Skip to main content
Log in

Comparing effect levels of regulatory studies with endpoints derived in targeted anti-androgenic studies: example prochloraz

  • Regulatory Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Prochloraz is an imidazole fungicide, and its regulatory toxicological data package has been primarily generated in the 1990s. More recently, studies have been published demonstrating an interaction with hormone receptors/steroidogenesis and effects with an endocrine mode of action. In the present study, prochloraz has been investigated in a comprehensive in vivo study including relevant elements of current regulatory reproduction toxicity studies and additional mechanistic parameters. Prochloraz was administered per gavage in oil from GD 6 to PND 83 to pregnant and lactating Wistar rats and their respective offspring, at doses of 0.01 mg/kg bw/day (acceptable daily intake of prochloraz), 5 mg/kg bw/day [expected no-observed-effect-level (NOEL)] and 30 mg/kg bw/day. At 30 mg/kg bw/day maternal and offspring effects (decreased viability, lower number of live offspring) were seen including a delayed entry into male puberty (+1 day) accompanied by lower male offspring body weights, increased anogenital distance/index in females and transiently retained nipples in males at PND 12 (not seen at PND 20). The only finding at the “expected NOEL” was increased incidences of transiently retained nipples in males which are not considered adverse. No effects were seen in the low-dose group. There was no evidence for a non-monotonic dose–response curve or effects at low levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen HR, Vinggaard AM, Rasmussen TH, Gjermandsen IM, Bonefeld-Jorgensen EC (2002) Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro. Toxicol Appl Pharmacol 179:1–12

    Article  CAS  PubMed  Google Scholar 

  • Bars R, Fegert I, Gross M, Lewis D, Weltje L, Weyers A, Wheeler JR, Galay-Burgos M (2012) Risk assessment of endocrine active chemicals: identifying chemicals of regulatory concern. Regul Toxicol Pharmacol 64:143–154

    Article  CAS  PubMed  Google Scholar 

  • Birkhoj M, Nellemann C, Jarfelt K, Jacobsen H, Andersen HR, Dalgaard M, Vinggaard AM (2004) The combined anti-androgenic effects of five commonly used pesticides. Toxicol Appl Pharmacol 201(1):10–20

    Article  CAS  PubMed  Google Scholar 

  • Blystone CR, Furr J, Lambright CS, Howdeshell KL, Ryan BC, Wilson VS, LeBlanc GA, Gray LE (2007a) Prochloraz inhibits testosterone production at dosages below those that affect androgen-dependent organ weights or the onset of puberty in the male Sprague Dawley rat. Toxicol Sci 97(1):65–74

    Article  CAS  PubMed  Google Scholar 

  • Blystone CR, Lambritth CS, Howdeshell KL, Furr J, Sternberg RM, Butterworth BC, Durhan EJ, Makynen EA, Ankley GT, Wilson VS, LeBlanc GA, Gray LE (2007b) Sensitivity of fetal rat testicular steroidogenesis to maternal prochloraz exposure and the underlying mechanism of inhibition. Toxicol Sci 97(2):512–519

    Article  CAS  PubMed  Google Scholar 

  • Borgert CJ, Sargent EV, Casella G, Dietrich DR, McCarty LS, Golden RJ (2012) the human relevant potency threshold: reducing uncertainty by human calibration of cumulative risk assessments. Regul Toxicol Pharmacol 62:313–328

    Article  CAS  PubMed  Google Scholar 

  • Borgert CJ, Baker SP, Matthews JC (2013) Potency matters, thresholds govern endocrine activity. Regul Toxicol Pharmacol 67(1):83–88

    Article  CAS  PubMed  Google Scholar 

  • Caldwell DJ, Mastrocco F, Anderson PD, Länge R, Sumpter JP (2012) Predicted-no-effect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol and 17α-ethinylestradiol. Environ Toxicol Chem 31:1396–1406

    Article  CAS  PubMed  Google Scholar 

  • Carney EW, Zablotny CL, Marty MS, Crissman JW, Anderson P, Woolhiser M, Holsapple M (2004) The effects of feed restriction during in utero and postnatal development in rats. Toxicol Sci 82:237–249

    Article  CAS  PubMed  Google Scholar 

  • Chernoff N, Gage MJ, Stoker TE, Cooper RL, Gilbert ME, Rogers EH (2009) Reproductive effects of maternal and pre-weaning undernutrition in rat offspring: age at puberty, onset of female reproductive senescence and intergenerational pup growth and viability. Reprod Toxicol 28:489–494

    Article  CAS  PubMed  Google Scholar 

  • Christiansen S, Scholze M, Dalgaard M, Vinggaard AM, Axelstad M, Kortenkamp A, Hass U (2009) Synergistic disruption of external male sex organ development by a mixture of four anti-androgens. Environ Health Perspect 117:1839–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Commission Regulation (EU) No. 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market

  • Dekant W, Colnot T (2013) Endocrine effects of chemicals: aspects of hazard identification and human health risk assessment. Toxicol Lett 223(3):280–286

    Article  CAS  PubMed  Google Scholar 

  • DeSesso JM, Scialli AR, White TEK, Breckenridge CB (2014) Multigeneration reproduction and male developmental toxicity studies on atrazine in rats. Birth Defects Res B Dev Reprod Toxicol 101(3):237–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EC 1107/2009 Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC

  • EFSA (2009) Scientific Opinion on Risk Assessment for a selected group of pesticides from the triazole group to test possible methodologies to assess cumulative effects from exposure through food from these pesticides on human health. EFSA J 7(9):1167

    Article  Google Scholar 

  • EFSA (2011) Conclusion on the peer review of the pesticide risk assessment of the active substance prochloraz. EFSA J 9(7):2323

    Article  Google Scholar 

  • EFSA (2013) Scientific Opinion on the hazard assessment of endocrine disruptors: scientific criteria for identification of endocrine disruptors and appropriateness of existing test methods for assessing effects mediated by these substances on human health and the environment. EFSA J 11(3):3132

    Article  Google Scholar 

  • EFSA—Rapporteur member State assessment reports submitted for the EU peer review of active substances used in plant protection products. http://dar.efsa.europe.eu/dar-web/provision

  • Fang X, Wong S, Mitchell BF (1996) Relationships among sex steroid, oxytocin, and their receptors in the rat uterus during late gestation and at parturition. Endocrinology 137(8):3213–3219

    CAS  PubMed  Google Scholar 

  • Fussell KC, Schneider S, Buesen R, Groeters S, Strauss V, Melching-Kollmuss S, van Ravenzwaay B (2015) Investigations of putative reproductive toxicity of low-dose exposures to flutamide in Wistar rats. Arch Toxicol 89:2385–2402

    Article  CAS  PubMed  Google Scholar 

  • Grünfeld HT, Bonefeld-Jorgensen EC (2004) Effect of in vitro estrogenic pesticides on human oestrogen receptor α and β mRNA levels. Toxicol Lett 151:467–480

    Article  PubMed  Google Scholar 

  • Haluska GJ, Cook MJ, Novy MJ (1997) Inhibition and augmentation of progesterone production during pregnancy: effects on parturition in rhesus monkeys. Am J Obstet Gynecol 176:682–691

    Article  CAS  PubMed  Google Scholar 

  • Hass U, Christiansen S, Axelstad M, Sorensen KD, Boberg J (2013) Input for the REACH-review in 2013 on endocrine disruptors. Final Rep 21:1–50

    Google Scholar 

  • Hecker M, Newsted JL, Murphy MB, Higley EB, Jones PD, Wu R, Giesy JP (2006) Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: hormone production. Toxicol Appl Pharmacol 217:114–124

    Article  CAS  PubMed  Google Scholar 

  • ICH Harmonised Tripartite Guideline Detection of toxicity to reproduction for medicinal products & toxicity to male fertility S5(R2); 4.1.2 Study for effects on pre- and postnatal developmental, including maternal function, parent guideline dated 24 June 1993; addendum dated 9 November 2000 incorporated in November 2005; can be downloaded from the internet. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S5/Step4/S5_R2__Guideline.pdf

  • Kemi (2013) Is it possible to determine thresholds for the effects of endocrine disruptors? A summary of scientific argumentation from 15 relevant publications on endocrine disruption. http://www.kemi.se/Documents/Publikationer/Trycksaker/PM/PM2-13.pdf

  • Kojima H, Katsura E, Takeuchi S, Niiyama K, Kobayashi K (2004) Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environ Health Perspect 112:524–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korenbrot CC, Huhtaniemi IT, Weiner RI (1977) Preputial separation as an external sign of pubertal development in male rat. Biol Reprod 17:298–303

    Article  CAS  PubMed  Google Scholar 

  • Kortenkamp A, Martin O, Faust M, Evans R, McKinlay R, Orton F, Rosivatz E (2011) State of the art assessment of endocrine disrupters. Final Report; Project Contract Number 070307/2009/550687/SER/D3; 23.12.2011 (online available)

  • Laier P, Metzdorff SB, Borch J, Hagen ML, Hass U, Christiansen S, Axelstad M, Kledal T, Dalgaard M, McKinnell C, Brokken LJS, Vinggaard AM (2006) Mechanisms of action underlying the antiandrogenic effects of the fungicide prochloraz. Toxicol Appl Pharamcol 213:160–171

    Article  CAS  Google Scholar 

  • Lamb JC, Boffetta P, Foster WG, Goodman JE, Hentz KL, Rhomberg LR, Stavely J, Swaen G, Van der Kraak G, Williams AL (2014) Critical comments on the WHO–UNEP state of the science of endocrine disrupting chemicals—2012. Regul Toxicol Pharmacol 69:22–40

    Article  PubMed  Google Scholar 

  • Marty MS, Johnson KA, Carney EW (2003) Effect of feed restriction on Hershberger and pubertal male assay endpoints. Birth Defects Res B Dev Reprod Toxicol 68:363–374

    Article  CAS  PubMed  Google Scholar 

  • Marx-Stoelting P, Pfeil R, Solecki R, Ulbrich B, Grote K, Ritz V, Banasiak U, Heinrich-Hirsch B, Moeller T, Chahoud I, Hirsch-Ernst KI (2011) Assessment strategies and decision criteria for pesticides with endocrine disrupting properties relevant to humans. Reprod Toxicol 31:574–584

    Article  CAS  PubMed  Google Scholar 

  • Marx-Stoelting P, Niemann L, Ritz V, Ulbrich B, Gall A, Hirsch-Ernst KI, Pfeil R, Solecki R (2014) Assessment of three approaches for regulatory decision making on pesticides with endocrine disrupting properties. Regul Toxicol Pharmacol 70(3):560–604, and Corrigendum to “Assessment of three approaches for regulatory decision making on pesticides with endocrine disrupting properties”. Regul Toxicol Pharmacol 72:256

  • Melching-Kollmuss S, Fussell KC, Buesen R, Dammann M, Schneider S, Tennekes H, van Ravenzwaay B (2014) Anti-androgenicity can only be evaluated using a weight of evidence approach. Regul Toxicol Pharmacol 68:175–192

    Article  CAS  PubMed  Google Scholar 

  • Mitchell BF, Taggart MJ (2009) Are animal model relevant to key aspects of human parturition? Am J Physiol Regul Integr Comp Physiol 297:R525–R545

    Article  CAS  PubMed  Google Scholar 

  • Nielsen FK, Hansen CH, Fey JA, Hansen M, Jacobsen NW, Halling-Sorensen B, Björklund E, Styrishave B (2012) H295R cells as a model for steroidogenic disruption: a broader perspective using simultaneous chemical analysis of 7 key steroid hormones. Toxicol In Vitro 26:343–350

    Article  CAS  PubMed  Google Scholar 

  • Noriega NC, Ostby J, Lambright C, Wilson VS, Gray LE (2005) Late gestational exposure to the fungicide prochloraz delays the onset of parturition and causes reproductive malformations in male but not female rat offspring. Biol Reprod 72:1324–1335

    Article  CAS  PubMed  Google Scholar 

  • OECD TG 456 H295R Steroidogenesis Assay, adopted 28 July 2011

  • OECD Conceptual Framework (2002). http://www.oecd.org/document/58/0,3343,en_2649_34377_2348794_1_1_1_1,00.html

  • OECD 2012 Guidance document (GD) on standardized test guidelines for evaluating chemicals for endocrine disruption: Case studies using example chemicals. Series on testing and assessment, No. 181, ENV/JM/MONO(2012)34, 08 October 2012

  • OECD TG 414 Prenatal developmental toxicity study, adopted 22 January 2001

  • OECD TG 416 Two-Generation Reproduction Toxicity Study; adopted 22 January 2001

  • OECD TG 416 Two-Generation Reproduction Toxicity Study; adopted 26 May 1983

  • OECD TG 443 Extended One-Generation Reproductive Toxicity Study, adopted 28 July 2011

  • OECD TG 414 Teratogenicity, adopted 12 May 1981

  • Ohlsson A, Ulleras E, Oskarsson A (2009) A biphasic effect of the fungicide prochloraz on aldosterone, but not cortisol, secretion in human adrenal H295R cells—underlying mechanism. Toxicol Lett 191:174–180

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson A, Cedergreen N, Oskarsson A, Ulleras E (2010) Mixture effects of imidazole fungicides on cortisol and aldosterone secretion in human adrenocortical H295R cells. Toxicology 275:21–28

    Article  CAS  PubMed  Google Scholar 

  • Rhomberg LR, Goodman JE (2012) Low-dose effects and nonmonotonic dose–responses of endocrine disrupting chemicals: has the case been made? Regul Toxicol Pharmacol 64(1):130–133

    Article  CAS  PubMed  Google Scholar 

  • Salewski E (1964) Färbemethode Zum makroskopischen Nachweis von Implanatationsstellen am Uterus der Ratte. Naunyn-Schmiedebergs Archiv für experimentelle Pathology und Pharmakologie 247:367

    Article  Google Scholar 

  • Sanderson JT, Boerma J, Lansbergen GWA, van den Berg M (2002) Induction and inhibition of aromatase (Cyp19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells. Toxicol Appl Pharmacol 182:44–54

    Article  CAS  PubMed  Google Scholar 

  • Trösken ER, Scholz K, Lutz RW, Völkel W, Zarn JA, Lutz WK (2004) Comparative assessment of the inhibition of recombinant human Cyp19 (Aromatase) by azoles used in agriculture and as drugs for humans. Endocr Res 30(3):387–394

    Article  PubMed  Google Scholar 

  • US Congress and US Environmental Protection Agency (1972) US Federal Insecticide, Fungicide and Rodenticide Act (FIFRA): good laboratory practice standards. 40 code of federal regulations part 160

  • US Congress and US Environmental Protection Agency (1976) US Toxic Substances Control Act (TSCA): good laboratory practice standards. 40 code of federal regulations part 792

  • UNEP and WHO (2013) State of the science of endocrine disrupting chemicals—2012

  • US-EPA Health Effects Test Guidelines OPPTS 870.3800 Reproduction and Fertility Effects, August 1998

  • US-EPA Health Effects Test Guidelines OPPTS 870.3700 Prenatal Developmental Toxicity Study, August 1998

  • US EPA EDSP Endocrine Disruptor Screening Program. http://www.epa.gov/endo/

  • Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee D-H, Shioda T, Soto AM, vom Saal FS (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33(3):378–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinggaard AM, Hnida C, Breinholt V, Larsen JC (2000) Screening of selected pesticides for inhibition of Cyp19 aromatase activity in vitro. Toxicol In Vitro 14:227–234

    Article  CAS  PubMed  Google Scholar 

  • Vinggaard AM, Nellemann C, Dalgaard M, Jorgensen EB, Andersen HR (2002) Antiaandrogenic effects in vitro and in vivo of the fungicide prochloraz. Toxicol Sci 69:344–353

    Article  CAS  PubMed  Google Scholar 

  • Vinggaard AM, Christiansen S, Laier P, Poulsen ME, Breinholt V, Jarfelt K, Jacobsen H, Dalgaard M, Nellemann C, Hass U (2005) perinatal exposure to the fungicide prochloraz feminizes the male rat offspring. Toxicol Sci 85:886–897

    Article  CAS  PubMed  Google Scholar 

  • Winther CS, Nielsen FK, Hansen M, Styrishave B (2013) Corticosteroid production in H295R cells during exposure to 3 endocrine disrupters analyzed with LC-MS/MS. Int J Toxicol 32(3):219–227

    Article  PubMed  Google Scholar 

  • Woodman DD (1997) Laboratory Animal Endocrinology: hormonal action, control mechanisms and interactions with drugs. Wiley, Chichester, p 458. ISBN 978-0-471-97262-4

    Google Scholar 

  • Yamada H, Yamahara A, Yasuda S, Abe M, Oguri K, Fukushima S, Ikeda-Wada S (2002) Dansyl chloride derivatization of methamphetamine: a method with advantages for screening and analysis of methamphetamine in urine. J Anal Toxicol 26:17–22

    Article  CAS  PubMed  Google Scholar 

  • Zakar T, Hertelendy F (2007) Progesterone withdrawal: key to parturition. Am J Obstet Gynecol 196(4):289–296

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Rick DL, Kann LH, Perala AW, Geter DR, LeBaron MJ, Bartels MJ (2011) Simultaneous quantitation of testosterone and estradiol in human cell line (H295R) by liquid chromatography/positive atmospheric pressure photoionization tandem mass spectrometry. Rapid Commun Mass Spectrom 25(20):3123–3130

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bennard van Ravenzwaay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melching-Kollmuss, S., Fussell, K.C., Schneider, S. et al. Comparing effect levels of regulatory studies with endpoints derived in targeted anti-androgenic studies: example prochloraz. Arch Toxicol 91, 143–162 (2017). https://doi.org/10.1007/s00204-016-1678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1678-y

Keywords

Navigation