Archives of Toxicology

, Volume 90, Issue 6, pp 1415–1427

Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events

  • Jenny Baumann
  • Kathrin Gassmann
  • Stefan Masjosthusmann
  • Denise DeBoer
  • Farina Bendt
  • Susanne Giersiefer
  • Ellen Fritsche
In vitro systems


The developing brain is highly vulnerable to the adverse effects of chemicals, resulting in neurodevelopmental disorders in humans. Currently, animal experiments in the rat are the gold standard for developmental neurotoxicity (DNT) testing; however, these guideline studies are insufficient in terms of animal use, time and costs and bear the issue of species extrapolation. Therefore, the necessity for alternative methods that predict DNT of chemicals faster, cheaper and with a high predictivity for humans is internationally agreed on. In this respect, we developed an in vitro model for DNT key event screening, which is based on primary human and rat neural progenitor cells grown as neurospheres. They are able to mimic basic processes of early fetal brain development and enable an investigation of species differences between humans and rodents in corresponding cellular models. The goal of this study was to investigate to what extent human and rat neurospheres were able to correctly predict the DNT potential of a well-characterized training set of nine chemicals by investigating effects on progenitor cell proliferation, migration and neuronal differentiation in parallel to cell viability, and to compare these chemical responses between human and rat neurospheres. We demonstrate that (1) by correlating these human and rat in vitro results to existing in vivo data, human and rat neurospheres classified most compounds correctly and thus may serve as a valuable component of a modular DNT testing strategy and (2) human and rat neurospheres differed in their sensitivity to most chemicals, reflecting toxicodynamic species differences of chemicals.


Neurosphere Human Rat Developmental Neurotoxicity In vitro Species difference 

Supplementary material

204_2015_1568_MOESM1_ESM.pdf (1.5 mb)
Supplementary material 1 (PDF 1486 kb)


  1. Alépée N, Bahinski T, Daneshian M et al (2014) State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX 31(4):441–477PubMedPubMedCentralGoogle Scholar
  2. Ankley GT, Bennett RS, Erickson RJ et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29(3):730–741CrossRefPubMedGoogle Scholar
  3. Ayuso-Sacido A, Moliterno JA, Kratovac S et al (2010) Activated EGFR signaling increases proliferation, survival, and migration and blocks neuronal differentiation in post-natal neural stem cells. J Neurooncol 97(3):323–337CrossRefPubMedGoogle Scholar
  4. Bal-Price AK, Coecke S, Costa L et al (2012) Advancing the science of developmental neurotoxicity (DNT): testing for better safety evaluation. Altex 29(2):202–215CrossRefPubMedGoogle Scholar
  5. Bal-Price A, Crofton KM, Leist M et al (2015a) International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch Toxicol 89(2):269–287CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bal-Price A, Crofton KM, Sachana M et al (2015b) Putative adverse outcome pathways relevant to neurotoxicity. Crit Rev Toxicol 45(1):83–91CrossRefPubMedGoogle Scholar
  7. Bassanini S, Hallene K, Battaglia G et al (2007) Early cerebrovascular and parenchymal events following prenatal exposure to the putative neurotoxin methylazoxymethanol. Neurobiol dis 26(2):481–495CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baumann J, Barenys M, Gassmann K, Fritsche E (2014) Comparative human and rat “neurosphere assay” for developmental neurotoxicity testing. Curr Protoc Toxicol 59:12.21.1–12.21.24CrossRefGoogle Scholar
  9. Bellanger M, Pichery C, Aerts D et al (2013) Economic benefits of methylmercury exposure control in Europe: monetary value of neurotoxicity prevention. Environ Health 12(1):3CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bornhausen M, Müsch H, Greim H (1980) Operant behavior performance changes in rats after prenatal methylmercury exposure. Toxicol Appl Pharmacol 56(3):305–310CrossRefPubMedGoogle Scholar
  11. Breier JM, Gassmann K, Kayser R et al (2010) Neural progenitor cells as models for high-throughput screens of developmental neurotoxicity: state of the science. Neurotoxicol Teratol 32(1):4–15CrossRefPubMedGoogle Scholar
  12. Burbacher TM, Rodier PM, Weiss B (1990) Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol 12(3):191–202CrossRefPubMedGoogle Scholar
  13. Burgess-Herbert SL, Euling SY (2013) Use of comparative genomics approaches to characterize interspecies differences in response to environmental chemicals: challenges, opportunities, and research needs. Toxicol Appl Pharmacol 271(3):372–385CrossRefPubMedGoogle Scholar
  14. Castoldi AF, Coccini T, Ceccatelli S, Manzo L (2001) Neurotoxicity and molecular effects of methylmercury. Brain Res Bull 55(2):197–203CrossRefPubMedGoogle Scholar
  15. Cattabeni F, Di Luca M (1997) Developmental models of brain dysfunctions induced by targeted cellular ablations with methylazoxymethanol. Physiol Rev 77(1):199–215PubMedGoogle Scholar
  16. Chen WJ, Bōdy RL, Mottet NK (1979) Some effects of continuous low-dose congenital exposure to methylmercury on organ growth in the rat fetus. Teratology 20(1):31–36CrossRefPubMedGoogle Scholar
  17. Clancy B, Kersh B, Hyde J, Darlington RB, Anand K, Finlay BL (2007) Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics 5(1):79–94CrossRefPubMedGoogle Scholar
  18. Coecke S, Goldberg AM, Allen S et al (2007) Workgroup report: incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies. Environ Health Perspect 115(6):924–931CrossRefPubMedPubMedCentralGoogle Scholar
  19. Crofton KM, Mundy WR, Lein PJ et al (2011) Developmental neurotoxicity testing: recommendations for developing alternative methods for the screening and prioritization of chemicals. Altex 28(1):9–15PubMedGoogle Scholar
  20. Croom EL, Shafer TJ, Evans MV et al (2015) Improving in vitro to in vivo extrapolation by incorporating toxicokinetic measurements: a case study of lindane-induced neurotoxicity. Toxicol Appl Pharmacol 283(1):9–19CrossRefPubMedGoogle Scholar
  21. Dam K, Seidler F, Slotkin T (1998) Developmental neurotoxicity of chlorpyrifos: delayed targeting of DNA synthesis after repeated administration. Dev Brain Res 108(1):39–45CrossRefGoogle Scholar
  22. Daston GP, Chapin RE, Scialli AR et al (2010) A different approach to validating screening assays for developmental toxicity. Birth Defects Res B 89(6):526–530CrossRefGoogle Scholar
  23. De Groot DM, Hartgring S, Van de Horst L et al (2005) 2D and 3D assessment of neuropathology in rat brain after prenatal exposure to methylazoxymethanol, a model for developmental neurotoxicty. Reprod Toxicol 20(3):417–432CrossRefPubMedGoogle Scholar
  24. Foti SB, Chou A, Moll AD, Roskams AJ (2013) HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain. Int J Dev Neurosci 31(6):434–447. doi:10.1016/j.ijdevneu.2013.03.008 CrossRefPubMedGoogle Scholar
  25. Gassmann K, Abel J, Bothe H et al (2010) Species-specific differential AhR expression protects human neural progenitor cells against developmental neurotoxicity of PAHs. Environ Health Perspect 118(1):1571–1577CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gassmann K, Baumann J, Giersiefer S et al (2012) Automated neurosphere sorting and plating by the COPAS large particle sorter is a suitable method for high-throughput 3D in vitro applications. Toxicol In Vitro 26(6):993–1000CrossRefPubMedGoogle Scholar
  27. Go HS, Kim KC, Choi CS et al (2012) Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3β/β-catenin pathway. Neuropharmacology 63(6):1028–1041. doi:10.1016/j.neuropharm.2012.07.028 CrossRefPubMedGoogle Scholar
  28. Goldman LR, Koduru S (2000) Chemicals in the environment and developmental toxicity to children: a public health and policy perspective. Environ Health Perspect 108(Suppl 3):443CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. The Lancet 368(9553):2167–2178CrossRefGoogle Scholar
  30. Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13(3):330–338CrossRefPubMedPubMedCentralGoogle Scholar
  31. Harrill JA, Freudenrich TM, Robinette BL, Mundy WR (2011) Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth. Toxicol Appl Pharmacol 256(3):268–280CrossRefPubMedGoogle Scholar
  32. Howard AS, Bucelli R, Jett DA, Bruun D, Yang D, Lein PJ (2005) Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures. Toxicol Appl Pharmacol 207(2):112–124CrossRefPubMedGoogle Scholar
  33. Jiang Y-Z, Wang K, Fang R, Zheng J (2010) Expression of aryl hydrocarbon receptor in human placentas and fetal tissues. J Histochem Cytochem 58(8):679–685CrossRefPubMedPubMedCentralGoogle Scholar
  34. Karlsson M, Hammers S, Nilsson-Ehle I, Malmborg A-S, Wretlind B (1996) Concentrations of doxycycline and penicillin G in sera and cerebrospinal fluid of patients treated for neuroborreliosis. Antimicrob Agents Chemother 40(5):1104–1107PubMedPubMedCentralGoogle Scholar
  35. Kisby G, Olivas A, Park T et al (2009) DNA repair modulates the vulnerability of the developing brain to alkylating agents. DNA Repair 8(3):400–412CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kleinstreuer NC, Yang J, Berg EL et al (2014) Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms. Nat Biotechnol 32(6):583–591CrossRefPubMedGoogle Scholar
  37. Krewski D, Acosta D Jr, Andersen M et al (2010) Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health B 13(2–4):51–138CrossRefGoogle Scholar
  38. Lein P, Silbergeld E, Locke P, Goldberg AM (2005) In vitro and other alternative approaches to developmental neurotoxicity testing (DNT). Environ Toxicol Pharmacol 19(3):735–744CrossRefPubMedGoogle Scholar
  39. Lein P, Locke P, Goldberg A (2007) Meeting report: alternatives for developmental neurotoxicity testing. Environ Health Perspect 115(5):764–768CrossRefPubMedPubMedCentralGoogle Scholar
  40. Leist M, Hartung T (2013) Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Arch Toxicol 87(4):563–567CrossRefPubMedPubMedCentralGoogle Scholar
  41. L’Episcopo F, Tirolo C, Testa N et al (2013) Aging-induced Nrf2-ARE pathway disruption in the subventricular zone drives neurogenic impairment in parkinsonian mice via PI3 K-Wnt/β-catenin dysregulation. J Neurosci 33(4):1462–1485CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lewandowski T, Ponce R, Charleston J, Hong S, Faustman E (2003) Effect of methylmercury on midbrain cell proliferation during organogenesis: potential cross-species differences and implications for risk assessment. Toxicol Sci 75(1):124–133CrossRefPubMedGoogle Scholar
  43. Moors M, Cline JE, Abel J, Fritsche E (2007) ERK-dependent and-independent pathways trigger human neural progenitor cell migration. Toxicol Appl Pharmacol 221(1):57–67CrossRefPubMedGoogle Scholar
  44. Moors M, Rockel TD, Abel J et al (2009) Human neurospheres as three-dimensional cellular systems for developmental neurotoxicity testing. Environ Health Perspect 117(7):1131–1138CrossRefPubMedPubMedCentralGoogle Scholar
  45. NRC (2007) Toxicity testing in the 21st century: A vision and a strategy. National Academies Press, WashingtonGoogle Scholar
  46. OECD (2007) Test Guideline 426. OECD guideline for testing of chemicals. Developmental neurotoxicity study. In. Accessed 18 Feb 2015
  47. Patlewicz G, Simon T, Rowlands JC, Budinsky RA, Becker RA (2015) Proposing a scientific confidence framework to help support the application of adverse outcome pathways for regulatory purposes. Regul Toxicol Pharmacol 71(3):463–477CrossRefPubMedGoogle Scholar
  48. Ponce RA, Kavanagh TJ, Mottet NK, Whittaker SG, Faustman EM (1994) Effects of methyl mercury on the cell cycle of primary rat CNS cells in vitro. Toxicol Appl Pharmacol 127(1):83–90CrossRefPubMedGoogle Scholar
  49. Rauh VA, Garfinkel R, Perera FP et al (2006) Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118(6):e1845–e1859CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rodier PM (1995) Developing brain as a target of toxicity. Environ Health Perspect 103(Suppl 6):73CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rotroff DM, Wetmore BA, Dix DJ et al (2010) Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening. Toxicol Sci 117(2):348–358CrossRefPubMedGoogle Scholar
  52. Rotroff DM, Martin MT, Dix DJ et al (2014) Predictive endocrine testing in the 21st century using in vitro assays of estrogen receptor signaling responses. Environ Sci Technol 48(15):8706–8716CrossRefPubMedGoogle Scholar
  53. Schettler T (2001) Toxic threats to neurologic development of children. Environ Health Perspect 109(Suppl 6):813CrossRefPubMedPubMedCentralGoogle Scholar
  54. Seidle T, Stephens M (2009) Bringing toxicology into the 21st century: a global call to action. Toxicol In Vitro 23(8):1576–1579CrossRefPubMedGoogle Scholar
  55. Somel M, Liu X, Tang L et al (2011) MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biol 9(12):e1001214CrossRefPubMedPubMedCentralGoogle Scholar
  56. Spencer PS, Kisby GE, Ludolph AC (1991) Slow toxins, biologic markers, and long-latency neurodegenerative disease in the western Pacific region. Neurology 41(5 Suppl 2):62–66CrossRefPubMedGoogle Scholar
  57. Timchalk C, Poet TS, Kousba AA (2006) Age-dependent pharmacokinetic and pharmacodynamic response in preweanling rats following oral exposure to the organophosphorus insecticide chlorpyrifos. Toxicology 220(1):13–25CrossRefPubMedGoogle Scholar
  58. Tollefsen KE, Scholz S, Cronin MT et al (2014) Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul Toxicol Pharmacol 70(3):629–640CrossRefPubMedGoogle Scholar
  59. USEPA (1998) Health Effects Test Guidelines: OPPTS 870.6300 Developmental neurotoxicity study. In.!documentDetail;D=EPA-HQ-OPPT-2009-0156-0042. Accessed 18 Feb 2015
  60. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610CrossRefPubMedGoogle Scholar
  61. Yang D, Howard A, Bruun D, Ajua-Alemanj M, Pickart C, Lein PJ (2008) Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase. Toxicol Appl Pharmacol 228(1):32–41CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zhang YE, Landback P, Vibranovski MD, Long M (2011) Accelerated recruitment of new brain development genes into the human genome. PLoS Biol 9(10):e1001179CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jenny Baumann
    • 1
  • Kathrin Gassmann
    • 1
  • Stefan Masjosthusmann
    • 1
  • Denise DeBoer
    • 1
  • Farina Bendt
    • 1
  • Susanne Giersiefer
    • 1
  • Ellen Fritsche
    • 1
  1. 1.Modern Risk Assessment and Sphere BiologyIUF - Leibniz Research Institute for Environmental MedicineDuesseldorfGermany

Personalised recommendations