Archives of Toxicology

, Volume 90, Issue 8, pp 1983–1995 | Cite as

Complementarity of phosphorylated histones H2AX and H3 quantification in different cell lines for genotoxicity screening

  • Laure Khoury
  • Daniel Zalko
  • Marc AudebertEmail author
Genotoxicity and Carcinogenicity


The in vitro micronucleus assay is broadly used, but is not per se able to discriminate aneugenic from clastogenic compounds, and cytotoxicity can be a confounding factor. In vitro genotoxicity assays generally rely on cell lines with limited metabolic capabilities. Recently, the use of histone H2AX and H3 phosphorylation markers (γH2AX and p-H3) was proposed to discriminate aneugenic from clastogenic chemicals. The aim of the present study was to develop a new genotoxic screening strategy based on the use of the γH2AX and p-H3 biomarkers in combination with cell lines with distinct biotransformation properties. First, we tested a training set of 20 model chemicals comprised of 10 aneugens, five clastogens and five cytotoxics on three human cell lines (HepG2, LS-174T and ACHN). Our data confirm the robustness of these two biomarkers to discriminate efficiently clastogens, aneugens and misleading cytotoxic chemicals in HepG2 cells. Aneugenic compounds induced either an increase or a decrease in p-H3 depending on their mode of action. Clastogens induced γH2AX, and cytotoxic compounds generated a marked decrease in these two biomarkers. Moreover, the use of different cell lines permits to discriminate direct from bioactivated genotoxins without the need of an exogenous metabolic activation system. Finally, we further evaluated this strategy using a test set of 13 chemicals with controversial genotoxic potential. The resulting data demonstrate that the combined analysis of γH2AX and p-H3 is an efficient strategy. Notably, we demonstrated that three compounds (fisetin, hydroquinone and okadaic acid) display both aneugenic and clastogenic properties.


Genotoxicity H2AX H3 HepG2 Metabolism 



This work benefited from fruitful discussions with many genotoxicity experts who generously shared their experience, special thanks to Drs. David Kirkland, Richard Walmsley, Steven Bryce and Stephen Dertinger.


This work was supported in part by the French ANSES MYCO-TOX EST-13-214 and ANR “Contreperf” Grants.

Supplementary material

204_2015_1599_MOESM1_ESM.docx (88 kb)
Supplementary material 1 (DOCX 88 kb)
204_2015_1599_MOESM2_ESM.pptx (638 kb)
Supplementary material 2 (PPTX 637 kb)


  1. Ando M, Yoshikawa K, Iwase Y, Ishiura S (2014) Usefulness of monitoring gamma-H2AX and cell cycle arrest in HepG2 cells for estimating genotoxicity using a high-content analysis system. J Biomol Screen 19:1246–1254CrossRefPubMedGoogle Scholar
  2. Antoccia A, Degrassi F, Battistoni A, Ciliutti P, Tanzarella C (1991) In vitro micronucleus test with kinetochore staining: evaluation of test performance. Mutagenesis 6:319–324CrossRefPubMedGoogle Scholar
  3. Attia SM (2009) Use of centromeric and telomeric DNA probes in in situ hybridization for differentiation of micronuclei induced by lomefloxacin. Environ Mol Mutagen 50:394–403CrossRefPubMedGoogle Scholar
  4. Attia SM, Ashour AE, Bakheet SA (2013) Comet-FISH studies for evaluation of genetic damage of citalopram in somatic cells of the mouse. J Appl Toxicol 33:901–905CrossRefPubMedGoogle Scholar
  5. Audebert M, Riu A, Jacques C, Hillenweck A, Jamin EL, Zalko D, Cravedi JP (2010) Use of the gammaH2AX assay for assessing the genotoxicity of polycyclic aromatic hydrocarbons in human cell lines. Toxicol Lett 199:182–192CrossRefPubMedGoogle Scholar
  6. Audebert M, Dolo L, Perdu E, Cravedi JP, Zalko D (2011) Use of the gammaH2AX assay for assessing the genotoxicity of bisphenol A and bisphenol F in human cell lines. Arch Toxicol 85:1463–1473CrossRefPubMedGoogle Scholar
  7. Audebert M, Zeman F, Beaudoin R, Pery A, Cravedi JP (2012) Comparative potency approach based on H2AX assay for estimating the genotoxicity of polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol 260:58–64CrossRefPubMedGoogle Scholar
  8. Banerjee T, Chakravarti D (2011) A peek into the complex realm of histone phosphorylation. Mol Cell Biol 31:4858–4873CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bellincampi D, Gualandi G, la Monica E, Poley C, Morpurgo GP (1980) Membrane-damaging agents cause mitotic non-disjunction in Aspergillus nidulans. Mutat Res 79:169–172CrossRefPubMedGoogle Scholar
  10. Brambilla G, Martelli A (2009) Update on genotoxicity and carcinogenicity testing of 472 marketed pharmaceuticals. Mutat Res 681:209–229CrossRefPubMedGoogle Scholar
  11. Brambilla G, Mattioli F, Martelli A (2009) Genotoxic and carcinogenic effects of antipsychotics and antidepressants. Toxicology 261:77–88CrossRefPubMedGoogle Scholar
  12. Brunner M, Albertini S, Wurgler FE (1991) Effects of 10 known or suspected spindle poisons in the in vitro porcine brain tubulin assembly assay. Mutagenesis 6:65–70CrossRefPubMedGoogle Scholar
  13. Bryce SM, Bemis JC, Mereness JA, Spellman RA, Moss J, Dickinson D, Schuler MJ, Dertinger SD (2014) Interpreting in vitro micronucleus positive results: simple biomarker matrix discriminates clastogens, aneugens, and misleading positive agents. Environ Mol Mutagen 55:542–555CrossRefPubMedGoogle Scholar
  14. Cheung JR, Dickinson DA, Moss J, Schuler MJ, Spellman RA, Heard PL (2015) Histone markers identify the mode of action for compounds positive in the TK6 micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen 777:7–16CrossRefPubMedGoogle Scholar
  15. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58CrossRefPubMedPubMedCentralGoogle Scholar
  16. Di Virgilio AL, Iwami K, Watjen W, Kahl R, Degen GH (2004) Genotoxicity of the isoflavones genistein, daidzein and equol in V79 cells. Toxicol Lett 151:151–162CrossRefPubMedGoogle Scholar
  17. Dorn SB, Degen GH, Muller T, Bonacker D, Joosten HF, van der Louw J, van Acker FA, Bolt HM (2007) Proposed criteria for specific and non-specific chromosomal genotoxicity based on hydrophobic interactions. Mutat Res 628:67–75CrossRefPubMedGoogle Scholar
  18. EFSA (2007) Conclusion regarding the peer review of the pesticide risk assessment of the active substance fludioxonil.
  19. Elhajouji A, Tibaldi F, Kirsch-Volders M (1997) Indication for thresholds of chromosome non-disjunction versus chromosome lagging induced by spindle inhibitors in vitro in human lymphocytes. Mutagenesis 12:133–140CrossRefPubMedGoogle Scholar
  20. Eriksen KT, Raaschou-Nielsen O, Sorensen M, Roursgaard M, Loft S, Moller P (2010) Genotoxic potential of the perfluorinated chemicals PFOA, PFOS, PFBS, PFNA and PFHxA in human HepG2 cells. Mutat Res 700:39–43CrossRefPubMedGoogle Scholar
  21. Fessard V, Grosse Y, Pfohl-Leszkowicz A, Puiseux-Dao S (1996) Okadaic acid treatment induces DNA adduct formation in BHK21 C13 fibroblasts and HESV keratinocytes. Mutat Res 361:133–141CrossRefPubMedGoogle Scholar
  22. Florentin A, Deblonde T, Diguio N, Hautemaniere A, Hartemann P (2011) Impacts of two perfluorinated compounds (PFOS and PFOA) on human hepatoma cells: Cytotoxicity but no genotoxicity? Int J Hyg Environ Health 214:493–499CrossRefPubMedGoogle Scholar
  23. Fowler P, Smith K, Young J, Jeffrey L, Kirkland D, Pfuhler S, Carmichael P (2012) Reduction of misleading (“false”) positive results in mammalian cell genotoxicity assays. I. Choice of cell type. Mutat Res 742:11–25CrossRefPubMedGoogle Scholar
  24. Garcia-Canton C, Anadon A, Meredith C (2013a) Assessment of the in vitro gammaH2AX assay by high content screening as a novel genotoxicity test. Mutat Res 757:158–166CrossRefPubMedGoogle Scholar
  25. Garcia-Canton C, Anadon A, Meredith C (2013b) Genotoxicity evaluation of individual cigarette smoke toxicants using the in vitro gammaH2AX assay by high content screening. Toxicol Lett 223:81–87CrossRefPubMedGoogle Scholar
  26. Gollapudi P, Hasegawa LS, Eastmond DA (2014) A comparative study of the aneugenic and polyploidy-inducing effects of fisetin and two model Aurora kinase inhibitors. Mutat Res, Genet Toxicol Environ Mutagen 767:37–43CrossRefGoogle Scholar
  27. Graillot V, Takakura N, Hegarat LL, Fessard V, Audebert M, Cravedi JP (2012a) Genotoxicity of pesticide mixtures present in the diet of the French population. Environ Mol Mutagen 53:173–184CrossRefPubMedGoogle Scholar
  28. Graillot V, Tomasetig F, Cravedi JP, Audebert M (2012b) Evidence of the in vitro genotoxicity of methyl-pyrazole pesticides in human cells. Mutat Res 748:8–16CrossRefPubMedGoogle Scholar
  29. Guo L, Dial S, Shi L, Branham W, Liu J, Fang JL, Green B, Deng H, Kaput J, Ning B (2011) Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos 39:528–538CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hans F, Dimitrov S (2001) Histone H3 phosphorylation and cell division. Oncogene 20:3021–3027CrossRefPubMedGoogle Scholar
  31. Harrington EA, Bebbington D, Moore J, Rasmussen RK, Ajose-Adeogun AO, Nakayama T, Graham JA, Demur C, Hercend T, Diu-Hercend A, Su M, Golec JM, Miller KM (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10:262–267CrossRefPubMedGoogle Scholar
  32. Hashimoto K, Nakajima Y, Matsumura S, Chatani F (2010) An in vitro micronucleus assay with size-classified micronucleus counting to discriminate aneugens from clastogens. Toxicol In Vitro 24:208–216CrossRefPubMedGoogle Scholar
  33. Heard PL, Rubitski EE, Spellman RA, Schuler MJ (2013) Phenolphthalein induces centrosome amplification and tubulin depolymerization in vitro. Environ Mol Mutagen 54:308–316CrossRefPubMedGoogle Scholar
  34. Hernandez LG, van Benthem J, Johnson GE (2013) A mode-of-action approach for the identification of genotoxic carcinogens. PLoS ONE 8:e64532CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jacquet N, Maire MA, Landkocz Y, Vasseur P (2012) Carcinogenic potency of perfluorooctane sulfonate (PFOS) on Syrian hamster embryo (SHE) cells. Arch Toxicol 86:305–314CrossRefPubMedGoogle Scholar
  36. Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH (2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333:1895–1898CrossRefPubMedGoogle Scholar
  37. Kersten B, Zhang J, Brendler-Schwaab SY, Kasper P, Muller L (1999) The application of the micronucleus test in Chinese hamster V79 cells to detect drug-induced photogenotoxicity. Mutat Res 445:55–71CrossRefPubMedGoogle Scholar
  38. Khoury L, Zalko D, Audebert M (2013) Validation of high-throughput genotoxicity assay screening using gammaH2AX in-cell western assay on HepG2 cells. Environ Mol Mutagen 54:737–746CrossRefPubMedGoogle Scholar
  39. Khoury L, Zalko D, Audebert M (2015) Evaluation of four human cell lines with distinct biotransformation properties for genotoxic screening. Mutagenesis. doi: 10.1093/mutage/gev058
  40. Kirkland D (2011) Improvements in the reliability of in vitro genotoxicity testing. Expert Opin Drug Metab Toxicol 7:1513–1520CrossRefPubMedGoogle Scholar
  41. Kirkland D, Kasper P, Muller L, Corvi R, Speit G (2008) Recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests: a follow-up to an ECVAM workshop. Mutat Res 653:99–108CrossRefPubMedGoogle Scholar
  42. Kligerman AD, Young RR, Stankowski LF, Jr, Pant K, Lawlor T, Aardema MJ, Houck KA (2015) An evaluation of 25 selected ToxCast chemicals in medium-throughput assays to detect genotoxicity. Environ Mol Mutagen 2014 Dec 23. doi: 10.1002/em.21934
  43. Ku WW, Bigger A, Brambilla G, Glatt H, Gocke E, Guzzie PJ, Hakura A, Honma M, Martus HJ, Obach RS, Roberts S (2007) Strategy for genotoxicity testing–metabolic considerations. Mutat Res 627:59–77CrossRefPubMedGoogle Scholar
  44. Kuehner S, Holzmann K, Speit G (2013) Characterization of formaldehyde’s genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol 87:1999–2012CrossRefPubMedGoogle Scholar
  45. Kumari A, Lim YX, Newell AH, Olson SB, McCullough AK (2012) Formaldehyde-induced genome instability is suppressed by an XPF-dependent pathway. DNA Repair (Amst) 11:236–246CrossRefGoogle Scholar
  46. Kurebayashi H, Okudaira K, Ohno Y (2010) Species difference of metabolic clearance of bisphenol A using cryopreserved hepatocytes from rats, monkeys and humans. Toxicol Lett 198:210–215CrossRefPubMedGoogle Scholar
  47. Le Hegarat L, Puech L, Fessard V, Poul JM, Dragacci S (2003) Aneugenic potential of okadaic acid revealed by the micronucleus assay combined with the FISH technique in CHO-K1 cells. Mutagenesis 18:293–298CrossRefPubMedGoogle Scholar
  48. Lin J, Schyschka L, Muhl-Benninghaus R, Neumann J, Hao L, Nussler N, Dooley S, Liu L, Stockle U, Nussler AK, Ehnert S (2012) Comparative analysis of phase I and II enzyme activities in 5 hepatic cell lines identifies Huh-7 and HCC-T cells with the highest potential to study drug metabolism. Arch Toxicol 86:87–95CrossRefPubMedGoogle Scholar
  49. Lu K, Collins LB, Ru H, Bermudez E, Swenberg JA (2010) Distribution of DNA adducts caused by inhaled formaldehyde is consistent with induction of nasal carcinoma but not leukemia. Toxicol Sci 116:441–451CrossRefPubMedPubMedCentralGoogle Scholar
  50. Matsuzaki K, Harada A, Takeiri A, Tanaka K, Mishima M (2010) Whole cell-ELISA to measure the gammaH2AX response of six aneugens and eight DNA-damaging chemicals. Mutat Res 700:71–79CrossRefPubMedGoogle Scholar
  51. Mazur CS, Kenneke JF, Hess-Wilson JK, Lipscomb JC (2010) Differences between human and rat intestinal and hepatic bisphenol-A glucuronidation and the influence of alamethicin on in vitro kinetic measurements. Drug Metab Dispos 38:2232–2238CrossRefPubMedGoogle Scholar
  52. Meintieres S, Biola A, Pallardy M, Marzin D (2001) Apoptosis can be a confusing factor in in vitro clastogenic assays. Mutagenesis 16:243–250CrossRefPubMedGoogle Scholar
  53. Michaelis M, Selt F, Rothweiler F, Loschmann N, Nusse B, Dirks WG, Zehner R, Cinatl J Jr (2014) Aurora kinases as targets in drug-resistant neuroblastoma cells. PLoS ONE 9:e108758CrossRefPubMedPubMedCentralGoogle Scholar
  54. Moore MM, Honma M, Clements J, Awogi T, Douglas GR, van Goethem F, Gollapudi B, Kimura A, Muster W, O’Donovan M, Schoeny R, Wakuri S (2011) Suitable top concentration for tests with mammalian cells: mouse lymphoma assay workgroup. Mutat Res 723:84–86CrossRefPubMedGoogle Scholar
  55. Muehlbauer PA, Schuler MJ (2005) Detection of numerical chromosomal aberrations by flow cytometry: a novel process for identifying aneugenic agents. Mutat Res 585:156–169CrossRefPubMedGoogle Scholar
  56. Nikolova T, Dvorak M, Jung F, Adam I, Kramer E, Gerhold-Ay A, Kaina B (2014) The gammaH2AX assay for genotoxic and nongenotoxic agents: comparison of H2AX phosphorylation with cell death response. Toxicol Sci 140:103–117CrossRefPubMedGoogle Scholar
  57. Orth JD, Loewer A, Lahav G, Mitchison TJ (2012) Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol Biol Cell 23:567–576CrossRefPubMedPubMedCentralGoogle Scholar
  58. Parry JM, Fielder RJ, McDonald A (1994) Thresholds for aneuploidy-inducing chemicals. Advisory Committee on Mutagenicity of Chemicals in Food, Consumer Products and the Environment of the UK Department of Health. Mutagenesis 9:503–504CrossRefPubMedGoogle Scholar
  59. Peng C, Arthur D, Liu F, Lee J, Xia Q, Lavin MF, Ng JC (2013) Genotoxicity of hydroquinone in A549 cells. Cell Biol Toxicol 29:213–227CrossRefPubMedGoogle Scholar
  60. Perrone CE, Takahashi KC, Williams GM (2002) Inhibition of human topoisomerase IIalpha by fluoroquinolones and ultraviolet A irradiation. Toxicol Sci 69:16–22CrossRefPubMedGoogle Scholar
  61. Prigent C, Dimitrov S (2003) Phosphorylation of serine 10 in histone H3, What for? J Cell Sci 116:3677–3685CrossRefPubMedGoogle Scholar
  62. Rakitsky VN, Koblyakov VA, Turusov VS (2000) Nongenotoxic (epigenetic) carcinogens: pesticides as an example. A critical review. Teratog Carcinog Mutagen 20:229–240CrossRefPubMedGoogle Scholar
  63. Sharma AK, Bhattacharya S, Khan SA, Khade B, Gupta S (2015) Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response inhuman cells. Mutat Res 773:83–91CrossRefPubMedGoogle Scholar
  64. Singh AC, Kumar M, Jha AM (2003) Genotoxicity of lomefloxacin–an antibacterial drug in somatic and germ cells of Swiss albino mice in vivo. Mutat Res 535:35–42CrossRefPubMedGoogle Scholar
  65. Smart DJ, Ahmedi KP, Harvey JS, Lynch AM (2011) Genotoxicity screening via the gammaH2AX by flow assay. Mutat Res 715:25–31CrossRefPubMedGoogle Scholar
  66. Snyder RD, Cooper CS (1999) Photogenotoxicity of fluoroquinolones in Chinese hamster V79 cells: dependency on active topoisomerase II. Photochem Photobiol 69:288–293CrossRefPubMedGoogle Scholar
  67. Souid-Mensi G, Moukha S, Mobio TA, Maaroufi K, Creppy EE (2008) The cytotoxicity and genotoxicity of okadaic acid are cell-line dependent. Toxicon 51:1338–1344CrossRefPubMedGoogle Scholar
  68. Stopper H, Schmitt E, Kobras K (2005) Genotoxicity of phytoestrogens. Mutat Res 574:139–155CrossRefPubMedGoogle Scholar
  69. Tsamou M, Jennen DG, Claessen SM, Magkoufopoulou C, Kleinjans JC, van Delft JH (2012) Performance of in vitro gammaH2AX assay in HepG2 cells to predict in vivo genotoxicity. Mutagenesis 27:645–652CrossRefPubMedGoogle Scholar
  70. Valdiglesias V, Mendez J, Pasaro E, Cemeli E, Anderson D, Laffon B (2010) Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells. Mutat Res 689:74–79CrossRefPubMedGoogle Scholar
  71. Valdiglesias V, Prego-Faraldo MV, Pasaro E, Mendez J, Laffon B (2013) Okadaic acid: more than a diarrheic toxin. Mar Drugs 11:4328–4349CrossRefPubMedPubMedCentralGoogle Scholar
  72. Vinken M, Doktorova T, Ellinger-Ziegelbauer H, Ahr HJ, Lock E, Carmichael P, Roggen E, van Delft J, Kleinjans J, Castell J, Bort R, Donato T, Ryan M, Corvi R, Keun H, Ebbels T, Athersuch T, Sansone SA, Rocca-Serra P, Stierum R, Jennings P, Pfaller W, Gmuender H, Vanhaecke T, Rogiers V (2008) The carcinoGENOMICS project: critical selection of model compounds for the development of omics-based in vitro carcinogenicity screening assays. Mutat Res 659:202–210CrossRefPubMedGoogle Scholar
  73. Watters GP, Smart DJ, Harvey JS, Austin CA (2009) H2AX phosphorylation as a genotoxicity endpoint. Mutat Res 679:50–58CrossRefPubMedGoogle Scholar
  74. Williams GM, Brunnemann KD, Smart DJ, Molina D, Jeffrey AM, Duan JD, Krebsfaenger N, Kampkoetter A, Schmuck G (2013) Relationship of cellular topoisomerase IIalpha inhibition to cytotoxicity and published genotoxicity of fluoroquinolone antibiotics in V79 cells. Chem Biol Interact 203:386–390CrossRefPubMedGoogle Scholar
  75. Wojcik K, Zarebski M, Cossarizza A, Dobrucki JW (2013) Daunomycin, an antitumor DNA intercalator, influences histone-DNA interactions. Cancer Biol Ther 14:823–832CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yoshida I, Ibuki Y (2014) Formaldehyde-induced histone H3 phosphorylation via JNK and the expression of proto-oncogenes. Mutat Res 770:9–18CrossRefPubMedGoogle Scholar
  77. Zacharaki P, Stephanou G, Demopoulos NA (2013) Comparison of the aneugenic properties of nocodazole, paclitaxel and griseofulvin in vitro. Centrosome defects and alterations in protein expression profiles. J Appl Toxicol 33:869–879CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.INRA, UMR1331, Toxalim, Research Centre in Food ToxicologyToulouse Cedex 3France
  2. 2.Université de Toulouse, INPT, UPS, UMR1331ToulouseFrance

Personalised recommendations