Advertisement

Archives of Toxicology

, Volume 90, Issue 6, pp 1507–1522 | Cite as

Wogonoside induces growth inhibition and cell cycle arrest via promoting the expression and binding activity of GATA-1 in chronic myelogenous leukemia cells

  • Hui Li
  • Hui Hui
  • Jingyan Xu
  • Hao Yang
  • Xiaoxiao Zhang
  • Xiao Liu
  • Yuxin Zhou
  • Zhiyu Li
  • Qinglong GuoEmail author
  • Na LuEmail author
Biologics

Abstract

GATA-1, a zinc finger transcription factor, has been demonstrated to play a key role in the progression of leukemia. In this study, we investigate the effects of wogonoside, a naturally bioactive flavonoid derived from Scutellaria baicalensis Georgi, on cell growth and cell cycle in chronic myeloid leukemia (CML) cells, and uncover its underlying mechanisms. The experimental design comprised CML cell lines K562, imatinib-resistant K562 (K562r) cells, and primary CML cells, treated in vitro or in vivo, respectively, with wogonoside; growth and cell cycle were then evaluated. We found that wogonoside could induce growth inhibition and G0/G1 cell cycle arrest in both normal and K562r cells. Wogonoside promotes the expression of GATA-1 and facilitates the binding to methyl ethyl ketone (MEK) and p21 promoter, thus inhibiting MEK/extracellular signal-regulated kinase signaling and cell cycle checkpoint proteins, including CDK2, CDK4, cyclin A, and cyclin D1, and increasing p21 expression. Furthermore, in vivo studies showed that administration of wogonoside decreased CML cells and prolonged survival in NOD/SCID mice with CML cell xenografts. In conclusion, these results clearly revealed the inhibitory effect of wogonoside on the growth in CML cells and suggested that wogonoside may act as a promising drug for the treatment of imatinib-resistant CML.

Keywords

Wogonoside GATA-1 Growth Cell cycle CML 

Abbreviations

GATA-1

GATA binding protein 1

CML

Chronic myeloid leukemia

ERK

Extracellular signal-regulated kinase

MEK

Methyl ethyl ketone

CKI

Cyclin-dependent kinase inhibitor

DMSO

Dimethyl sulfoxide

NOD/SCID

Non-obese diabetic/severe combined immunodeficiency

Notes

Acknowledgments

This work was supported by the Project Program of State Key Laboratory of Natural Medicines, China Pharmaceutical University (No. JKGZ201101, SKLNMZZ201210, SKLNMZZCX201303 SKLNMZZJQ201302 and No. G140042), Science Fund for Distinguished Young Scholars of Jiangsu province (BK20130024), the National Science & Technology Major Project (No. 2012ZX09304-001, 2012ZX09103101-050), the National Natural Science Foundation of China (Nos. 81300379, 81373449, 91029744, and 81173086), Natural Science Foundation of Jiangsu province (No. BK20140668), the Key Project supported by medical science and technology development Foundation of Nanjing Department of Health (No. ZKX14015), Six big talent peak in Jiangsu province project (2014-WSN-049), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT-IRT1193), and Huahai Graduate Innovation Fund (CX13B-006HH), and the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Fundamental Research Funds for the Central Universities (PY2014YX0001; ZL2014YX0034).

Conflict of interest

All the authors declare no competing financial interests.

Supplementary material

204_2015_1552_MOESM1_ESM.tif (1.4 mb)
Viable cells were counted using a hemocytometer after trypan blue staining to assess anti-proliferation activity. (TIFF 1483 kb)

References

  1. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9(6):400–414. doi: 10.1038/nrc2657 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baumann S, Fas SC, Giaisi M et al (2008) Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCgamma1- and Ca2+ -dependent apoptosis. Blood 111(4):2354–2363. doi: 10.1182/blood-2007-06-096198 CrossRefPubMedGoogle Scholar
  3. Bresnick EH, Lee HY, Fujiwara T, Johnson KD, Keles S (2010) GATA switches as developmental drivers. J Biol Chem 285(41):31087–31093. doi: 10.1074/jbc.R110.159079 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bresnick EH, Katsumura KR, Lee HY, Johnson KD, Perkins AS (2012) Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res 40(13):5819–5831. doi: 10.1093/nar/gks281 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Buolamwini JK (2000) Cell cycle molecular targets in novel anticancer drug discovery. Curr Pharm Des 6(4):379–392CrossRefPubMedGoogle Scholar
  6. Cai A, Keskin DB, DeLuca DS et al (2012) Mutated BCR-ABL generates immunogenic T-cell epitopes in CML patients. Clin Cancer Res 18(20):5761–5772. doi: 10.1158/1078-0432.ccr-12-1182 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen Y, Lu N, Ling Y et al (2009) Wogonoside inhibits lipopolysaccharide-induced angiogenesis in vitro and in vivo via toll-like receptor 4 signal transduction. Toxicology 259(1–2):10–17. doi: 10.1016/j.tox.2009.01.010 CrossRefPubMedGoogle Scholar
  8. Chen Y, Hui H, Yang H et al (2013) Wogonoside induces cell cycle arrest and differentiation by affecting expression and subcellular localization of PLSCR1 in AML cells. Blood 121(18):3682–3691. doi: 10.1182/blood-2012-11-466219 CrossRefPubMedGoogle Scholar
  9. Chou ST, Khandros E, Bailey LC et al (2009) Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate. Blood 114(5):983–994. doi:10.1182/blood-2009-03-207944Google Scholar
  10. Crispino JD (2005) GATA1 in normal and malignant hematopoiesis. Semin Cell Dev Biol 16(1):137–147. doi: 10.1016/j.semcdb.2004.11.002 CrossRefPubMedGoogle Scholar
  11. Dan S, Naito M, Tsuruo T (1998) Selective induction of apoptosis in Philadelphia chromosome-positive chronic myelogenous leukemia cells by an inhibitor of BCR–ABL tyrosine kinase, CGP 57148. Cell Death Differ 5(8):710–715. doi: 10.1038/sj.cdd.4400400 CrossRefPubMedGoogle Scholar
  12. Demidenko ZN, An WG, Lee JT, Romanova LY, McCubrey JA, Blagosklonny MV (2005) Kinase-addiction and bi-phasic sensitivity-resistance of Bcr-Abl- and Raf-1-expressing cells to imatinib and geldanamycin. Cancer Biol Ther 4(4):484–490CrossRefPubMedGoogle Scholar
  13. Gorre ME, Mohammed M, Ellwood K et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293(5531):876–880. doi: 10.1126/science.1062538 CrossRefPubMedGoogle Scholar
  14. Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH (2003) GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci USA 100(15):8811–8816. doi: 10.1073/pnas.1432147100 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gu H, Wang X, Rao S et al (2008) Gambogic acid mediates apoptosis as a p53 inducer through down-regulation of mdm2 in wild-type p53-expressing cancer cells. Mol Cancer Ther 7(10):3298–3305. doi: 10.1158/1535-7163.mct-08-0212 CrossRefPubMedGoogle Scholar
  16. Hajduch M, Havlieek L, Vesely J, Novotny R, Mihal V, Strnad M (1999) Synthetic cyclin dependent kinase inhibitors. New generation of potent anti-cancer drugs. Adv Exp Med Biol 457:341–353CrossRefPubMedGoogle Scholar
  17. Huang C, Cao J, Huang KJ et al (2006a) Inhibition of STAT3 activity with AG490 decreases the invasion of human pancreatic cancer cells in vitro. Cancer Sci 97(12):1417–1423. doi: 10.1111/j.1349-7006.2006.00340.x CrossRefPubMedGoogle Scholar
  18. Huang Y, Zhao Q, Zhou CX et al (2006b) Antileukemic roles of human phospholipid scramblase 1 gene, evidence from inducible PLSCR1-expressing leukemic cells. Oncogene 25(50):6618–6627. doi: 10.1038/sj.onc.1209677 CrossRefPubMedGoogle Scholar
  19. Hui H, Chen Y, Yang H et al (2014) Oroxylin A has therapeutic potential in acute myelogenous leukemia by dual effects targeting PPARgamma and RXRalpha. Int J Cancer 134(5):1195–1206. doi: 10.1002/ijc.28435 CrossRefPubMedGoogle Scholar
  20. Ikemoto S, Sugimura K, Yoshida N et al (2000) Antitumor effects of Scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology 55(6):951–955CrossRefPubMedGoogle Scholar
  21. Jabbour E, Kantarjian H (2014) Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am J Hematol 89(5):547–556. doi: 10.1002/ajh.23691 CrossRefPubMedGoogle Scholar
  22. Jemal A, Siegel R, Xu J (2010) Ward E (2010) Cancer statistics. CA Cancer J Clin 60(5):277–300. doi: 10.3322/caac.20073 CrossRefPubMedGoogle Scholar
  23. Johnson KD, Kim SI, Bresnick EH (2006) Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles. Proc Natl Acad Sci USA 103(43):15939–15944. doi: 10.1073/pnas.0604041103 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Katsumura KR, DeVilbiss AW, Pope NJ, Johnson KD, Bresnick EH (2013) Transcriptional mechanisms underlying hemoglobin synthesis. Cold Spring Harb Perspect Med 3(9):a015412. doi: 10.1101/cshperspect.a015412 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Letting DL, Chen YY, Rakowski C, Reedy S, Blobel GA (2004) Context-dependent regulation of GATA-1 by friend of GATA-1. Proc Natl Acad Sci USA 101(2):476–481. doi: 10.1073/pnas.0306315101 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li C, Lin G, Zuo Z (2011) Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones. Biopharm Drug Dispos 32(8):427–445. doi: 10.1002/bdd.771 CrossRefPubMedGoogle Scholar
  27. Lim BO (2003) Effects of wogonin, wogonoside, and 3,5,7,2′,6′-pentahydroxyflavone on chemical mediator production in peritoneal exduate cells and immunoglobulin E of rat mesenteric lymph node lymphocytes. J Ethnopharmacol 84(1):23–29CrossRefPubMedGoogle Scholar
  28. Li-Weber M (2009) New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev 35(1):57–68. doi: 10.1016/j.ctrv.2008.09.005 CrossRefPubMedGoogle Scholar
  29. Matushansky I, Radparvar F, Skoultchi AI (2000) Reprogramming leukemic cells to terminal differentiation by inhibiting specific cyclin-dependent kinases in G1. Proc Natl Acad Sci USA 97(26):14317–14322. doi: 10.1073/pnas.250488697 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Melo JV, Barnes DJ (2007) Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 7(6):441–453. doi: 10.1038/nrc2147 CrossRefPubMedGoogle Scholar
  31. Melo JV, Chuah C (2008) Novel agents in CML therapy: tyrosine kinase inhibitors and beyond. Hematology Am Soc Hematol Educ Prog 427–435. doi: 10.1182/asheducation-2008.1.427
  32. Menon H (2013) Issues in current management of chronic myeloid leukemia: importance of molecular monitoring on long term outcome. South Asian J Cancer 2(1):38–43. doi: 10.4103/2278-330x.105893 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Migliaccio AR, Rana RA, Sanchez M et al (2003) GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J Exp Med 197(3):281–296CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mu R, Qi Q, Gu H et al (2009) Involvement of p53 in oroxylin A-induced apoptosis in cancer cells. Mol Carcinog 48(12):1159–1169. doi: 10.1002/mc.20570 CrossRefPubMedGoogle Scholar
  35. Nakajima H (2011) Role of transcription factors in differentiation and reprogramming of hematopoietic cells. Keio J Med 60(2):47–55CrossRefPubMedGoogle Scholar
  36. Papetti M, Wontakal SN, Stopka T, Skoultchi AI (2010) GATA-1 directly regulates p21 gene expression during erythroid differentiation. Cell Cycle 9(10):1972–1980CrossRefPubMedPubMedCentralGoogle Scholar
  37. Quintas-Cardama A, Cortes J (2009) Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113(8):1619–1630. doi: 10.1182/blood-2008-03-144790 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ren R (2005) Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5(3):172–183. doi: 10.1038/nrc1567 CrossRefPubMedGoogle Scholar
  39. Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293CrossRefPubMedGoogle Scholar
  40. Rylski M, Welch JJ, Chen YY et al (2003) GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol 23(14):5031–5042CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512CrossRefPubMedGoogle Scholar
  42. Tai MC, Tsang SY, Chang LY, Xue H (2005) Therapeutic potential of wogonin: a naturally occurring flavonoid. CNS Drug Rev 11(2):141–150CrossRefPubMedGoogle Scholar
  43. Tian K, Yang S, Ren Q et al (2010) p38 MAPK contributes to the growth inhibition of leukemic tumor cells mediated by human umbilical cord mesenchymal stem cells. Cell Physiol Biochem 26(6):799–808. doi: 10.1159/000323973 CrossRefPubMedGoogle Scholar
  44. Tojo A (2014) Kinase inhibitors against hematological malignancies. Nihon Rinsho 72(6):1118–1124PubMedGoogle Scholar
  45. Tokunaga M, Ezoe S, Tanaka H et al (2010) BCR-ABL but not JAK2 V617F inhibits erythropoiesis through the Ras signal by inducing p21CIP1/WAF1. J Biol Chem 285(41):31774–31782. doi: 10.1074/jbc.M110.118653 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tsang AP, Visvader JE, Turner CA et al (1997) FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90(1):109–119CrossRefPubMedGoogle Scholar
  47. Vermeulen K, Van Bockstaele DR, Berneman ZN (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36(3):131–149CrossRefPubMedGoogle Scholar
  48. Walle T (2004) Absorption and metabolism of flavonoids. Free Radic Biol Med 36(7):829–837. doi: 10.1016/j.freeradbiomed.2004.01.002 CrossRefPubMedGoogle Scholar
  49. Wei W, Huang H, Zhao S et al (2013) Alantolactone induces apoptosis in chronic myelogenous leukemia sensitive or resistant to imatinib through NF-kappaB inhibition and Bcr/Abl protein deletion. Apoptosis 18(9):1060–1070. doi: 10.1007/s10495-013-0854-2 CrossRefPubMedGoogle Scholar
  50. Weisberg E, Griffin JD (2000) Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 95(11):3498–3505PubMedGoogle Scholar
  51. Yang H, Hui H, Wang Q et al (2014) Wogonin induces cell cycle arrest and erythroid differentiation in imatinib-resistant K562 cells and primary CML cells. Oncotarget 5(18):8188–8201CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yu C, Cantor AB, Yang H et al (2002) Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 195(11):1387–1395CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hui Li
    • 1
  • Hui Hui
    • 1
  • Jingyan Xu
    • 2
  • Hao Yang
    • 1
  • Xiaoxiao Zhang
    • 1
  • Xiao Liu
    • 1
  • Yuxin Zhou
    • 1
  • Zhiyu Li
    • 1
  • Qinglong Guo
    • 1
    Email author
  • Na Lu
    • 1
    Email author
  1. 1.State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.Department of HematologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingPeople’s Republic of China

Personalised recommendations