: ominous progression. Thorax 67(4):286–288. doi: 10.1136/thoraxjnl-2012-201663 PubMedCrossRefGoogle Scholar
  140. Vilcheze C, Av-Gay Y, Attarian R et al (2008) Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol 69(5):1316–1329. doi: 10.1111/j.1365-2958.2008.06365.x PubMedPubMedCentralCrossRefGoogle Scholar
  141. Viveirosa M, Martins M, Rodrigues L et al (2012) Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs. Expert Rev Anti Infect Ther 10(9):983–998. doi: 10.1586/eri.12.89 CrossRefGoogle Scholar
  142. Voladri RK, Lakey DL, Hennigan SH, Menzies BE, Edwards KM, Kernodle DS (1998) Recombinant expression and characterization of the major β-lactamase of Mycobacterium tuberculosis. Antimicrob Agents Chemother 42(6):1375–1381PubMedPubMedCentralGoogle Scholar
  143. Walburger A, Koul A, Ferrari G et al (2004) Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304(5678):1800–1804PubMedCrossRefGoogle Scholar
  144. Wallis RS, Patil S, Cheon SH et al (1999) Drug tolerance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 43(11):2600–2606PubMedPubMedCentralGoogle Scholar
  145. Wang JY, Burger RM, Drlica K (1998) Role of superoxide in catalase-peroxidase-mediated isoniazid action against mycobacteria. Antimicrob Agents Chemother 42(3):709–711PubMedPubMedCentralGoogle Scholar
  146. Wang F, Cassidy C, Sacchettini JC (2006) Crystal structure and activity studies of the Mycobacterium tuberculosis β-lactamase reveal its critical role in resistance to β-lactam antibiotics. Antimicrob Agents Chemother 50(8):2762–2771. doi: 10.1128/AAC.00320-06 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Wang X, Mitra N, Secundino I et al (2012) Specific inactivation of two immunomodulatory SIGLEC genes during human evolution. Proc Natl Acad Sci USA 109(25):9935–9940. doi: 10.1073/pnas.1119459109 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Watt B, Edwards JR, Rayner A, Grindey AJ, Harris G (1992) In vitro activity of meropenem and imipenem against mycobacteria: development of a daily antibiotic dosing schedule. Tuber Lung Dis 73(3):134–136. doi: 10.1016/0962-8479(92)90145-A PubMedCrossRefGoogle Scholar
  149. Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64(6):2062–2069PubMedPubMedCentralGoogle Scholar
  150. Wei J, Dahl JL, Moulder JW et al (2000) Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages. J Bacteriol 182(2):377–384PubMedPubMedCentralCrossRefGoogle Scholar
  151. Wissensehaftliche-ArbeRsgemeinsehaft-fur-die-Therapie-yon-Lungenkrankheiten (1969) Cooperative controlled trial of thiocarlide (DATC), PAS and bed rest alone in short-term single-drug treatment in retreated cavitary pulmonary tuberculosis. Beitrage zur Klinik und Erforschung der Tuberkulose und der Lungenkrankheiten 139(2):115–139CrossRefGoogle Scholar
  152. Wolff KA, Nguyen HT, Cartabuke RH, Singh A, Ogwang S, Nguyen L (2009) Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria. Antimicrob Agents Chemother 53(8):3515–3519. doi: 10.1128/AAC.00012-09 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Wolff KA, de la Pena AH, Nguyen HT et al (2015) A redox regulatory system critical for mycobacterial survival in macrophages and biofilm development. PLoS Pathog 11(4):e1004839. doi: 10.1371/journal.ppat.1004839 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wower IK, Zwieb CW, Guven SA, Wower J (2000) Binding and cross-linking of tmRNA to ribosomal protein S1, on and off the Escherichia coli ribosome. EMBO J 19(23):6612–6621. doi: 10.1093/emboj/19.23.6612 PubMedPubMedCentralCrossRefGoogle Scholar
  155. Xie Z, Siddiqi N, Rubin EJ (2005) Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 49(11):4778–4780. doi: 10.1128/AAC.49.11.4778-4780.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Yang J, Liu Y, Bi J et al (2015) Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide. Mol Microbiol 95(5):791–803. doi: 10.1111/mmi.12892 PubMedCrossRefGoogle Scholar
  157. Yaseen I, Kaur P, Nandicoori VK, Khosla S (2015) Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat Commun 6:8922. doi: 10.1038/ncomms9922 PubMedCrossRefGoogle Scholar
  158. Yegian D, Long RT (1951) The specific resistance of tubercle bacilli to para-aminosalicylic acid and sulfonamides. J Bacteriol 61(6):747–749PubMedPubMedCentralGoogle Scholar
  159. Youmans GP, Raleigh GW, Youmans AS (1947) The tuberculostatic action of para-aminosalicylic acid. J Bacteriol 54(4):409–416PubMedPubMedCentralGoogle Scholar
  160. Zaunbrecher MA, Sikes RD Jr, Metchock B, Shinnick TM, Posey JE (2009) Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 106(47):20004–20009. doi: 10.1073/pnas.0907925106 PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase–peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358(6387):591–593. doi: 10.1038/358591a0 PubMedCrossRefGoogle Scholar
  162. Zhang Y, Dhandayuthapani S, Deretic V (1996) Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proc Natl Acad Sci USA 93(23):13212–13216PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zhang X, Liu L, Zhang Y, Dai G, Huang H, Jin Q (2015) Genetic determinants involved in p-aminosalicylic acid resistance in clinical isolates from tuberculosis patients in northern China from 2006 to 2012. Antimicrob Agents Chemother 59(2):1320–1324. doi: 10.1128/AAC.03695-14 PubMedCrossRefGoogle Scholar
  164. Zhao F, Wang XD, Erber LN et al (2014) Binding pocket alterations in dihydrofolate synthase confer resistance to para-aminosalicylic acid in clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 58(3):1479–1487. doi: 10.1128/AAC.01775-13 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Zheng J, Rubin EJ, Bifani P et al (2013) para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem 288(32):23447–23456. doi: 10.1074/jbc.M113.475798 PubMedCrossRefGoogle Scholar
  166. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffe M (2008) Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190(16):5672–5680. doi: 10.1128/JB.01919-07 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Molecular Biology and Microbiology, School of MedicineCase Western Reserve UniversityClevelandUSA

Personalised recommendations