Advertisement

Archives of Toxicology

, Volume 90, Issue 7, pp 1631–1638 | Cite as

Boxplots for grouped and clustered data in toxicology

  • Philip PallmannEmail author
  • Ludwig A. Hothorn
Analytical Toxicology

Abstract

The vast majority of toxicological papers summarize experimental data as bar charts of means with error bars. While these graphics are easy to generate, they often obscure essential features of the data, such as outliers or subgroups of individuals reacting differently to a treatment. In particular, raw values are of prime importance in toxicology; therefore, we argue they should not be hidden in messy supplementary tables but rather unveiled in neat graphics in the results section. We propose jittered boxplots as a very compact yet comprehensive and intuitively accessible way of visualizing grouped and clustered data from toxicological studies together with individual raw values and indications of statistical significance. A web application to create these plots is available online.

Keywords

Graphics Statistics R software Body weight  Micronucleus assay 

Supplementary material

204_2015_1608_MOESM1_ESM.pdf (536 kb)
Supplementary material 1 (pdf 536 KB)

References

  1. Adler ID, Kliesch U (1990) Comparison of single and multiple treatment regimens in the mouse bone marrow micronucleus assay for hydroquinone (HQ) and cyclophosphamide (CP). Mutat Res 234(3–4):115–123. doi: 10.1016/0165-1161(90)90002-6 CrossRefPubMedGoogle Scholar
  2. Benjamini Y (1988) Opening the box of a boxplot. Am Stat 42(4):257–262. doi: 10.2307/2685133 Google Scholar
  3. Bitter A, Rümmele P, Klein K, Ba K, Rieger JK, Nüssler AK, Zanger UM, Trauner M, Schwab M, Burk O (2014) Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms. Arch Toxicol. doi: 10.1007/s00204-014-1348-x PubMedGoogle Scholar
  4. Chen YJ, Lai KC, Kuo HH, Chow LP, Yih LH, Lee TC (2014) HSP70 colocalizes with PLK1 at the centrosome and disturbs spindle dynamics in cells arrested in mitosis by arsenic trioxide. Arch Toxicol 88(9):1711–1723. doi: 10.1007/s00204-014-1222-x CrossRefPubMedGoogle Scholar
  5. Djira GD, Hasler M, Gerhard D, Schaarschmidt F (2012) mratios: inferences for ratios of coefficients in the general linear model. R package version 1.3.17. http://cran.r-project.org/package=mratios
  6. Dunnett CW (1955) A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50(272):1096–1121. doi: 10.2307/2281208 CrossRefGoogle Scholar
  7. Edler L (2002) Statistical methods for toxicity detection and testing. In: Chyczewski L, Niklinski J, Pluygers E (eds) Endocrine disrupters and carcinogenic risk assessment. IOS Press, Amsterdam, pp 290–306Google Scholar
  8. Elmore SA, Peddada SD (2009) Points to consider on the statistical analysis of rodent cancer bioassay data when incorporating historical control data. Toxicol Pathol 37(5):672–676. doi: 10.1177/0192623309339606 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Empl MT, Kammeyer P, Ulrich R, Joseph JF, Parr MK, Willenberg I, Schebb NH, Baumgärtner W, Röhrdanz E, Steffen C, Steinberg P (2014) The influence of chronic l-carnitine supplementation on the formation of preneoplastic and atherosclerotic lesions in the colon and aorta of male F344 rats. Arch Toxicol. doi: 10.1007/s00204-014-1341-4 PubMedGoogle Scholar
  10. Gerhard D (2014) Simultaneous small sample inference for linear combinations of generalized linear model parameters. Commun Stat Simul Comput. doi: 10.1080/03610918.2014.895836 Google Scholar
  11. Hintze JL, Nelson RD (1998) Violin plots: a box plot-density trace synergism. Am Stat 52(2):181–184. doi: 10.1080/00031305.1998.10480559 Google Scholar
  12. Hothorn LA (ed) (1991) Statistical methods in toxicology. Springer, BerlinGoogle Scholar
  13. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363. doi: 10.1002/bimj.200810425 CrossRefPubMedGoogle Scholar
  14. ICH (1993) Guideline S5, Part I: detection of toxicity to reproduction for medicinal products. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S5_R2/Step4/S5_R2__Guideline.pdf
  15. Kampstra P (2008) beanplot: A boxplot alternative for visual comparison of distributions. J Stat Softw 28(code snippet 1):1–9. http://www.jstatsoft.org/v28/c01/paper
  16. Krzywinski M, Altman N (2014) Visualizing samples with box plots. Nat Methods 11(2):119–120. doi: 10.1038/nmeth.2813 CrossRefPubMedGoogle Scholar
  17. Laster LL, Johnson MF (2003) Non-inferiority trials: the ‘at least as good as’ criterion. Stat Med 22(2):187–200. doi: 10.1002/sim.1137 CrossRefPubMedGoogle Scholar
  18. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall/CRC, Boca RatonCrossRefGoogle Scholar
  19. McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32(1):12–16. doi: 10.2307/2683468 Google Scholar
  20. Miller-Pinsler L, Sharma A, Wells PG (2015) Enhanced NADPH oxidases and reactive oxygen species in the mechanism of methanol-initiated protein oxidation and embryopathies in vivo and in embryo culture. Arch Toxicol. doi: 10.1007/s00204-015-1482-0 PubMedGoogle Scholar
  21. OECD (1997) Guideline for testing of chemicals, Test No. 471: bacterial reverse mutation test. doi: 10.1787/9789264071247-en
  22. Park EJ, Sim J, Kim Y, Han BS, Yoon C, Lee S, Cho MH, Lee BS, Kim JH (2015) A 13-week repeated-dose oral toxicity and bioaccumulation of aluminum oxide nanoparticles in mice. Arch Toxicol 89(3):371–379. doi: 10.1007/s00204-014-1256-0 CrossRefPubMedGoogle Scholar
  23. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015) nlme: Linear and nonlinear mixed effects models. R package version 3.1-120. http://cran.r-project.org/package=nlme
  24. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New YorkCrossRefGoogle Scholar
  25. R Core Team (2015) R: a language and environment for statistical computing. http://www.r-project.org
  26. Spitzer M, Wildenhain J, Rappsilber J, Tyers M (2014) BoxPlotR: a web tool for generation of box plots. Nat Methods 11(2):121–122. doi: 10.1038/nmeth.2811 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Tukey JW (1977) Exploratory data analysis. Addison-Wesley, ReadingGoogle Scholar
  28. Wickham H (2009) ggplot2: Elegant graphics for data analysis. Springer, New York. http://docs.ggplot2.org/current/

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsLancaster UniversityLancasterUK
  2. 2.Institute of BiostatisticsLeibniz University HannoverHannoverGermany

Personalised recommendations