Archives of Toxicology

, Volume 90, Issue 4, pp 753–780 | Cite as

Structure and function of mammalian aldehyde oxidases

  • Mineko Terao
  • Maria João Romão
  • Silke Leimkühler
  • Marco Bolis
  • Maddalena Fratelli
  • Catarina Coelho
  • Teresa Santos-Silva
  • Enrico Garattini
Review Article


Mammalian aldehyde oxidases (AOXs; EC1.2.3.1) are a group of conserved proteins belonging to the family of molybdo-flavoenzymes along with the structurally related xanthine dehydrogenase enzyme. AOXs are characterized by broad substrate specificity, oxidizing not only aromatic and aliphatic aldehydes into the corresponding carboxylic acids, but also hydroxylating a series of heteroaromatic rings. The number of AOX isoenzymes expressed in different vertebrate species is variable. The two extremes are represented by humans, which express a single enzyme (AOX1) in many organs and mice or rats which are characterized by tissue-specific expression of four isoforms (AOX1, AOX2, AOX3, and AOX4). In vertebrates each AOX isoenzyme is the product of a distinct gene consisting of 35 highly conserved exons. The extant species-specific complement of AOX isoenzymes is the result of a complex evolutionary process consisting of a first phase characterized by a series of asynchronous gene duplications and a second phase where the pseudogenization and gene deletion events prevail. In the last few years remarkable advances in the elucidation of the structural characteristics and the catalytic mechanisms of mammalian AOXs have been made thanks to the successful crystallization of human AOX1 and mouse AOX3. Much less is known about the physiological function and physiological substrates of human AOX1 and other mammalian AOX isoenzymes, although the importance of these proteins in xenobiotic metabolism is fairly well established and their relevance in drug development is increasing. This review article provides an overview and a discussion of the current knowledge on mammalian AOX.


Aldehyde oxidase Molybdo-flavoenzymes Xanthine oxidoreductase Drug metabolism 



The financial support granted by the Fondazione Italo Monzino and the Associazione Italiana per la Ricerca contro il Cancro (AIRC) to Enrico Garattini was fundamental for the extension of this review article. This work was also financially supported by the Deutsche Forschungsgemeinschaft (DFG) grant LE1171/8-1 to Silke Leimkühler and by. Fundação para a Ciência e Tecnologia through projects UID/Multi/04378/2013, PTDC/BBB-BEP/1185/2014, EXCL/QEQ-COM/0394/2012, PTDC/BIA-PRO/118377/2010 (M.J.R., T.S.-S., C.C.), SFRH/BPD/84581/2012 (C.C.) and DAAD-441.00 (M.J.R., T.S.-S., S.L.). We also thank the I02 staff of the Diamond Light Source (DLS), the X06DA-PXIII staff from the Swiss Light Source (SLS) and the staff from ID14-1, ID29-1, and ID23-1 from the European Synchrotron Radiation Facility (ESRF). We would also like to acknowledge the help of Mr. Felice Deceglie and Mr. Alessandro Soave for the artwork.


  1. Adachi M, Itoh K, Masubuchi A, Watanabe N, Tanaka Y (2007) Construction and expression of mutant cDNAs responsible for genetic polymorphism in aldehyde oxidase in Donryu strain rats. J Biochem Mol Biol 40(6):1021–1027PubMedCrossRefGoogle Scholar
  2. Alfaro JF, Joswig-Jones CA, Ouyang W, Nichols J, Crouch GJ, Jones JP (2009) Purification and mechanism of human aldehyde oxidase expressed in Escherichia coli. Drug Metab Dispos 37(12):2393–2398. doi: 10.1124/dmd.109.029520 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Asai R, Nishino T, Matsumura T, Okamoto K, Igarashi K, Pai EF (2007) Two mutations convert mammalian xanthine oxidoreductase to highly superoxide-productive xanthine oxidase. J Biochem 141(4):525–534. doi: 10.1093/jb/mvm054 PubMedCrossRefGoogle Scholar
  4. Barr JT, Choughule K, Jones JP (2014) Enzyme kinetics, inhibition, and regioselectivity of aldehyde oxidase. Methods Mol Biol 1113:167–186. doi: 10.1007/978-1-62703-758-7_9 PubMedCrossRefGoogle Scholar
  5. Beedham C, Bruce SE, Critchley DJ, al-Tayib Y, Rance DJ (1987) Species variation in hepatic aldehyde oxidase activity. Eur J Drug Metab Pharmacokinet 12(4):307–310PubMedCrossRefGoogle Scholar
  6. Beedham C, Padwick DJ, al-Tayib Y, Smith JA (1989) Diurnal variation and melatonin induction of hepatic molybdenum hydroxylase activity in the guinea-pig. Biochem Pharmacol 38(9):1459–1464PubMedCrossRefGoogle Scholar
  7. Beedham C, Bruce SE, Critchley DJ, Rance DJ (1990) 1-substituted phthalazines as probes of the substrate-binding site of mammalian molybdenum hydroxylases. Biochem Pharmacol 39(7):1213–1221PubMedCrossRefGoogle Scholar
  8. Beedham C, al-Tayib Y, Smith JA (1992) Role of guinea pig and rabbit hepatic aldehyde oxidase in oxidative in vitro metabolism of cinchona antimalarials. Drug Metab Dispos 20(6):889–895PubMedGoogle Scholar
  9. Bendotti C, Prosperini E, Kurosaki M, Garattini E, Terao M (1997) Selective localization of mouse aldehyde oxidase mRNA in the choroid plexus and motor neurons. NeuroReport 8(9–10):2343–2349PubMedCrossRefGoogle Scholar
  10. Berger R, Mezey E, Clancy KP et al (1995) Analysis of aldehyde oxidase and xanthine dehydrogenase/oxidase as possible candidate genes for autosomal recessive familial amyotrophic lateral sclerosis. Somat Cell Mol Genet 21(2):121–131PubMedCrossRefGoogle Scholar
  11. Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276(44):40381–40384. doi: 10.1074/jbc.C100472200 PubMedCrossRefGoogle Scholar
  12. Buzzell GR (1996) The Harderian gland: perspectives. Microsc Res Tech 34(1):2–5. doi: 10.1002/(SICI)1097-0029(19960501)34:1<2:AID-JEMT2>3.0.CO;2-W PubMedCrossRefGoogle Scholar
  13. Carpani G, Racchi M, Ghezzi P, Terao M, Garattini E (1990) Purification and characterization of mouse liver xanthine oxidase. Arch Biochem Biophys 279(2):237–241PubMedCrossRefGoogle Scholar
  14. Castro GD, Delgado de Layno AM, Costantini MH, Castro JA (2001) Cytosolic xanthine oxidoreductase mediated bioactivation of ethanol to acetaldehyde and free radicals in rat breast tissue. Its potential role in alcohol-promoted mammary cancer. Toxicology 160(1–3):11–18PubMedCrossRefGoogle Scholar
  15. Cazzaniga G, Terao M, Lo Schiavo P et al (1994) Chromosomal mapping, isolation, and characterization of the mouse xanthine dehydrogenase gene. Genomics 23(2):390–402. doi: 10.1006/geno.1994.1515 PubMedCrossRefGoogle Scholar
  16. Cerqueira NM, Coelho C, Bras NF et al (2015) Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases. J Biol Inorg Chem 20(2):209–217. doi: 10.1007/s00775-014-1198-2 PubMedCrossRefGoogle Scholar
  17. Chladek J, Martinkova J, Sispera L (1997) An in vitro study on methotrexate hydroxylation in rat and human liver. Physiol Res 46(5):371–379PubMedGoogle Scholar
  18. Chouchana L, Narjoz C, Beaune P, Loriot MA, Roblin X (2012) Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther 35(1):15–36. doi: 10.1111/j.1365-2036.2011.04905.x PubMedCrossRefGoogle Scholar
  19. Choughule KV, Barr JT, Jones JP (2013) Evaluation of rhesus monkey and guinea pig hepatic cytosol fractions as models for human aldehyde oxidase. Drug Metab Dispos 41(10):1852–1858. doi: 10.1124/dmd.113.052985 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Choughule KV, Joswig-Jones CA, Jones JP (2015) Interspecies differences in the metabolism of methotrexate: an insight into the active site differences between human and rabbit aldehyde oxidase. Biochem Pharmacol 96(3):288–295. doi: 10.1016/j.bcp.2015.05.010 PubMedCrossRefGoogle Scholar
  21. Coelho C, Mahro M, Trincao J et al (2012) The first mammalian aldehyde oxidase crystal structure: insights into substrate specificity. J Biol Chem 287(48):40690–40702. doi: 10.1074/jbc.M112.390419 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Coelho C, Foti A, Hartmann T, Santos-Silva T, Leimkuhler S, Romao MJ (2015) Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase. Nat Chem Biol 11(10):779–783. doi: 10.1038/nchembio.1895 PubMedCrossRefGoogle Scholar
  23. Cohen HJ, Fridovich I (1971a) Hepatic sulfite oxidase. Purification and properties. J Biol Chem 246(2):359–366PubMedGoogle Scholar
  24. Cohen HJ, Fridovich I (1971b) Hepatic sulfite oxidase. The nature and function of the heme prosthetic groups. J Biol Chem 246(2):367–373PubMedGoogle Scholar
  25. Coughlan MP, Rajagopalan KV (1980) The kinetic mechanism of xanthine dehydrogenase and related enzymes. Eur J Biochem 105(1):81–84PubMedCrossRefGoogle Scholar
  26. Cypher JJ, Tedesco JL, Courtright JB, Kumaran AK (1982) Tissue-specific and substrate-specific detection of aldehyde and pyridoxal oxidase in larval and imaginal tissues of Drosophila melanogaster. Biochem Genet 20(3–4):315–332PubMedCrossRefGoogle Scholar
  27. Dalvie D, Xiang C, Kang P, Zhou S (2013) Interspecies variation in the metabolism of zoniporide by aldehyde oxidase. Xenobiotica 43(5):399–408. doi: 10.3109/00498254.2012.727499 PubMedCrossRefGoogle Scholar
  28. Diamond S, Boer J, Maduskuie TP Jr, Falahatpisheh N, Li Y, Yeleswaram S (2010) Species-specific metabolism of SGX523 by aldehyde oxidase and the toxicological implications. Drug Metab Dispos 38(8):1277–1285. doi: 10.1124/dmd.110.032375 PubMedCrossRefGoogle Scholar
  29. Dick RA, Kanne DB, Casida JE (2006) Substrate specificity of rabbit aldehyde oxidase for nitroguanidine and nitromethylene neonicotinoid insecticides. Chem Res Toxicol 19(1):38–43. doi: 10.1021/tx050230x PubMedCrossRefGoogle Scholar
  30. Ding TL, Benet LZ (1979) Comparative bioavailability and pharmacokinetic studies of azathioprine and 6-mercaptopurine in the rhesus monkey. Drug Metab Dispos 7(6):373–377PubMedGoogle Scholar
  31. Falciani F, Ghezzi P, Terao M, Cazzaniga G, Garattini E (1992) Interferons induce xanthine dehydrogenase gene expression in L929 cells. Biochem J 285(Pt 3):1001–1008PubMedPubMedCentralCrossRefGoogle Scholar
  32. Falciani F, Terao M, Goldwurm S et al (1994) Molybdenum(VI) salts convert the xanthine oxidoreductase apoprotein into the active enzyme in mouse L929 fibroblastic cells. Biochem J 298(Pt 1):69–77PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fratelli M, Fisher JN, Paroni G et al (2013) New insights into the molecular mechanisms underlying sensitivity/resistance to the atypical retinoid ST1926 in acute myeloid leukaemia cells: the role of histone H2A.Z, cAMP-dependent protein kinase A and the proteasome. Eur J Cancer 49(6):1491–1500. doi: 10.1016/j.ejca.2012.11.013 PubMedCrossRefGoogle Scholar
  34. Fu C, Di L, Han X et al (2013) Aldehyde oxidase 1 (AOX1) in human liver cytosols: quantitative characterization of AOX1 expression level and activity relationship. Drug Metab Dispos 41(10):1797–1804. doi: 10.1124/dmd.113.053082 PubMedCrossRefGoogle Scholar
  35. Garattini E, Terao M (2011) Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab Rev 43(3):374–386. doi: 10.3109/03602532.2011.560606 PubMedCrossRefGoogle Scholar
  36. Garattini E, Terao M (2012) The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol 8(4):487–503. doi: 10.1517/17425255.2012.663352 PubMedCrossRefGoogle Scholar
  37. Garattini E, Terao M (2013) Aldehyde oxidase and its importance in novel drug discovery: present and future challenges. Expert Opin Drug Discov 8(6):641–654. doi: 10.1517/17460441.2013.788497 PubMedCrossRefGoogle Scholar
  38. Garattini E, Fratelli M, Terao M (2008) Mammalian aldehyde oxidases: genetics, evolution and biochemistry. Cell Mol Life Sci 65(7–8):1019–1048. doi: 10.1007/s00018-007-7398-y PubMedCrossRefGoogle Scholar
  39. Garattini E, Fratelli M, Terao M (2009) The mammalian aldehyde oxidase gene family. Hum Genomics 4(2):119–130PubMedPubMedCentralGoogle Scholar
  40. Ghaffari T, Nouri M, Saei AA, Rashidi MR (2012) Aldehyde and xanthine oxidase activities in tissues of streptozotocin-induced diabetic rats: effects of vitamin E and selenium supplementation. Biol Trace Elem Res 147(1–3):217–225. doi: 10.1007/s12011-011-9291-7 PubMedCrossRefGoogle Scholar
  41. Graessler J, Fischer S (2007) The dual substrate specificity of aldehyde oxidase 1 for retinal and acetaldehyde and its role in ABCA1 mediated efflux. Horm Metab Res 39(11):775–776. doi: 10.1055/s-2007-992126 PubMedCrossRefGoogle Scholar
  42. Gruenewald S, Wahl B, Bittner F et al (2008) The fourth molybdenum containing enzyme mARC: cloning and involvement in the activation of N-hydroxylated prodrugs. J Med Chem 51(24):8173–8177. doi: 10.1021/jm8010417 PubMedCrossRefGoogle Scholar
  43. Hahnewald R, Leimkuhler S, Vilaseca A, Acquaviva-Bourdain C, Lenz U, Reiss J (2006) A novel MOCS2 mutation reveals coordinated expression of the small and large subunit of molybdopterin synthase. Mol Genet Metab 89(3):210–213. doi: 10.1016/j.ymgme.2006.04.008 PubMedCrossRefGoogle Scholar
  44. Hardeland R, Pandi-Perumal SR, Cardinali DP (2006) Melatonin. Int J Biochem Cell Biol 38(3):313–316. doi: 10.1016/j.biocel.2005.08.020 PubMedCrossRefGoogle Scholar
  45. Hartmann T, Terao M, Garattini E et al (2012) The impact of single nucleotide polymorphisms on human aldehyde oxidase. Drug Metab Dispos 40(5):856–864. doi: 10.1124/dmd.111.043828 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Havemeyer A, Lang J, Clement B (2011) The fourth mammalian molybdenum enzyme mARC: current state of research. Drug Metab Rev 43(4):524–539. doi: 10.3109/03602532.2011.608682 PubMedCrossRefGoogle Scholar
  47. Heidenreich T, Wollers S, Mendel RR, Bittner F (2005) Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem 280(6):4213–4218. doi: 10.1074/jbc.M411195200 PubMedCrossRefGoogle Scholar
  48. Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96(7):2757–2816PubMedCrossRefGoogle Scholar
  49. Hille R, Sprecher H (1987) On the mechanism of action of xanthine oxidase. Evidence in support of an oxo transfer mechanism in the molybdenum-containing hydroxylases. J Biol Chem 262(23):10914–10917PubMedGoogle Scholar
  50. Holmes RS (1979) Genetics, ontogeny, and testosterone inducibility of aldehyde oxidase isozymes in the mouse: evidence for two genetic loci (Aox-I and Aox-2) closely linked on chromosome 1. Biochem Genet 17(5–6):517–527PubMedCrossRefGoogle Scholar
  51. Hover BM, Loksztejn A, Ribeiro AA, Yokoyama K (2013) Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis. J Am Chem Soc 135(18):7019–7032. doi: 10.1021/ja401781t PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hover BM, Lilla EA, Yokoyama K (2015a) Mechanistic investigation of cPMP synthase in molybdenum cofactor biosynthesis using an uncleavable substrate analogue. Biochemistry 54(49):7229–7236. doi: 10.1021/acs.biochem.5b00857 PubMedCrossRefGoogle Scholar
  53. Hover BM, Tonthat NK, Schumacher MA, Yokoyama K (2015b) Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis. Proc Natl Acad Sci USA 112(20):6347–6352. doi: 10.1073/pnas.1500697112 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hu R, Xu C, Shen G et al (2006) Identification of Nrf2-regulated genes induced by chemopreventive isothiocyanate PEITC by oligonucleotide microarray. Life Sci 79(20):1944–1955. doi: 10.1016/j.lfs.2006.06.019 PubMedCrossRefGoogle Scholar
  55. Huang DY, Ichikawa Y (1994) Two different enzymes are primarily responsible for retinoic acid synthesis in rabbit liver cytosol. Biochem Biophys Res Commun 205(2):1278–1283. doi: 10.1006/bbrc.1994.2803 PubMedCrossRefGoogle Scholar
  56. Huang DY, Furukawa A, Ichikawa Y (1999) Molecular cloning of retinal oxidase/aldehyde oxidase cDNAs from rabbit and mouse livers and functional expression of recombinant mouse retinal oxidase cDNA in Escherichia coli. Arch Biochem Biophys 364(2):264–272. doi: 10.1006/abbi.1999.1129 PubMedCrossRefGoogle Scholar
  57. Huard JM, Youngentob SL, Goldstein BJ, Luskin MB, Schwob JE (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol 400(4):469–486. doi: 10.1002/(SICI)1096-9861(19981102)400:4<469:AID-CNE3>3.0.CO;2-8 PubMedCrossRefGoogle Scholar
  58. Hutzler JM, Obach RS, Dalvie D, Zientek MA (2013) Strategies for a comprehensive understanding of metabolism by aldehyde oxidase. Expert Opin Drug Metab Toxicol 9(2):153–168. doi: 10.1517/17425255.2013.738668 PubMedCrossRefGoogle Scholar
  59. Ichida K, Amaya Y, Noda K et al (1993) Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase): structural analysis of the protein and chromosomal location of the gene. Gene 133(2):279–284PubMedCrossRefGoogle Scholar
  60. Itoh K, Adachi M, Sato J et al (2009) Effects of selenium deficiency on aldehyde oxidase 1 in rats. Biol Pharm Bull 32(2):190–194PubMedCrossRefGoogle Scholar
  61. Johnson C, Stubley-Beedham C, Stell JG (1984) Elevation of molybdenum hydroxylase levels in rabbit liver after ingestion of phthalazine or its hydroxylated metabolite. Biochem Pharmacol 33(22):3699–3705PubMedCrossRefGoogle Scholar
  62. Kamli MR, Kim J, Pokharel S, Jan AT, Lee EJ, Choi I (2014) Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells. Biochem Biophys Res Commun 450(4):1291–1296. doi: 10.1016/j.bbrc.2014.06.126 PubMedCrossRefGoogle Scholar
  63. Kinsella TJ, Kunugi KA, Vielhuber KA, McCulloch W, Liu SH, Cheng YC (1994) An in vivo comparison of oral 5-iodo-2′-deoxyuridine and 5-iodo-2-pyrimidinone-2′-deoxyribose toxicity, pharmacokinetics, and DNA incorporation in athymic mouse tissues and the human colon cancer xenograft, HCT-116. Cancer Res 54(10):2695–2700PubMedGoogle Scholar
  64. Kinsella TJ, Kunugi KA, Vielhuber KA, Potter DM, Fitzsimmons ME, Collins JM (1998) Preclinical evaluation of 5-iodo-2-pyrimidinone-2′-deoxyribose as a prodrug for 5-iodo-2′-deoxyuridine-mediated radiosensitization in mouse and human tissues. Clin Cancer Res 4(1):99–109PubMedGoogle Scholar
  65. Kinsella TJ, Schupp JE, Davis TW et al (2000) Preclinical study of the systemic toxicity and pharmacokinetics of 5-iodo-2-deoxypyrimidinone-2′-deoxyribose as a radiosensitizing prodrug in two, non-rodent animal species: implications for phase I study design. Clin Cancer Res 6(9):3670–3679PubMedGoogle Scholar
  66. Kitamura S, Tatsumi K (1984a) Involvement of liver aldehyde oxidase in the reduction of nicotinamide N-oxide. Biochem Biophys Res Commun 120(2):602–606PubMedCrossRefGoogle Scholar
  67. Kitamura S, Tatsumi K (1984b) Reduction of tertiary amine N-oxides by liver preparations: function of aldehyde oxidase as a major N-oxide reductase. Biochem Biophys Res Commun 121(3):749–754PubMedCrossRefGoogle Scholar
  68. Kitamura S, Sugihara K, Nakatani K et al (1999) Variation of hepatic methotrexate 7-hydroxylase activity in animals and humans. IUBMB Life 48(6):607–611. doi: 10.1080/713803569 PubMedCrossRefGoogle Scholar
  69. Kundu TK, Velayutham M, Zweier JL (2012) Aldehyde oxidase functions as a superoxide generating NADH oxidase: an important redox regulated pathway of cellular oxygen radical formation. Biochemistry 51(13):2930–2939. doi: 10.1021/bi3000879 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kurosaki M, Demontis S, Barzago MM, Garattini E, Terao M (1999) Molecular cloning of the cDNA coding for mouse aldehyde oxidase: tissue distribution and regulation in vivo by testosterone. Biochem J 341(Pt 1):71–80PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kurosaki M, Terao M, Barzago MM et al (2004) The aldehyde oxidase gene cluster in mice and rats. Aldehyde oxidase homologue 3, a novel member of the molybdo-flavoenzyme family with selective expression in the olfactory mucosa. J Biol Chem 279(48):50482–50498. doi: 10.1074/jbc.M408734200 PubMedCrossRefGoogle Scholar
  72. Kurosaki M, Bolis M, Fratelli M et al (2013) Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression. Cell Mol Life Sci 70(10):1807–1830. doi: 10.1007/s00018-012-1229-5 PubMedCrossRefGoogle Scholar
  73. Lee HF, Mak BS, Chi CS, Tsai CR, Chen CH, Shu SG (2002) A novel mutation in neonatal isolated sulphite oxidase deficiency. Neuropediatrics 33(4):174–179. doi: 10.1055/s-2002-34491 PubMedCrossRefGoogle Scholar
  74. Lehrke M, Rump S, Heidenreich T, Wissing J, Mendel RR, Bittner F (2012) Identification of persulfide-binding and disulfide-forming cysteine residues in the NifS-like domain of the molybdenum cofactor sulfurase ABA3 by cysteine-scanning mutagenesis. Biochem J 441(3):823–832. doi: 10.1042/BJ20111170 PubMedCrossRefGoogle Scholar
  75. Leimkuhler S, Iobbi-Nivol C (2015) Bacterial molybdoenzymes: old enzymes for new purposes. FEMS Microbiol Rev. doi: 10.1093/femsre/fuv043 PubMedGoogle Scholar
  76. Li H, Cui H, Kundu TK, Alzawahra W, Zweier JL (2008) Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem 283(26):17855–17863. doi: 10.1074/jbc.M801785200 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Maeda K, Ohno T, Igarashi S, Yoshimura T, Yamashiro K, Sakai M (2012) Aldehyde oxidase 1 gene is regulated by Nrf2 pathway. Gene 505(2):374–378. doi: 10.1016/j.gene.2012.06.010 PubMedCrossRefGoogle Scholar
  78. Mahro M, Coelho C, Trincao J et al (2011) Characterization and crystallization of mouse aldehyde oxidase 3: from mouse liver to Escherichia coli heterologous protein expression. Drug Metab Dispos 39(10):1939–1945. doi: 10.1124/dmd.111.040873 PubMedCrossRefGoogle Scholar
  79. Mahro M, Bras NF, Cerqueira NM et al (2013) Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity. PLoS ONE 8(12):e82285. doi: 10.1371/journal.pone.0082285 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Maia LB, Pereira V, Mira L, Moura JJ (2015) Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo. Biochemistry 54(3):685–710. doi: 10.1021/bi500987w PubMedCrossRefGoogle Scholar
  81. Manevski N, Balavenkatraman KK, Bertschi B et al (2014) Aldehyde oxidase activity in fresh human skin. Drug Metab Dispos 42(12):2049–2057. doi: 10.1124/dmd.114.060368 PubMedCrossRefGoogle Scholar
  82. Massey V, Edmondson D (1970) On the mechanism of inactivation of xanthine oxidase by cyanide. J Biol Chem 245(24):6595–6598PubMedGoogle Scholar
  83. Matthies A, Nimtz M, Leimkuhler S (2005) Molybdenum cofactor biosynthesis in humans: identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry. Biochemistry 44(21):7912–7920. doi: 10.1021/bi0503448 PubMedCrossRefGoogle Scholar
  84. Mendel RR (2013) The molybdenum cofactor. J Biol Chem 288(19):13165–13172. doi: 10.1074/jbc.R113.455311 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mendel RR, Kruse T (2012) Cell biology of molybdenum in plants and humans. Biochim Biophys Acta 9:1568–1579. doi: 10.1016/j.bbamcr.2012.02.007 CrossRefGoogle Scholar
  86. Mendel RR, Leimkuhler S (2015) The biosynthesis of the molybdenum cofactors. J Biol Inorg Chem 20(2):337–347. doi: 10.1007/s00775-014-1173-y PubMedCrossRefGoogle Scholar
  87. Mira L, Maia L, Barreira L, Manso CF (1995) Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism. Arch Biochem Biophys 318(1):53–58. doi: 10.1006/abbi.1995.1203 PubMedCrossRefGoogle Scholar
  88. Molotkov A, Fan X, Deltour L et al (2002) Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proc Natl Acad Sci USA 99(8):5337–5342. doi: 10.1073/pnas.08209329999/8/5337 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Moriwaki Y, Yamamoto T, Yamakita J, Takahashi S, Higashino K (1998a) Comparative localization of aldehyde oxidase and xanthine oxidoreductase activity in rat tissues. Histochem J 30(2):69–74PubMedCrossRefGoogle Scholar
  90. Moriwaki Y, Yamamoto T, Yamakita J, Takahashi S, Tsutsumi Z, Higashino K (1998b) Zonal distribution of allopurinol-oxidizing enzymes in rat liver. Adv Exp Med Biol 431:47–50PubMedCrossRefGoogle Scholar
  91. Moriwaki Y, Yamamoto T, Takahashi S, Tsutsumi Z, Hada T (2001) Widespread cellular distribution of aldehyde oxidase in human tissues found by immunohistochemistry staining. Histol Histopathol 16(3):745–753PubMedGoogle Scholar
  92. Neumeier M, Hellerbrand C, Gabele E et al (2006) Adiponectin and its receptors in rodent models of fatty liver disease and liver cirrhosis. World J Gastroenterol 12(34):5490–5494PubMedPubMedCentralGoogle Scholar
  93. Niederreither K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21(4):444–448. doi: 10.1038/7788 PubMedCrossRefGoogle Scholar
  94. Nishino T (1994) The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury. J Biochem 116(1):1–6PubMedGoogle Scholar
  95. Nishino T, Okamoto K, Eger BT, Pai EF (2008) Mammalian xanthine oxidoreductase—mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 275(13):3278–3289. doi: 10.1111/j.1742-4658.2008.06489.x PubMedCrossRefGoogle Scholar
  96. Obach RS, Walsky RL (2005) Drugs that inhibit oxidation reactions catalyzed by aldehyde oxidase do not inhibit the reductive metabolism of ziprasidone to its major metabolite, S-methyldihydroziprasidone: an in vitro study. J Clin Psychopharmacol 25(6):605–608PubMedCrossRefGoogle Scholar
  97. Obach RS, Prakash C, Kamel AM (2012) Reduction and methylation of ziprasidone by glutathione, aldehyde oxidase, and thiol S-methyltransferase in humans: an in vitro study. Xenobiotica 42(11):1049–1057. doi: 10.3109/00498254.2012.683203 PubMedCrossRefGoogle Scholar
  98. Ohkubo M, Sakiyama S, Fujimura S (1983a) Increase of nicotinamide methyltransferase and N1-methyl-nicotinamide oxidase activities in the livers of the rats administered alkylating agents. Cancer Lett 21(2):175–181PubMedCrossRefGoogle Scholar
  99. Ohkubo M, Sakiyama S, Fujimura S (1983b) Purification and characterization of N1-methylnicotinamide oxidases I and II separated from rat liver. Arch Biochem Biophys 221(2):534–542PubMedCrossRefGoogle Scholar
  100. Ott G, Havemeyer A, Clement B (2015) The mammalian molybdenum enzymes of mARC. J Biol Inorg Chem 20(2):265–275. doi: 10.1007/s00775-014-1216-4 PubMedCrossRefGoogle Scholar
  101. Payne AP (1994) The harderian gland: a tercentennial review. J Anat 185(Pt 1):1–49PubMedPubMedCentralGoogle Scholar
  102. Pelikant-Malecka I, Sielicka A, Kaniewska E, Smolenski RT, Slominska EM (2015) Endothelial toxicity of unusual nucleotide metabolites. Pharmacol Rep 67(4):818–822. doi: 10.1016/j.pharep.2015.03.020 PubMedCrossRefGoogle Scholar
  103. Pryde DC, Tran TD, Jones P et al (2012) Medicinal chemistry approaches to avoid aldehyde oxidase metabolism. Bioorg Med Chem Lett 22(8):2856–2860. doi: 10.1016/j.bmcl.2012.02.069 PubMedCrossRefGoogle Scholar
  104. Rajagopalan KV, Johnson JL (1992) The pterin molybdenum cofactors. J Biol Chem 267(15):10199–10202PubMedGoogle Scholar
  105. Rajapakshe A, Tollin G, Enemark JH (2012) Kinetic and thermodynamic effects of mutations of human sulfite oxidase. Chem Biodivers 9(9):1621–1634. doi: 10.1002/cbdv.201200010 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Rani Basu L, Mazumdar K, Dutta NK, Karak P, Dastidar SG (2005) Antibacterial property of the antipsychotic agent prochlorperazine, and its synergism with methdilazine. Microbiol Res 160(1):95–100PubMedCrossRefGoogle Scholar
  107. Reiss J, Cohen N, Dorche C et al (1998) Mutations in a polycistronic nuclear gene associated with molybdenum cofactor deficiency. Nat Genet 20(1):51–53. doi: 10.1038/1706 PubMedCrossRefGoogle Scholar
  108. Reiss J, Dorche C, Stallmeyer B, Mendel RR, Cohen N, Zabot MT (1999) Human molybdopterin synthase gene: genomic structure and mutations in molybdenum cofactor deficiency type B. Am J Hum Genet 64(3):706–711. doi: 10.1086/302296 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Rivera SP, Choi HH, Chapman B et al (2005) Identification of aldehyde oxidase 1 and aldehyde oxidase homologue 1 as dioxin-inducible genes. Toxicology 207(3):401–409. doi: 10.1016/j.tox.2004.10.009 PubMedCrossRefGoogle Scholar
  110. Rooseboom M, Commandeur JN, Vermeulen NP (2004) Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev 56(1):53–102. doi: 10.1124/pr.56.1.3 PubMedCrossRefGoogle Scholar
  111. Sanoh S, Tayama Y, Sugihara K, Kitamura S, Ohta S (2015) Significance of aldehyde oxidase during drug development: effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet 30(1):52–63. doi: 10.1016/j.dmpk.2014.10.009 PubMedCrossRefGoogle Scholar
  112. Schumann S, Terao M, Garattini E et al (2009) Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1. PLoS ONE 4(4):e5348. doi: 10.1371/journal.pone.0005348 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Schwartz R, Kjeldgaard NO (1951) The enzymic oxidation of pyridoxal by liver aldehyde oxidase. Biochem J 48(3):333–337PubMedPubMedCentralCrossRefGoogle Scholar
  114. Schwarz G, Mendel RR (2006) Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu Rev Plant Biol 57:623–647. doi: 10.1146/annurev.arplant.57.032905.105437 PubMedCrossRefGoogle Scholar
  115. Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460(7257):839–847. doi: 10.1038/nature08302 PubMedCrossRefGoogle Scholar
  116. Shaw S, Jayatilleke E (1990) The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat. Biochem J 268(3):579–583PubMedPubMedCentralCrossRefGoogle Scholar
  117. Shintani Y, Maruoka S, Gon Y et al (2015) Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates airway epithelial barrier integrity. Allergol Int 64(Suppl):S54–S63. doi: 10.1016/j.alit.2015.06.004 PubMedCrossRefGoogle Scholar
  118. Sigruener A, Buechler C, Orso E et al (2007) Human aldehyde oxidase 1 interacts with ATP-binding cassette transporter-1 and modulates its activity in hepatocytes. Horm Metab Res 39(11):781–789. doi: 10.1055/s-2007-992129 PubMedCrossRefGoogle Scholar
  119. Stallmeyer B, Drugeon G, Reiss J, Haenni AL, Mendel RR (1999) Human molybdopterin synthase gene: identification of a bicistronic transcript with overlapping reading frames. Am J Hum Genet 64(3):698–705. doi: 10.1086/302295 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Stanulovic M, Chaykin S (1971) Aldehyde oxidase: catalysis of the oxidation of N 1-methylnicotinamide and pyridoxal. Arch Biochem Biophys 145(1):27–34PubMedCrossRefGoogle Scholar
  121. Stell JG, Wheelhouse RT, Wright CW (2012) Metabolism of cryptolepine and 2-fluorocryptolepine by aldehyde oxidase. J Pharm Pharmacol 64(2):237–243. doi: 10.1111/j.2042-7158.2011.01408.x PubMedCrossRefGoogle Scholar
  122. Stoddart AM, Levine WG (1992) Azoreductase activity by purified rabbit liver aldehyde oxidase. Biochem Pharmacol 43(10):2227–2235PubMedCrossRefGoogle Scholar
  123. Stubley C, Stell JG, Mathieson DW (1979) The oxidation of azaheterocycles with mammalian liver aldehyde oxidase. Xenobiotica 9(8):475–484. doi: 10.3109/00498257909087261 PubMedCrossRefGoogle Scholar
  124. Sugihara K, Kitamura S, Tatsumi K, Asahara T, Dohi K (1997) Differences in aldehyde oxidase activity in cytosolic preparations of human and monkey liver. Biochem Mol Biol Int 41(6):1153–1160PubMedGoogle Scholar
  125. Swenson TL, Casida JE (2013) Aldehyde oxidase importance in vivo in xenobiotic metabolism: imidacloprid nitroreduction in mice. Toxicol Sci 133(1):22–28. doi: 10.1093/toxsci/kft066 PubMedCrossRefGoogle Scholar
  126. Tatsumi K, Kitamura S, Narai N (1986) Reductive metabolism of aromatic nitro compounds including carcinogens by rabbit liver preparations. Cancer Res 46(3):1089–1093PubMedGoogle Scholar
  127. Tayama Y, Miyake K, Sugihara K et al (2007a) Developmental changes of aldehyde oxidase activity in young Japanese children. Clin Pharmacol Ther 81(4):567–572. doi: 10.1038/sj.clpt.6100078 PubMedCrossRefGoogle Scholar
  128. Tayama Y, Moriyasu A, Sugihara K, Ohta S, Kitamura S (2007b) Developmental changes of aldehyde oxidase in postnatal rat liver. Drug Metab Pharmacokinet 22(2):119–124PubMedCrossRefGoogle Scholar
  129. Tayama Y, Sugihara K, Sanoh S et al (2011) Effect of tea beverages on aldehyde oxidase activity. Drug Metab Pharmacokinet 26(1):94–101PubMedCrossRefGoogle Scholar
  130. Tayama Y, Sugihara K, Sanoh S, Miyake K, Kitamura S, Ohta S (2012) Developmental changes of aldehyde oxidase activity and protein expression in human liver cytosol. Drug Metab Pharmacokinet 27(5):543–547PubMedCrossRefGoogle Scholar
  131. Terao M, Cazzaniga G, Ghezzi P et al (1992) Molecular cloning of a cDNA coding for mouse liver xanthine dehydrogenase. Regulation of its transcript by interferons in vivo. Biochem J 283(Pt 3):863–870PubMedPubMedCentralCrossRefGoogle Scholar
  132. Terao M, Kurosaki M, Saltini G et al (2000) Cloning of the cDNAs coding for two novel molybdo-flavoproteins showing high similarity with aldehyde oxidase and xanthine oxidoreductase. J Biol Chem 275(39):30690–30700. doi: 10.1074/jbc.M005355200 PubMedCrossRefGoogle Scholar
  133. Terao M, Kurosaki M, Marini M et al (2001) Purification of the aldehyde oxidase homolog 1 (AOH1) protein and cloning of the AOH1 and aldehyde oxidase homolog 2 (AOH2) genes. Identification of a novel molybdo-flavoprotein gene cluster on mouse chromosome 1. J Biol Chem 276(49):46347–46363. doi: 10.1074/jbc.M105744200 PubMedCrossRefGoogle Scholar
  134. Terao M, Kurosaki M, Barzago MM et al (2006) Avian and canine aldehyde oxidases. Novel insights into the biology and evolution of molybdo-flavoenzymes. J Biol Chem 281(28):19748–19761. doi: 10.1074/jbc.M600850200 PubMedCrossRefGoogle Scholar
  135. Terao M, Kurosaki M, Barzago MM et al (2009) Role of the molybdoflavoenzyme aldehyde oxidase homolog 2 in the biosynthesis of retinoic acid: generation and characterization of a knockout mouse. Mol Cell Biol 29(2):357–377. doi: 10.1128/MCB.01385-08 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Tomita S, Tsujita M, Ichikawa Y (1993) Retinal oxidase is identical to aldehyde oxidase. FEBS Lett 336(2):272–274PubMedCrossRefGoogle Scholar
  137. Tsujita M, Tomita S, Miura S, Ichikawa Y (1994) Characteristic properties of retinal oxidase (retinoic acid synthase) from rabbit hepatocytes. Biochim Biophys Acta 1204(1):108–116PubMedCrossRefGoogle Scholar
  138. Ueda O, Kitamura S, Ohashi K, Sugihara K, Ohta S (2003) Xanthine oxidase-catalyzed metabolism of 2-nitrofluorene, a carcinogenic air pollutant, in rat skin. Drug Metab Dispos 31(4):367–372PubMedCrossRefGoogle Scholar
  139. Ueda O, Sugihara K, Ohta S, Kitamura S (2005) Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin. Drug Metab Dispos 33(9):1312–1318. doi: 10.1124/dmd.105.005306 PubMedCrossRefGoogle Scholar
  140. Ventura SM, Dachtler SL (1980) Development and maturation of aldehyde oxidase levels in fetal hepatic tissue of C57BL/6J mice. Enzyme 25(4):213–219PubMedGoogle Scholar
  141. Ventura SM, Dachtler SL (1981) Effects of sex hormones on hepatic aldehyde oxidase activity in C57BL/6J mice. Horm Res 14(4):250–259PubMedCrossRefGoogle Scholar
  142. Vila R, Kurosaki M, Barzago MM et al (2004) Regulation and biochemistry of mouse molybdo-flavoenzymes. The DBA/2 mouse is selectively deficient in the expression of aldehyde oxidase homologues 1 and 2 and represents a unique source for the purification and characterization of aldehyde oxidase. J Biol Chem 279(10):8668–8683. doi: 10.1074/jbc.M308137200 PubMedCrossRefGoogle Scholar
  143. Wahl RC, Rajagopalan KV (1982) Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases. J Biol Chem 257(3):1354–1359PubMedGoogle Scholar
  144. Weigert J, Neumeier M, Bauer S et al (2008) Small-interference RNA-mediated knock-down of aldehyde oxidase 1 in 3T3-L1 cells impairs adipogenesis and adiponectin release. FEBS Lett 582(19):2965–2972. doi: 10.1016/j.febslet.2008.07.034 PubMedCrossRefGoogle Scholar
  145. Wollers S, Heidenreich T, Zarepour M et al (2008) Binding of sulfurated molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem 283(15):9642–9650. doi: 10.1074/jbc.M708549200 PubMedCrossRefGoogle Scholar
  146. Yamaguchi Y, Matsumura T, Ichida K, Okamoto K, Nishino T (2007) Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. J Biochem 141(4):513–524PubMedCrossRefGoogle Scholar
  147. Yoshihara S, Tatsumi K (1985) Guinea pig liver aldehyde oxidase as a sulfoxide reductase: its purification and characterization. Arch Biochem Biophys 242(1):213–224PubMedCrossRefGoogle Scholar
  148. Yoshihara S, Tatsumi K (1997) Purification and characterization of hepatic aldehyde oxidase in male and female mice. Arch Biochem Biophys 338(1):29–34. doi: 10.1006/abbi.1996.9774 PubMedCrossRefGoogle Scholar
  149. Zientek MA, Youdim K (2015) Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos 43(1):163–181. doi: 10.1124/dmd.114.058750 PubMedCrossRefGoogle Scholar
  150. Ziouzenkova O, Orasanu G, Sharlach M et al (2007) Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med 13(6):695–702. doi: 10.1038/nm1587 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mineko Terao
    • 1
  • Maria João Romão
    • 2
  • Silke Leimkühler
    • 3
  • Marco Bolis
    • 1
  • Maddalena Fratelli
    • 1
  • Catarina Coelho
    • 2
  • Teresa Santos-Silva
    • 2
  • Enrico Garattini
    • 1
  1. 1.Laboratory of Molecular BiologyIRCCS-Istituto di Ricerche Farmacologiche “Mario Negri”MilanItaly
  2. 2.UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparica, LisbonPortugal
  3. 3.Department of Molecular Enzymology, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany

Personalised recommendations