Archives of Toxicology

, Volume 89, Issue 12, pp 2355–2383 | Cite as

Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: a decision support system for quantitative weight of evidence and adaptive testing strategy

  • Joanna S. Jaworska
  • Andreas Natsch
  • Cindy Ryan
  • Judy Strickland
  • Takao Ashikaga
  • Masaaki Miyazawa
In vitro systems

Abstract

The presented Bayesian network Integrated Testing Strategy (ITS-3) for skin sensitization potency assessment is a decision support system for a risk assessor that provides quantitative weight of evidence, leading to a mechanistically interpretable potency hypothesis, and formulates adaptive testing strategy for a chemical. The system was constructed with an aim to improve precision and accuracy for predicting LLNA potency beyond ITS-2 (Jaworska et al., J Appl Toxicol 33(11):1353–1364, 2013) by improving representation of chemistry and biology. Among novel elements are corrections for bioavailability both in vivo and in vitro as well as consideration of the individual assays’ applicability domains in the prediction process. In ITS-3 structure, three validated alternative assays, DPRA, KeratinoSens and h-CLAT, represent first three key events of the adverse outcome pathway for skin sensitization. The skin sensitization potency prediction is provided as a probability distribution over four potency classes. The probability distribution is converted to Bayes factors to: 1) remove prediction bias introduced by the training set potency distribution and 2) express uncertainty in a quantitative manner, allowing transparent and consistent criteria to accept a prediction. The novel ITS-3 database includes 207 chemicals with a full set of in vivo and in vitro data. The accuracy for predicting LLNA outcomes on the external test set (n = 60) was as follows: hazard (two classes)—100 %, GHS potency classification (three classes)—96 %, potency (four classes)—89 %. This work demonstrates that skin sensitization potency prediction based on data from three key events, and often less, is possible, reliable over broad chemical classes and ready for practical applications.

Keywords

Integrated testing strategy Skin sensitization Bayesian network LLNA potency class 

Notes

Acknowledgments

Roger Emter generated new KeratinoSens data. Leslie Foertsch generated new DPRA data. Morihiko Hirota and Yuuki Ootsubo generated new h-CLAT data. Data generation was partially funded by Research Institute of Fragrance Materials. Yuri Dancik was involved in the early stages of data compilation. Judy Strickland was supported by NIEHS contract HHSN273201500010C in support of NICEATM.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

204_2015_1634_MOESM1_ESM.xlsx (47 kb)
Supplementary material 1 (XLSX 47 kb)
204_2015_1634_MOESM2_ESM.xlsx (29 kb)
Supplementary material 2 (XLSX 28 kb)
204_2015_1634_MOESM3_ESM.xlsx (65 kb)
Supplementary material 3 (XLSX 65 kb)

References

  1. Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE et al (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 85(5):367–485PubMedCrossRefGoogle Scholar
  2. Alves VM, Muratov E, Fourches D, Strickland J, Kleinstreuer N, Andrade CH, Tropsha A (2015) Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization. Toxicol Appl Pharmacol 284(2):273–280PubMedCrossRefGoogle Scholar
  3. AP (2014) federal ban sought for animal testing on cosmetics USA Today. http://www.usatoday.com/story/news/politics/2014/11/15/federal-ban-animal-testing-cosmetics/19090873/. Accessed 26 Oct 2015
  4. Api AM, Basketter DA, Cadby PA, Cano MF, Ellis G, Gerberick GF, Griem P et al (2008) Dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients. Regul Toxicol Pharmacol 52(1):3–23PubMedCrossRefGoogle Scholar
  5. Ashikaga T, Yoshida Y, Hirota M, Yoneyama K, Itagaki H, Sakaguchi H, Miyazawa M et al (2006) Development of an in vitro skin sensitization test using human cell lines: the human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol In Vitro 20(5):767–773PubMedCrossRefGoogle Scholar
  6. Ball N, Cagen S, Carrillo JC, Certa H, Eigler D, Emter R, Faulhammer F et al (2011) Evaluating the sensitization potential of surfactants: integrating data from the local lymph node assay, guinea pig maximization test, and in vitro methods in a weight-of-evidence approach. Regul Toxicol Pharmacol 60:389–400PubMedCrossRefGoogle Scholar
  7. Basketter DA, Kimber I (2009) Updating the skin sensitization in vitro data assessment paradigm in 2009. J Appl Toxicol 29(6):545–550PubMedCrossRefGoogle Scholar
  8. Basketter D, Kimber I (2010) Re: updating the skin sensitization in vitro data assessment paradigm in 2009—a chemistry and QSAR perspective. J Appl Toxicol 30(3):289Google Scholar
  9. Basketter DA, Clewell H, Kimber I, Rossi A, Blaauboer B, Burrier R, Daneshian M et al (2012) A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing. ALTEX 29:3–89PubMedCrossRefGoogle Scholar
  10. Bauch C, Kolle SN, Ramirez T, Eltze T, Fabian E, Mehling A, Teubner W et al (2012) Putting the parts together: combining in vitro methods to test for skin sensitizing potentials. Regul Toxicol Pharmacol 63(3):489–504PubMedCrossRefGoogle Scholar
  11. Beltrani VS, Bernstein IL, Cohen DE, Fonacier L (2006) Contact dermatitis: a practice parameter. Ann Allergy Asthma Immunol 97(SUPPL. 2):S1–S38CrossRefGoogle Scholar
  12. Bodin A, Linnerborg M, Nilsson JL, Karlberg AT (2003) Structure elucidation, synthesis, and contact allergenic activity of a major hydroperoxide formed at autoxidation of the ethoxylated surfactant C12E5. Chem Res Toxicol 16(5):575–582PubMedCrossRefGoogle Scholar
  13. Boeniger MF, Ahlers HW (2003) Federal government regulation of occupational skin exposure in the USA. Int Arch Occup Environ Health 76(5):387–399PubMedCrossRefGoogle Scholar
  14. Bohme A, Thaens D, Paschke A, Schuurmann G (2009) Kinetic glutathione chemoassay to quantify thiol reactivity of organic electrophiles–application to alpha, beta-unsaturated ketones, acrylates, and propiolates. Chem Res Toxicol 22(4):742–750PubMedCrossRefGoogle Scholar
  15. Brase JM, Brown DL (2009) Modeling, simulation and analysis of complex networked systems. A program plan. U.S. Department of EnergyGoogle Scholar
  16. Bureau of Labor Statistics (2014) Employer-reported workplace injuries and illnesses–2013. Supplemental News Release Tables. Table SNR10. Numbers of nonfatal occupational illnesses by industry and category of illness. http://www.bls.gov/iif/oshwc/osh/os/ostb3971.pdf. Accessed 26 Oct 2015
  17. Bus JS, Becker RA (2009) Toxicity testing in the 21st century: a view from the chemical industry. Toxicol Sci 112(2):297–302PubMedCrossRefGoogle Scholar
  18. Cohen S, Cohen S (1966) Preparation and reactions of derivatives of squaric acid. Alkoxy-, hydroxy-, and aminocyclobutenediones. J Am Chem Soc 88(7):1533–1536CrossRefGoogle Scholar
  19. Dancik Y, Miller MA, Jaworska J, Kasting GB (2013) Design and performance of a spreadsheet-based model for estimating bioavailability of chemicals from dermal exposure. Adv Drug Deliv Rev 65(2):221–236PubMedCrossRefGoogle Scholar
  20. De Groot AC (1994) Patch testing: test concentrations and vehicles for 3700 chemicals, 2nd edn. Elsevier, New YorkGoogle Scholar
  21. De Wever B, Fuchs HW, Gaca M, Krul C, Mikulowski S, Poth A, Roggen EL et al (2012) Implementation challenges for designing integrated in vitro testing strategies (ITS) aiming at reducing and replacing animal experimentation. Toxicol In Vitro 26:526–534PubMedCrossRefGoogle Scholar
  22. Dimitrov SD, Low LK, Patlewicz GY, Kern PS, Dimitrova GD, Comber MH, Phillips RD et al (2005) Skin sensitization: modeling based on skin metabolism simulation and formation of protein conjugates. Int J Toxicol 24(4):189–204PubMedCrossRefGoogle Scholar
  23. Dinkova-Kostova AT, Holtzclaw WD, Kensler TW (2005) The role of Keap1 in cellular protective responses. Chem Res Toxicol 18(12):1779–1791PubMedCrossRefGoogle Scholar
  24. El Ali Z, Gerbeix C, Hemon P, Esser PR, Martin SF, Pallardy M, Kerdine-Romer S (2013) Allergic skin inflammation induced by chemical sensitizers is controlled by the transcription factor Nrf2. Toxicol Sci 134(1):39–48PubMedCrossRefGoogle Scholar
  25. Emter R, Ellis G, Natsch A (2010) Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro. Toxicol Appl Pharmacol 245(3):281–290PubMedCrossRefGoogle Scholar
  26. Esser PR, Wolfle U, Durr C, von Loewenich FD, Schempp CM, Freudenberg MA, Jakob T et al (2012) Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation. PLoS One 7(7):e41340PubMedCentralPubMedCrossRefGoogle Scholar
  27. European Union (2009) Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. OJL 342(59):59–209Google Scholar
  28. Gerberick GF, Robinson MK, Felter SP, White IR, Basketter DA (2001) Understanding fragrance allergy using an exposure-based risk assessment approach. Contact Dermat 45(6):333–340CrossRefGoogle Scholar
  29. Gerberick GF, Vassallo JD, Bailey RE, Chaney JG, Morrall SW, Lepoittevin JP (2004) Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci 81(2):332–343PubMedCrossRefGoogle Scholar
  30. Gerberick GF, Ryan CA, Kern PS, Schlatter H, Dearman RJ, Kimber I, Patlewicz GY et al (2005) Compilation of historical local lymph node data for evaluation of skin sensitization alternative methods. Dermatitis 16(4):157–202PubMedGoogle Scholar
  31. Gerberick GF, Vassallo JD, Foertsch LM, Price BB, Chaney JG, Lepoittevin JP (2007) Quantification of chemical peptide reactivity for screening contact allergens: a classification tree model approach. Toxicol Sci 97(2):417–427PubMedCrossRefGoogle Scholar
  32. Goodman SN (1999) Toward evidence-based medical statistics. 2: the Bayes factor. Ann Intern Med 130(12):1005–1013PubMedCrossRefGoogle Scholar
  33. Groothuis FA, Heringa MB, Nicol B, Hermens JL, Blaauboer BJ, Kramer NI (2015) Dose metric considerations in in vitro assays to improve quantitative in vitro-in vivo dose extrapolations. Toxicology 332:30–40PubMedCrossRefGoogle Scholar
  34. Hartung T, Luechtefeld T, Maertens A, Kleensang A (2013) Integrated testing strategies for safety assessments. ALTEX 30(1):3–18PubMedCentralPubMedCrossRefGoogle Scholar
  35. Hoffmann S (2015) LLNA variability: an essential ingredient for a comprehensive assessment of non-animal skin sensitization test methods and strategies. ALTEX. http://dx.doi.org/10.14573/altex.1505051. Accessed 26 Oct 2015
  36. ICCVAM (2011) ICCVAM test method evaluation report: usefulness and limitations of the murine local lymph node assay for potency categorization of chemicals causing allergic contact dermatitis in humans. National Institute of Environmental Health Sciences, Research Triangle ParkGoogle Scholar
  37. Jaworska J, Hoffmann S (2010) Integrated Testing Strategy (ITS)—opportunities to better use existing data and guide future testing in toxicology. Altex 27(4):231–242PubMedGoogle Scholar
  38. Jaworska J, Gabbert S, Aldenberg T (2010) Towards optimization of chemical testing under REACH: a Bayesian network approach to Integrated Testing Strategies. Regul Toxicol Pharmacol 57(2–3):157–167PubMedCrossRefGoogle Scholar
  39. Jaworska J, Harol A, Kern PS, Frank Gerberick G (2011) Integrating non-animal test information into an adaptive testing strategy—skin sensitization proof of concept case. ALTEX 28(3):211–225PubMedCrossRefGoogle Scholar
  40. Jaworska J, Dancik Y, Kern P, Gerberick F, Natsch A (2013) Bayesian integrated testing strategy to assess skin sensitization potency: from theory to practice. J Appl Toxicol 33(11):1353–1364PubMedGoogle Scholar
  41. Joint Research Centre of the European Union (2013) EURL ECVAM recommendation on the Direct Peptide Reactivity Assay (DPRA) for skin sensitisation testing. Publications Office of the European Union, LuxembourgGoogle Scholar
  42. Joint Research Centre of the European Union (2014) EURL ECVAM recommendation on the KeratinoSens™ assay for skin sensitisation testing. Publications Office of the European Union, LusembourgGoogle Scholar
  43. Joint Research Centre of the European Union (2015) EURL ECVAM recommendation on the human cell line activation test (h-CLAT) for skin sensitisation testing. Publications Office of the European Union, LusembourgGoogle Scholar
  44. Jowsey IR, Basketter DA, Westmoreland C, Kimber I (2006) A future approach to measuring relative skin sensitising potency: a proposal. J Appl Toxicol 26(4):341–350PubMedCrossRefGoogle Scholar
  45. Kagatani S, Sasaki Y, Hirota M, Mizuashi M, Suzuki M, Ohtani T, Itagaki H et al (2010) Oxidation of cell surface thiol groups by contact sensitizers triggers the maturation of dendritic cells. J Invest Dermatol 130:175–183PubMedCrossRefGoogle Scholar
  46. Kimber I, Basketter DA, Butler M, Gamer A, Garrigue JL, Gerberick GF, Newsome C et al (2003) Classification of contact allergens according to potency: proposals. Food Chem Toxicol 41(12):1799–1809PubMedCrossRefGoogle Scholar
  47. Kimber I, Basketter DA, Gerberick GF, Ryan CA, Dearman RJ (2011) Chemical allergy: translating biology into hazard characterization. Toxicol Sci 120(SUPPL.1):S238–S268PubMedCrossRefGoogle Scholar
  48. Kjaerulff UB, Madsen AL (2013) Bayesian networks and influence diagrams: a guide to construction and analysis, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  49. Kramer NI, Krismartina M, Rico-Rico A, Blaauboer BJ, Hermens JL (2012) Quantifying processes determining the free concentration of phenanthrene in Basal cytotoxicity assays. Chem Res Toxicol 25(2):436–445PubMedCrossRefGoogle Scholar
  50. Lucas PJ, van der Gaag LC, Abu-Hanna A (2004) Bayesian networks in biomedicine and health-care. Artif Intell Med 30(3):201–214PubMedCrossRefGoogle Scholar
  51. Luechtefeld T, Maertens A, McKim JM, Hartung T, Kleensang A, Sa-Rocha V (2015) Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships. J Appl Toxicol 35(11):1361–1371PubMedCrossRefGoogle Scholar
  52. Maxwell G, Mackay C (2008) Application of a systems biology approach to skin allergy risk assessment. Altern Lab Anim 36(5):521–556PubMedGoogle Scholar
  53. McKim JM Jr, Keller DJ 3rd, Gorski JR (2010) A new in vitro method for identifying chemical sensitizers combining peptide binding with ARE/EpRE-mediated gene expression in human skin cells. Cutan Ocul Toxicol 29(3):171–192PubMedCrossRefGoogle Scholar
  54. Mehling A, Eriksson T, Eltze T, Kolle S, Ramirez T, Teubner W, van Ravenzwaay B et al (2012) Non-animal test methods for predicting skin sensitization potentials. Arch Toxicol 86(8):1273–1295PubMedCrossRefGoogle Scholar
  55. Middleton E, Reed CE, Ellis EF, Adkinson NF, Yunginger JW, Busse WW (eds) (1998) Allergy principles and practice. Mosby, St. LouisGoogle Scholar
  56. Miyazawa M, Ito Y, Kosaka N, Nukada Y, Sakaguchi H, Suzuki H, Nishiyama N (2008) Role of MAPK signaling pathway in the activation of dendritic type cell line, THP-1, induced by DNCB and NiSO4. J Toxicol Sci 33(1):51–59PubMedCrossRefGoogle Scholar
  57. Natsch A (2010) The Nrf2-Keap1-ARE toxicity pathway as a cellular sensor for skin sensitizers–functional relevance and a hypothesis on innate reactions to skin sensitizers. Toxicol Sci 113(2):284–292PubMedCrossRefGoogle Scholar
  58. Natsch A (2014) Integrated approaches to safety testing: general principles and skin sensitization as a test case. In: Reducing, refining and replacing the use of animals in toxicity testing. Issues in toxicology, vol 19. Royal Society of Chemistry, Cambridge, UK, pp 364–288Google Scholar
  59. Natsch A, Emter R, Ellis G (2009) Filling the concept with data: integrating data from different in vitro and in silico assays on skin sensitizers to explore the battery approach for animal-free skin sensitization testing. Toxicol Sci 107(1):106–121PubMedCrossRefGoogle Scholar
  60. Natsch A, Haupt T, Laue H (2011) Relating skin sensitizing potency to chemical reactivity: reactive Michael acceptors inhibit NF-κB signaling and are less sensitizing than S NAr- and S N2-reactive chemicals. Chem Res Toxicol 24(11):2018–2027PubMedCrossRefGoogle Scholar
  61. Natsch A, Ryan CA, Foertsch L, Emter R, Jaworska J, Gerberick F, Kern P (2013) A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation. J Appl Toxicol 33(11):1337–1352PubMedGoogle Scholar
  62. Natsch A, Emter R, Gfeller H, Haupt T, Ellis G (2015a) Predicting skin sensitizer potency based on in vitro data from keratinosens and kinetic peptide binding: global versus domain-based assessment. Toxicol Sci 143(2):319–332PubMedCrossRefGoogle Scholar
  63. Natsch A, Emter R, Gfeller H, Haupt T, Ellis G (2015b) Predicting skin sensitizer potency based on In Vitro data from KeratinoSens and kinetic peptide binding: global versus domain-based assessment. Toxicol Sci 143(2):319–332PubMedCrossRefGoogle Scholar
  64. NIOSH (2012) Skin exposures and effects. Workplace safety and health. In: Centers for disease control and prevention. http://www.cdc.gov/niosh/topics/skin/ Accessed 3 Apr 2013
  65. Nukada Y, Ashikaga T, Miyazawa M, Hirota M, Sakaguchi H, Sasa H, Nishiyama N (2012) Prediction of skin sensitization potency of chemicals by human Cell Line Activation Test (h-CLAT) and an attempt at classifying skin sensitization potency. Toxicol In Vitro 26(7):1150–1160PubMedCrossRefGoogle Scholar
  66. Nukada Y, Miyazawa M, Kazutoshi S, Sakaguchi H, Nishiyama N (2013) Data integration of non-animal tests for the development of a test battery to predict the skin sensitizing potential and potency of chemicals. Toxicol In Vitro 27(2):609–618PubMedCrossRefGoogle Scholar
  67. OECD (2010) Test No. 429. Skin sensitisation: local lymph node assay OECD guidelines for the testing of chemicals, section 4: health effects. OECD Publishing, ParisGoogle Scholar
  68. OECD (2012) OECD series on testing and assessment no. 168. The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins. Part 1: scientific assessment. OECD Publishing, ParisGoogle Scholar
  69. OECD (2015a) Adverse outcome pathways, molecular screening and toxicogenomics. In: OECD Publishing. http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm Accessed 22 Jul 2015
  70. OECD (2015b) Draft proposal for a new test guideline. In Vitro skin sensitisation: human Cell Line Activation Test (h-CLAT). In: OECD Publishing. http://www.oecd.org/env/ehs/testing/Draft-Proposal-for-a-new-Test-Guideline-on-invitro-skin-sensitisation-h-CLAT.pdf. Accessed 12 Aug 2015
  71. OECD (2015c) Test No. 442C. In chemico skin sensitization: direct peptide reactivity assay (DPRA) OECD guidelines for the testing of chemicals, section 4: health effects. OECD Publishing, ParisGoogle Scholar
  72. OECD (2015d) Test No. 442D. In vitro skin sensitisation: ARE-Nrf2 Luciferase Test Method OECD guidelines for the testing of chemicals, section 4: health effects. OECD Publishing, ParisGoogle Scholar
  73. Patlewicz G, Kuseva C, Kesova A, Popova I, Zhechev T, Pavlov T, Roberts DW et al (2014a) Towards AOP application–implementation of an integrated approach to testing and assessment (IATA) into a pipeline tool for skin sensitization. Regul Toxicol Pharmacol 69(3):529–545PubMedCrossRefGoogle Scholar
  74. Patlewicz G, Kuseva C, Mehmed A, Popova Y, Dimitrova G, Ellis G, Hunziker R et al (2014b) TIMES-SS–recent refinements resulting from an industrial skin sensitisation consortium. SAR QSAR Environ Res 25(5):367–391PubMedCrossRefGoogle Scholar
  75. Pirone JR, Smith M, Kleinstreuer NC, Burns TA, Strickland J, Dancik Y, Morris R et al (2014) Open source software implementation of an integrated testing strategy for skin sensitization potency based on a Bayesian network. ALTEX 31(3):336–340PubMedCrossRefGoogle Scholar
  76. Reisinger K, Hoffmann S, Alepee N, Ashikaga T, Barroso J, Elcombe C, Gellatly N et al (2015) Systematic evaluation of non-animal test methods for skin sensitisation safety assessment. Toxicol In Vitro 29(1):259–270PubMedCrossRefGoogle Scholar
  77. Roberts DW, Aptula AO (2008) Determinants of skin sensitisation potential. J Appl Toxicol 28(3):377–387PubMedCrossRefGoogle Scholar
  78. Roberts DW, Patlewicz G, Dimitrov SD, Low LK, Aptula AO, Kern PS, Dimitrova GD et al (2007) TIMES-SS—a mechanistic evaluation of an external validation study using reaction chemistry principles. Chem Res Toxicol 20(9):1321–1330PubMedCrossRefGoogle Scholar
  79. Rovida C, Alepee N, Api AM, Basketter DA, Bois FY, Caloni F, Corsini E et al (2015) Integrated testing strategies (ITS) for safety assessment. ALTEX 32(1):25–40PubMedGoogle Scholar
  80. Sasseville D (2008) Occupational contact dermatitis. Allergy Asthma Clin Immunol 4(2):59–65PubMedCentralPubMedCrossRefGoogle Scholar
  81. Skold M, Borje A, Matura M, Karlberg AT (2002) Studies on the autoxidation and sensitizing capacity of the fragrance chemical linalool, identifying a linalool hydroperoxide. Contact Dermatitis 46(5):267–272PubMedCrossRefGoogle Scholar
  82. Su B, Zhou W, Dorman KS, Jones DE (2009) Mathematical modelling of immune response in tissues. Comput Math Method M 10(1):9–38CrossRefGoogle Scholar
  83. Takenouchi O, Miyazawa M, Saito K, Ashikaga T, Sakaguchi H (2013) Predictive performance of the human Cell Line Activation Test (h-CLAT) for lipophilic chemicals with high octanol-water partition coefficients. J Toxicol Sci 38(4):599–609PubMedCrossRefGoogle Scholar
  84. Tsujita-Inoue K, Hirota M, Ashikaga T, Atobe T, Kouzuki H, Aiba S (2014) Skin sensitization risk assessment model using artificial neural network analysis of data from multiple in vitro assays. Toxicol In Vitro 28(4):626–639PubMedCrossRefGoogle Scholar
  85. Tsujita-Inoue K, Atobe T, Hirota M, Ashikaga T, Kouzuki H (2015) In silico risk assessment for skin sensitization using artificial neural network analysis. J Toxicol Sci 40(2):193–209PubMedCrossRefGoogle Scholar
  86. UN (2013) Globally harmonised system of classification and labelling of chemicals (GHS), Fifth revised edition. United Nations, New YorkGoogle Scholar
  87. UNEP (2005) OECD SIDS. Phthalic anhydride. CAS No: 85-44-9. UNEP Publishing. http://www.inchem.org/documents/sids/sids/85449.pdf. Accessed 26 Oct 2015
  88. Urbisch D, Mehling A, Guth K, Ramirez T, Honarvar N, Kolle S, Landsiedel R et al (2015) Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul Toxicol Pharmacol 71(2):337–351PubMedCrossRefGoogle Scholar
  89. van der Veen JW, Gremmer ER, Vermeulen JP, van Loveren H, Ezendam J (2013) Induction of skin sensitization is augmented in Nrf2-deficient mice. Arch Toxicol 87(4):763–766PubMedCrossRefGoogle Scholar
  90. van der Veen JW, Rorije E, Emter R, Natsch A, van Loveren H, Ezendam J (2014) Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals. Regul Toxicol Pharmacol 69(3):371–379PubMedCrossRefGoogle Scholar
  91. Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B et al (2014a) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142(2):312–320PubMedCentralPubMedCrossRefGoogle Scholar
  92. Villeneuve DL, Crump D, Garcia-Reyero N, Hecker M, Hutchinson TH, LaLone CA, Landesmann B et al (2014b) Adverse outcome pathway development II: best practices. Toxicol Sci 142(2):321–330PubMedCentralPubMedCrossRefGoogle Scholar
  93. Weber FC, Esser PR, Muller T, Ganesan J, Pellegatti P, Simon MM, Zeiser R et al (2010) Lack of the purinergic receptor P2X(7) results in resistance to contact hypersensitivity. J Exp Med 207(12):2609–2619PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Joanna S. Jaworska
    • 1
  • Andreas Natsch
    • 2
  • Cindy Ryan
    • 3
  • Judy Strickland
    • 4
  • Takao Ashikaga
    • 5
  • Masaaki Miyazawa
    • 6
  1. 1.Procter and Gamble CompanyStrombeek-BeverBelgium
  2. 2.Givaudan Schweiz AGDuebendorfSwitzerland
  3. 3.Procter and Gamble CompanyMasonUSA
  4. 4.ILS/Contractor Supporting NICEATMResearch Triangle ParkUSA
  5. 5.Shisheido Company LimitedTokyoJapan
  6. 6.Kao Corporation, R&D Safety Science ResearchTochigiJapan

Personalised recommendations