Advertisement

Archives of Toxicology

, Volume 90, Issue 12, pp 3029–3044 | Cite as

Toxicity of wood smoke particles in human A549 lung epithelial cells: the role of PAHs, soot and zinc

  • Marco Dilger
  • Jürgen Orasche
  • Ralf Zimmermann
  • Hanns-Rudolf Paur
  • Silvia Diabaté
  • Carsten Weiss
In vitro systems

Abstract

Indoor air pollution is associated with increased morbidity and mortality. Specifically, the health impact of emissions from domestic burning of biomass and coal is most relevant and is estimated to contribute to over 4 million premature deaths per year worldwide. Wood is the main fuel source for biomass combustion and the shift towards renewable energy sources will further increase emissions from wood combustion even in developed countries. However, little is known about the constituents of wood smoke and biological mechanisms that are responsible for adverse health effects. We exposed A549 lung epithelial cells to collected wood smoke particles and found an increase in cellular reactive oxygen species as well as a response to bioavailable polycyclic aromatic hydrocarbons. In contrast, cell vitality and regulation of the pro-inflammatory cytokine interleukin-8 were not affected. Using a candidate approach, we could recapitulate WSP toxicity by the combined actions of its constituents soot, metals and PAHs. The soot fraction and metals were found to be the most important factors for ROS formation, whereas the PAH response can be mimicked by the model PAH benzo[a]pyrene. Strikingly, PAHs adsorbed to WSPs were even more potent in activating target gene expression than B[a]P individually applied in suspension. As PAHs initiate multiple adverse outcome pathways and are prominent carcinogens, their role as key pollutants in wood smoke and its health effects warrants further investigation. The presented results suggest that each of the investigated constituents soot, metals and PAHs are major contributors to WSP toxicity. Mitigation strategies to prevent adverse health effects of wood combustion should therefore not only aim at reducing the emitted soot and PAHs but also the metal content, through the use of more efficient combustion appliances, and particle precipitation techniques, respectively.

Keywords

Wood smoke Particulate matter Lung epithelial cells Polycyclic aromatic hydrocarbons Soot Metals 

Notes

Acknowledgments

We thank Silvia Andraschko for assistance with TEM, Sonja Mülhopt for providing the WSP samples as well as Susanne Gauggel and Daniel Dietrich for providing additional information on particle characterization. We are also grateful to Sean C. Sapcariu for language proofreading. This study was performed partially in the framework of the Helmholtz Virtual Institute for Complex Molecular System in Environmental Health—Aerosols and Health (HICE, www.hice-vi.eu). Within the HICE Virtual Institute, combustion aerosol emissions are studied by comprehensive physical and chemical analysis of the aerosols and by monitoring the molecular biological effects of the emissions on cultured cells.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

204_2016_1659_MOESM1_ESM.pdf (23 kb)
Supplementary material 1 (PDF 23 kb)
204_2016_1659_MOESM2_ESM.pdf (28 kb)
Supplementary material 2 (PDF 28 kb)
204_2016_1659_MOESM3_ESM.xlsx (20 kb)
Supplementary material 3 (XLSX 19 kb)
204_2016_1659_MOESM4_ESM.xlsx (10 kb)
Supplementary material 4 (XLSX 10 kb)

References

  1. Aam BB, Fonnum F (2007) Carbon black particles increase reactive oxygen species formation in rat alveolar macrophages in vitro. Arch Toxicol 81:441–446. doi: 10.1007/s00204-006-0164-3 CrossRefPubMedGoogle Scholar
  2. Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45:106–114. doi: 10.1002/em.20095 CrossRefPubMedGoogle Scholar
  3. Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108. doi: 10.1016/j.atmosenv.2012.11.009 CrossRefGoogle Scholar
  4. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512. doi: 10.1007/s00204-008-0313-y CrossRefPubMedGoogle Scholar
  5. BImSchG (2014) Bundes-Immissionsschutzgesetz (BImSchG). Bundesministerium der Justiz und für Verbraucherschutz, GermanyGoogle Scholar
  6. Bølling AK, Totlandsdal AI, Sallsten G, Braun A, Westerholm R, Bergvall C, Boman J, Dahlman HJ, Sehlstedt M et al (2012) Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part Fibre Toxicol 9:45. doi: 10.1186/1743-8977-9-45 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bologa A, Paur H-R, Woletz K (2011) Development and study of an electrostatic precipitator for small scale wood combustion. Int J Plasma Environ Sci Technol 5:168–173Google Scholar
  8. Bonjour S, Adair-Rohani H, Wolf J, Bruce NG, Mehta S, Prüss-Ustün A, Lahiff M, Rehfuess EA, Mishra V et al (2013) Solid fuel use for household cooking: country and regional estimates for 1980–2010. Environ Health Perspect 121:784–790. doi: 10.1289/ehp.1205987 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bønløkke JH, Riddervold IS, Grønborg TK, Skogstrand K, Hougaard DM, Barregard L, Sigsgaard T (2014) Systemic effects of wood smoke in a short-term experimental exposure study of atopic volunteers. J Occup Environ Med 56:177–183. doi: 10.1097/JOM.0000000000000067 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Borm PJA, Cakmak G, Jermann E, Weishaupt C, Kempers P, van Schooten FJ, Oberdörster G, Schins RPF (2005) Formation of PAH-DNA adducts after in vivo and vitro exposure of rats and lung cells to different commercial carbon blacks. Toxicol Appl Pharmacol 205:157–167. doi: 10.1016/j.taap.2004.10.020 CrossRefPubMedGoogle Scholar
  11. Briedé JJ, Godschalk RWL, Emans MTG, De Kok TMCM, Van Agen E, Van Maanen J, Van Schooten F-J, Kleinjans JCS (2004) In vitro and in vivo studies on oxygen free radical and DNA adduct formation in rat lung and liver during benzo[a]pyrene metabolism. Free Radic Res 38:995–1002. doi: 10.1080/10715760400000976 CrossRefPubMedGoogle Scholar
  12. Cassee FR, Héroux M-E, Gerlofs-Nijland ME, Kelly FJ (2013) Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal Toxicol 25:802–812. doi: 10.3109/08958378.2013.850127 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Choi AM, Alam J (1996) Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol 15:9–19. doi: 10.1165/ajrcmb.15.1.8679227 CrossRefPubMedGoogle Scholar
  14. Chuang H-C, Jones TP, Lung S-CC, BéruBé KA (2011) Soot-driven reactive oxygen species formation from incense burning. Sci Total Environ 409:4781–4787. doi: 10.1016/j.scitotenv.2011.07.041 CrossRefPubMedGoogle Scholar
  15. Corsini E, Budello S, Marabini L, Galbiati V, Piazzalunga A, Barbieri P, Cozzutto S, Marinovich M, Pitea D et al (2013) Comparison of wood smoke PM2.5 obtained from the combustion of FIR and beech pellets on inflammation and DNA damage in A549 and THP-1 human cell lines. Arch Toxicol. doi:  10.1007/s00204-013-1071-z
  16. Danielsen PH, Møller P, Jensen KA, Sharma AK, Wallin H, Bossi R, Autrup H, Mølhave L, Ravanat J-L et al (2011) Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. Chem Res Toxicol 24:168–184CrossRefPubMedGoogle Scholar
  17. Deschamps E, Weidler PG, Friedrich F, Weiss C, Diabaté S (2013) Characterization of indoor dust from Brazil and evaluation of the cytotoxicity in A549 lung cells. Environ Geochem Health. doi: 10.1007/s10653-013-9560-9 PubMedGoogle Scholar
  18. Diabaté S, Bergfeldt B, Plaumann D, Uebel C, Weiss C (2011) Anti-oxidative and inflammatory responses induced by fly ash particles and carbon black in lung epithelial cells. Anal Bioanal Chem 401:3197–3212. doi: 10.1007/s00216-011-5102-4 CrossRefPubMedGoogle Scholar
  19. Dockery DW, Pope CA (1994) Acute respiratory effects of particulate air pollution. Annu Rev Public Health 15:107–132. doi: 10.1146/annurev.pu.15.050194.000543 CrossRefPubMedGoogle Scholar
  20. Donauer J, Schreck I, Liebel U, Weiss C (2012) Role and interaction of p53, BAX and the stress-activated protein kinases p38 and JNK in benzo(a)pyrene-diolepoxide induced apoptosis in human colon carcinoma cells. Arch Toxicol 86:329–337. doi: 10.1007/s00204-011-0757-3 CrossRefPubMedGoogle Scholar
  21. Eichbaum K, Brinkmann M, Buchinger S, Reifferscheid G, Hecker M, Giesy JP, Engwall M, van Bavel B, Hollert H (2014) In vitro bioassays for detecting dioxin-like activity—application potentials and limits of detection, a review. Sci Total Environ 487:37–48. doi: 10.1016/j.scitotenv.2014.03.057 CrossRefPubMedGoogle Scholar
  22. Ezzati M, Saleh H, Kammen DM (2000) The contributions of emissions and spatial microenvironments to exposure to indoor air pollution from biomass combustion in Kenya. Environ Health Perspect 108:833–839. doi: 10.1289/ehp.00108833 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Forchhammer L, Møller P, Riddervold IS, Bønløkke J, Massling A, Sigsgaard T, Loft S (2012) Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function. Part Fibre Toxicol 9:7. doi: 10.1186/1743-8977-9-7 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fritsch-Decker S, Both T, Mülhopt S, Paur H, Weiss C, Diabaté S (2011) Regulation of the arachidonic acid mobilization in macrophages by combustion-derived particles. Part Fibre Toxicol 8:23. doi: 10.1186/1743-8977-8-23 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fukano Y, Yoshimura H, Yoshida T (2006) Heme oxygenase-1 gene expression in human alveolar epithelial cells (A549) following exposure to whole cigarette smoke on a direct in vitro exposure system. Exp Toxicol Pathol 57:411–418. doi: 10.1016/j.etp.2005.12.001 CrossRefPubMedGoogle Scholar
  26. Garza KM, Soto KF, Murr LE (2008) Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. Int J Nanomedicine 3:83–94CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gauggel S, Derreza-Greeven C, Wimmer J, Wingfield M, van der Burg B, Dietrich DR (2012) Characterization of biologically available wood combustion particles in cell culture medium. ALTEX 29:183–200CrossRefPubMedGoogle Scholar
  28. Gauggel-Lewandowski S, Heussner AH, Steinberg P, Pieterse B, van der Burg B, Dietrich DR (2013) Bioavailability and potential carcinogenicity of polycyclic aromatic hydrocarbons from wood combustion particulate matter in vitro. Chem Biol Interact. doi: 10.1016/j.cbi.2013.05.015 PubMedGoogle Scholar
  29. Gebel T, Foth H, Damm G, Freyberger A, Kramer P-J, Lilienblum W, Röhl C, Schupp T, Weiss C et al (2014) Manufactured nanomaterials: categorization and approaches to hazard assessment. Arch Toxicol 88:2191–2211. doi: 10.1007/s00204-014-1383-7 CrossRefPubMedGoogle Scholar
  30. Ghio AJ, Soukup JM, Case M, Dailey LA, Richards J, Berntsen J, Devlin RB, Stone S, Rappold A (2012) Exposure to wood smoke particles produces inflammation in healthy volunteers. Occup Environ Med 69:170–175. doi: 10.1136/oem.2011.065276 CrossRefPubMedGoogle Scholar
  31. Greven FE, Krop EJ, Spithoven JJ, Burger N, Rooyackers JM, Kerstjens HA, van der Heide S, Heederik DJ (2012) Acute respiratory effects in firefighters. Am J Ind Med 55:54–62. doi: 10.1002/ajim.21012 CrossRefPubMedGoogle Scholar
  32. Happo MS, Uski O, Jalava PI, Kelz J, Brunner T, Hakulinen P, Mäki-Paakkanen J, Kosma V-M, Jokiniemi J et al (2013) Pulmonary inflammation and tissue damage in the mouse lung after exposure to PM samples from biomass heating appliances of old and modern technologies. Sci Total Environ 443:256–266. doi: 10.1016/j.scitotenv.2012.11.004 CrossRefPubMedGoogle Scholar
  33. Herseth JI, Totlandsdal AI, Bytingsvik S, Kaur J, Noer M, Bølling AK (2013) The challenge of obtaining correct data for cellular release of inflammatory mediators after in vitro exposure to particulate matter. Toxicol Lett 221:110–117. doi: 10.1016/j.toxlet.2013.06.209 CrossRefPubMedGoogle Scholar
  34. Iba MM, Fung J, Chung L, Zhao J, Winnik B, Buckley BT, Chen LC, Zelikoff JT, Kou YR (2006) Differential inducibility of rat pulmonary CYP1A1 by cigarette smoke and wood smoke. Mutat Res 606:1–11. doi: 10.1016/j.mrgentox.2006.02.007 CrossRefPubMedGoogle Scholar
  35. Jalava PI, Salonen RO, Nuutinen K, Pennanen AS, Happo MS, Tissari J, Frey A, Hillamo R, Jokiniemi J et al (2010) Effect of combustion condition on cytotoxic and inflammatory activity of residential wood combustion particles. Atmos Environ 44:1691–1698. doi: 10.1016/j.atmosenv.2009.12.034 CrossRefGoogle Scholar
  36. Janssen NA, Gerlofs-Nijland ME, Lanki T, Salonen RO, Cassee F, Hoek G, Fischer P, Brunekreef B, Krzyzanowski M (2012) Health effects of black carbon. WHO Regional Office for Europe, Copenhagen, pp 1–86Google Scholar
  37. Jensen A, Karottki DG, Christensen JM, Bønløkke JH, Sigsgaard T, Glasius M, Loft S, Møller P (2014) Biomarkers of oxidative stress and inflammation after wood smoke exposure in a reconstructed Viking Age house. Environ Mol Mutagen 55:652–661. doi: 10.1002/em.21877 CrossRefPubMedGoogle Scholar
  38. Johansson LS, Leckner B, Gustavsson L, Cooper D, Tullin C, Potter A (2004) Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos Environ 38:4183–4195. doi: 10.1016/j.atmosenv.2004.04.020 CrossRefGoogle Scholar
  39. Johnston FH, Henderson SB, Chen Y, Randerson JT, Marlier M, Defries RS, Kinney P, Bowman DMJS, Brauer M (2012) Estimated global mortality attributable to smoke from landscape fires. Environ Health Perspect 120:695–701. doi: 10.1289/ehp.1104422 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732. doi: 10.1021/tx800064j CrossRefPubMedGoogle Scholar
  41. Kato M, Loomis D, Brooks LM, Gattas GFJ, Gomes L, Carvalho AB, Rego MAV, DeMarini DM (2004) Urinary biomarkers in charcoal workers exposed to wood smoke in Bahia State, Brazil. Cancer Epidemiol Biomarkers Prev 13:1005–1012PubMedGoogle Scholar
  42. Kocbach Bølling A, Pagels J, Yttri KE, Barregard L, Sallsten G, Schwarze PE, Boman C (2009) Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Part Fibre Toxicol 6:29. doi: 10.1186/1743-8977-6-29 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kocbach A, Herseth JI, Låg M, Refsnes M, Schwarze PE (2008a) Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures. Toxicol Appl Pharmacol 232:317–326. doi: 10.1016/j.taap.2008.07.002 CrossRefPubMedGoogle Scholar
  44. Kocbach A, Namork E, Schwarze PE (2008b) Pro-inflammatory potential of wood smoke and traffic-derived particles in a monocytic cell line. Toxicology 247:123–132. doi: 10.1016/j.tox.2008.02.014 CrossRefPubMedGoogle Scholar
  45. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163. doi: 10.1021/es062629t CrossRefPubMedGoogle Scholar
  46. McCracken JP, Smith KR, Díaz A, Mittleman MA, Schwartz J (2007) Chimney stove intervention to reduce long-term wood smoke exposure lowers blood pressure among Guatemalan women. Environ Health Perspect 115:996–1001. doi: 10.1289/ehp.9888 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K (2007) The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64:609–615. doi: 10.1136/oem.2005.024802 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Moriguchi T, Motohashi H, Hosoya T, Nakajima O, Takahashi S, Ohsako S, Aoki Y, Nishimura N, Tohyama C et al (2003) Distinct response to dioxin in an arylhydrocarbon receptor (AHR)-humanized mouse. Proc Natl Acad Sci U S A 100:5652–5657. doi: 10.1073/pnas.1037886100 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19:67–106. doi: 10.1080/08958370600985875 CrossRefPubMedGoogle Scholar
  50. Nebert DW, Dalton TP (2006) The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 6:947–960. doi: 10.1038/nrc2015 CrossRefPubMedGoogle Scholar
  51. Neitzel R, Naeher LP, Paulsen M, Dunn K, Stock A, Simpson CD (2009) Biological monitoring of smoke exposure among wildland firefighters: a pilot study comparing urinary methoxyphenols with personal exposures to carbon monoxide, particular matter, and levoglucosan. J Expo Sci Environ Epidemiol 19:349–358. doi: 10.1038/jes.2008.21 CrossRefPubMedGoogle Scholar
  52. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi: 10.1126/science.1114397 CrossRefPubMedGoogle Scholar
  53. Nisbet ICT, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300. doi: 10.1016/0273-2300(92)90009-X CrossRefPubMedGoogle Scholar
  54. Noonan CW, Ward TJ, Navidi W, Sheppard L (2012) A rural community intervention targeting biomass combustion sources: effects on air quality and reporting of children’s respiratory outcomes. Occup Environ Med 69:354–360. doi: 10.1136/oemed-2011-100394 CrossRefPubMedGoogle Scholar
  55. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426CrossRefPubMedGoogle Scholar
  56. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi: 10.1186/1743-8977-2-8 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Oeder S, Kanashova T, Sippula O, Sapcariu SC, Streibel T, Arteaga-Salas JM, Passig J, Dilger M, Paur H-R et al (2015) Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions. PLoS One 10:e0126536. doi: 10.1371/journal.pone.0126536 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Oh S-Y, Son J-G, Lim O-T, Chiu PC (2012) The role of black carbon as a catalyst for environmental redox transformation. Environ Geochem Health 34(Suppl 1):105–113. doi: 10.1007/s10653-011-9416-0 CrossRefPubMedGoogle Scholar
  59. Orasche J, Schnelle-Kreis J, Abbaszade G, Zimmermann R (2011) Technical note: in-situ derivatization thermal desorption GC-TOFMS for direct analysis of particle-bound non-polar and polar organic species. Atmos Chem Phys 11:8977–8993. doi: 10.5194/acp-11-8977-2011 CrossRefGoogle Scholar
  60. Orasche J, Seidel T, Hartmann H, Schnelle-Kreis J, Chow JC, Ruppert H, Zimmermann R (2012) Comparison of emissions from wood combustion. Part 1: Emission factors and characteristics from different small-scale residential heating appliances considering particulate matter and polycyclic aromatic hydrocarbon (PAH)-related toxicological potential of particle-bound organic species. Energy & Fuels 26:6695–6704. doi: 10.1021/ef301295k Google Scholar
  61. Orasche J, Schnelle-Kreis J, Schön C, Hartmann H, Ruppert H, Arteaga-Salas JM, Zimmermann R (2013) Comparison of emissions from wood combustion. Part 2: impact of combustion conditions on emission factors and characteristics of particle-bound organic species and polycyclic aromatic hydrocarbon (PAH)-related toxicological potential. Energy & Fuels 27:1482–1491. doi: 10.1021/ef301506h CrossRefGoogle Scholar
  62. Panas A, Marquardt C, Nalcaci O, Bockhorn H, Baumann W, Paur H-R, Mülhopt S, Diabaté S, Weiss C (2013) Screening of different metal oxide nanoparticles reveals selective toxicity and inflammatory potential of silica nanoparticles in lung epithelial cells and macrophages. Nanotoxicology 7:259–273. doi: 10.3109/17435390.2011.652206 CrossRefPubMedGoogle Scholar
  63. Panas A, Comouth A, Saathoff H, Leisner T, Al-Rawi M, Simon M, Seemann G, Dössel O, Mülhopt S et al (2014) Silica nanoparticles are less toxic to human lung cells when deposited at the air–liquid interface compared to conventional submerged exposure. Beilstein J Nanotechnol 5:1590–1602. doi: 10.3762/bjnano.5.171 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Park J-H, Mangal D, Tacka KA, Quinn AM, Harvey RG, Blair IA, Penning TM (2008) Evidence for the aldo-keto reductase pathway of polycyclic aromatic trans-dihydrodiol activation in human lung A549 cells. Proc Natl Acad Sci USA 105:6846–6851. doi: 10.1073/pnas.0802776105 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Paur H-R, Mülhopt S, Weiss C, Diabaté S (2008) In vitro exposure systems and bioassays for the assessment of toxicity of nanoparticles to the human lung. J Consum Prot food Saf 3:319–329Google Scholar
  66. Pudasainee D, Paur HR, Fleck S, Seifert H (2014) Trace metals emission in syngas from biomass gasification. Fuel Process Technol 120:54–60. doi: 10.1016/j.fuproc.2013.12.010 CrossRefGoogle Scholar
  67. Pulskamp K, Diabaté S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74. doi: 10.1016/j.toxlet.2006.11.001 CrossRefPubMedGoogle Scholar
  68. Riddervold IS, Bønløkke JH, Olin A-C, Grønborg TK, Schlünssen V, Skogstrand K, Hougaard D, Massling A, Sigsgaard T (2012) Effects of wood smoke particles from wood-burning stoves on the respiratory health of atopic humans. Part Fibre Toxicol 9:12. doi: 10.1186/1743-8977-9-12 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ruh H, Kühl B, Brenner-Weiss G, Hopf C, Diabaté S, Weiss C (2012) Identification of serum proteins bound to industrial nanomaterials. Toxicol Lett 208:41–50. doi: 10.1016/j.toxlet.2011.09.009 CrossRefPubMedGoogle Scholar
  70. Saber AT, Jensen KA, Jacobsen NR, Birkedal R, Mikkelsen L, Møller P, Loft S, Wallin H, Vogel U (2012) Inflammatory and genotoxic effects of nanoparticles designed for inclusion in paints and lacquers. Nanotoxicology 6:453–471. doi: 10.3109/17435390.2011.587900 CrossRefPubMedGoogle Scholar
  71. Sanhueza PA, Torreblanca MA, Diaz-Robles LA, Schiappacasse LN, Silva MP, Astete TD (2009) Particulate Air pollution and health effects for cardiovascular and respiratory causes in Temuco, Chile: a wood-smoke-polluted urban area. J Air Waste Manage Assoc 59:1481–1488. doi: 10.3155/1047-3289.59.12.1481 CrossRefGoogle Scholar
  72. Schmidl C, Marr IL, Caseiro A, Kotianová P, Berner A, Bauer H, Kasper-Giebl A, Puxbaum H (2008) Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos Environ 42:126–141. doi: 10.1016/j.atmosenv.2007.09.028 CrossRefGoogle Scholar
  73. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. doi: 10.1038/nprot.2008.73 CrossRefPubMedGoogle Scholar
  74. Schreck I, Chudziak D, Schneider S, Seidel A, Platt KL, Oesch F, Weiss C (2009) Influence of aryl hydrocarbon- (Ah) receptor and genotoxins on DNA repair gene expression and cell survival of mouse hepatoma cells. Toxicology 259:91–96. doi: 10.1016/j.tox.2009.02.006 CrossRefPubMedGoogle Scholar
  75. Sehlstedt M, Dove R, Boman C, Pagels J, Swietlicki E, Löndahl J, Westerholm R, Bosson J, Barath S et al (2010) Antioxidant airway responses following experimental exposure to wood smoke in man. Part Fibre Toxicol 7:21. doi: 10.1186/1743-8977-7-21 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D et al (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3:e420. doi: 10.1371/journal.pmed.0030420 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Stockfelt L, Sallsten G, Olin A-C, Almerud P, Samuelsson L, Johannesson S, Molnar P, Strandberg B, Almstrand A-C et al (2012) Effects on airways of short-term exposure to two kinds of wood smoke in a chamber study of healthy humans. Inhal Toxicol 24:47–59. doi: 10.3109/08958378.2011.633281 CrossRefPubMedGoogle Scholar
  78. Stockfelt L, Sallsten G, Almerud P, Basu S, Barregard L (2013) Short-term chamber exposure to low doses of two kinds of wood smoke does not induce systemic inflammation, coagulation or oxidative stress in healthy humans. Inhal Toxicol 25:417–425. doi: 10.3109/08958378.2013.798387 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Stoeger T, Takenaka S, Frankenberger B, Ritter B, Karg E, Maier K, Schulz H, Schmid O (2009) Deducing in vivo toxicity of combustion-derived nanoparticles from a cell-free oxidative potency assay and metabolic activation of organic compounds. Environ Health Perspect 117:54–60. doi: 10.1289/ehp.11370 CrossRefPubMedGoogle Scholar
  80. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336CrossRefPubMedGoogle Scholar
  81. Straif K, Cohen A, Samet J (2013) IARC Scientific Publication No. 161Google Scholar
  82. Swiston JR, Davidson W, Attridge S, Li GT, Brauer M, van Eeden SF (2008) Wood smoke exposure induces a pulmonary and systemic inflammatory response in firefighters. Eur Respir J 32:129–138. doi: 10.1183/09031936.00097707 CrossRefPubMedGoogle Scholar
  83. Tapanainen M, Jalava PI, Mäki-Paakkanen J, Hakulinen P, Happo MS, Lamberg H, Ruusunen J, Tissari J, Nuutinen K et al (2011) In vitro immunotoxic and genotoxic activities of particles emitted from two different small-scale wood combustion appliances. Atmos Environ 45:7546–7554. doi: 10.1016/j.atmosenv.2011.03.065 CrossRefGoogle Scholar
  84. Thurston GD, Ito K, Lall R (2011) A source apportionment of U.S. fine particulate matter air pollution. Atmos Environ 45:3924–3936. doi: 10.1016/j.atmosenv.2011.04.070 CrossRefGoogle Scholar
  85. Torvela T, Tissari J, Sippula O, Kaivosoja T, Leskinen J, Virén A, Lähde A, Jokiniemi J (2014a) Effect of wood combustion conditions on the morphology of freshly emitted fine particles. Atmos Environ 87:65–76. doi: 10.1016/j.atmosenv.2014.01.028 CrossRefGoogle Scholar
  86. Torvela T, Uski O, Karhunen T, Lähde A, Jalava P, Sippula O, Tissari J, Hirvonen M-R, Jokiniemi J (2014b) Reference particles for toxicological studies of wood combustion: formation, characteristics, and toxicity compared to those of real wood combustion particulate mass. Chem Res Toxicol 27:1516–1527. doi: 10.1021/tx500142f CrossRefPubMedGoogle Scholar
  87. Totlandsdal AI, Låg M, Lilleaas E, Cassee F, Schwarze P (2015) Differential proinflammatory responses induced by diesel exhaust particles with contrasting PAH and metal content. Environ Toxicol 30:188–196. doi: 10.1002/tox.21884 CrossRefPubMedGoogle Scholar
  88. Uski O, Jalava PI, Happo MS, Leskinen J, Sippula O, Tissari J, Mäki-Paakkanen J, Jokiniemi J, Hirvonen M-R (2014) Different toxic mechanisms are activated by emission PM depending on combustion efficiency. Atmos Environ. doi: 10.1016/j.atmosenv.2014.02.036 Google Scholar
  89. Val S, Stéphanie V, Martinon L, Laurent M, Cachier H, Hélène C, Yahyaoui A, Abderrazak Y, Marfaing H et al (2011) Role of size and composition of traffic and agricultural aerosols in the molecular responses triggered in airway epithelial cells. Inhal Toxicol 23:627–640. doi: 10.3109/08958378.2011.599445 CrossRefPubMedGoogle Scholar
  90. World Health Organization (WHO) (2014) Indoor air pollution and health, Fact sheet N292Google Scholar
  91. Wu W, Bromberg PA, Samet JM (2013) Zinc ions as effectors of environmental oxidative lung injury. Free Radic Biol Med 65:57–69. doi: 10.1016/j.freeradbiomed.2013.05.048 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marco Dilger
    • 1
  • Jürgen Orasche
    • 2
  • Ralf Zimmermann
    • 2
    • 3
  • Hanns-Rudolf Paur
    • 4
  • Silvia Diabaté
    • 1
  • Carsten Weiss
    • 1
  1. 1.Karlsruhe Institute of Technology, Campus NorthInstitute of Toxicology and GeneticsEggenstein-LeopoldshafenGermany
  2. 2.Joint Mass Spectrometry Centre—Comprehensive Molecular AnalyticsHelmholtz Zentrum MünchenNeuherbergGermany
  3. 3.Joint Mass Spectrometry Centre—Chair of Analytical Chemistry, Institute of ChemistryUniversity of RostockRostockGermany
  4. 4.Karlsruhe Institute of Technology, Campus NorthInstitute for Technical ChemistryEggenstein-LeopoldshafenGermany

Personalised recommendations