Archives of Toxicology

, Volume 89, Issue 7, pp 1149–1150 | Cite as

Current research on experimental and applied animal sciences

  • Seddik Hammad
  • Mosaab A. Omar
  • Mohammed F. Abdallah
  • Ahmed A. A. Abdel-Wareth
  • Mohammad S. Al-Aboody
  • Hassan Ahmed
Letter to the Editor, News and Views


  1. Balmer NV, Klima S, Rempel E et al (2014) From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol 88(7):1451–1468. doi:10.1007/s00204-014-1279-6 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Deluzurieux M, Desjardins I, Nolf M et al (2013) Endoscopic analysis of guttural pouch opening in horses. JEAAS 1(1):10–24Google Scholar
  3. Drasdo D, Bode J, Dahmen U et al (2014a) The virtual liver: state of the art and future perspectives. Arch Toxicol 88(12):2071–2075. doi:10.1007/s00204-014-1384-6 PubMedCrossRefGoogle Scholar
  4. Drasdo D, Hoehme S, Hengstler JG (2014b) How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis. J Hepatol 61(4):951–956. doi:10.1016/j.jhep.2014.06.013 PubMedCrossRefGoogle Scholar
  5. Gebel T, Foth H, Damm G et al (2014) Manufactured nanomaterials: categorization and approaches to hazard assessment. Arch Toxicol 88(12):2191–2211. doi:10.1007/s00204-014-1383-7 PubMedCrossRefGoogle Scholar
  6. Ghallab A (2013) In vitro test systems and their limitations. EXCLI J 12:1024–1026Google Scholar
  7. Ghallab A, Bolt HM (2014) In vitro systems: current limitations and future perspectives. Arch Toxicol 8(12):2085–2087. doi:10.1007/s00204-014-1404-6 CrossRefGoogle Scholar
  8. Godoy P, Hengstler JG, Ilkavets I et al (2009) Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology 49(6):2031–2043. doi:10.1002/hep.22880 PubMedCrossRefGoogle Scholar
  9. Godoy P, Lakkapamu S, Schug M et al (2010) Dexamethasone-dependent versus -independent markers of epithelial to mesenchymal transition in primary hepatocytes. Biol Chem 391(1):73–83. doi:10.1515/BC.2010.010 PubMedCrossRefGoogle Scholar
  10. Godoy P, Hewitt NJ, Albrecht U et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87(8):1315–1530. doi:10.1007/s00204-013-1078-5 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Graham WA, Kwiecien JM, Nesathurai S (2014) Noninvasive motor evoked potentials with surface stimulation in rodents. JEAAS 1(2):182–185Google Scholar
  12. Grinberg M, Stöber RM, Edlund K et al (2014) Toxicogenomics directory of chemically exposed human hepatocytes. Arch Toxicol 88(12):2261–2287. doi:10.1007/s00204-014-1400-x PubMedCrossRefGoogle Scholar
  13. Hammad S (2013) Advances in 2D and 3D in vitro systems for hepatotoxicity testing. EXCLI J 12:993–996Google Scholar
  14. Hammad S, Marchan R, Hengstler JG (2013) Cutting-edge topics in research on animal sciences. JEAAS 1(1):1–3Google Scholar
  15. Hammad S, Hoehme S, Friebel A et al (2014) Protocols for staining of bile canalicular and sinusoidal networks of human, mouse and pig livers, three-dimensional reconstruction and quantification of tissue microarchitecture by image processing and analysis. Arch Toxicol 88(5):1161–1183. doi:10.1007/s00204-014-1243-5 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Heise T, Schug M, Storm D et al (2012) In vitroin vivo correlation of gene expression alterations induced by liver carcinogens. Curr Med Chem 19(11):1721–1730. doi:10.2174/092986712799945049 PubMedCrossRefGoogle Scholar
  17. Hengstler JG, Marchan R, Bolt HM (2014) Standard compounds for establishment of in vitro test systems. Arch Toxicol 88(12):2083–2084. doi:10.1007/s00204-014-1398-0 PubMedCrossRefGoogle Scholar
  18. Hoehme S, Brulport M, Bauer A et al (2010) Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci USA 107(23):10371–10376. doi:10.1073/pnas.0909374107 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Höhme S, Hengstler JG, Brulport M et al (2007) Mathematical modelling of liver regeneration after intoxication with CCl(4). Chem Biol Interact 168(1):74–93PubMedCrossRefGoogle Scholar
  20. Huang JX, Blaskovich MA, Cooper MA (2014) Cell- and biomarker-based assays for predicting nephrotoxicity. Expert Opin Drug Metab Toxicol 10(12):1621–1635. doi:10.1517/17425255.2014.967681 PubMedCrossRefGoogle Scholar
  21. Ikewuchi JC, Ikewuchi CC, Ifeanacho MO et al (2013) Hypocholesterolemic effect of aqueous extract of the rhizomes of Sansevieria liberica on salt-loaded rats. JEAAS 1(1):56–66Google Scholar
  22. Intzoglou KS, Mastrokalos DS, Korres DS et al (2014) Synthetic or autologous plugs for the repair of osteochondral rabbit knee defects: a comparative study. JEAAS 1(2):229–240Google Scholar
  23. Krug AK, Kolde R, Gaspar JA et al (2013) Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol 87(1):123–143. doi:10.1007/s00204-012-0967-3 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Leist M, Ringwald A, Kolde R et al (2013) Test systems of developmental toxicity: state-of-the art and future perspectives. Arch Toxicol 87(12):2037–2042. doi:10.1007/s00204-013-1154-x PubMedCrossRefGoogle Scholar
  25. Lilienblum W, Dekant W, Foth H et al (2008) Alternative methods to safety studies in experimental animals: role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH). Arch Toxicol 82(4):211–236. doi:10.1007/s00204-008-0279-9 PubMedCrossRefGoogle Scholar
  26. Mallaiah P, Sudhakara G, Srinivasulu N et al (2014) Preventive effect of Phyllanthus amarus on high fructose diet induced renal damage in male wistar rats. JEAAS 1(2):186–198Google Scholar
  27. Marchan R, van Thriel C, Bolt HM (2013) Recent developments in in vitro toxicology: perspectives of European research and Tox21. Arch Toxicol 87(12):2043–2046. doi:10.1007/s00204-013-1164-8 PubMedCrossRefGoogle Scholar
  28. Mishra D, Joshi S, Sah ML (2013) Analgesic activity of ethyl acetate fraction of Leucas hyssopifolia Benth. JEAAS 1(1):4–9Google Scholar
  29. Musk GC, He B, Gaal T (2014) Hyperkalemia in pigs during anesthesia for laparoscopic renal transplantation surgery. JEAAS 1(2):273–283Google Scholar
  30. Pullanna K, Philip GH (2014) Reproductive performance of zebrafish (Danio rerio) exposed to deltamethrin: fecundity, histological and hormonal end points. JEAAS 1(2):253–268Google Scholar
  31. Ramaiahgari SC, den Braver MW, Herpers B et al (2014) A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol 88(5):1083–1095. doi:10.1007/s00204-014-1215-9 PubMedGoogle Scholar
  32. Rezaei F, Kaka G, Sadraie SH et al (2014) Effects of aspirin on histomorphometrical changes of fetal kidney in rat. JEAAS 1(2):290–300Google Scholar
  33. Schliess F, Hoehme S, Henkel SG et al (2014) Integrated metabolic spatial-temporal model for the prediction of ammonia detoxification during liver damage and regeneration. Hepatology 60(6):2040–2051. doi:10.1002/hep.27136 PubMedCrossRefGoogle Scholar
  34. Schug M, Stöber R, Heise T et al (2013) Pharmacokinetics explain in vivo/in vitro discrepancies of carcinogen-induced gene expression alterations in rat liver and cultivated hepatocytes. Arch Toxicol 87(2):337–345. doi:10.1007/s00204-012-0999-8 PubMedCrossRefGoogle Scholar
  35. Soriano-Úbeda C, Matás C, García-Vázquez FA (2013) An overview of swine artificial insemination: retrospective, current and prospective aspects. JEAAS 1(1):67–97Google Scholar
  36. Tiong HY, Huang P, Xiong S et al (2014) Drug-induced nephrotoxicity: clinical impact and preclinical in vitro models. Mol Pharm 11(7):1933–1948. doi:10.1021/mp400720w PubMedCrossRefGoogle Scholar
  37. Waldmann T, Rempel E, Balmer NV et al (2014) Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol 27(3):408–420. doi:10.1021/tx400402j PubMedCentralPubMedCrossRefGoogle Scholar
  38. Watzek N, Scherbl D, Schug M et al (2013) Toxicokinetics of acrylamide in primary rat hepatocytes: coupling to glutathione is faster than conversion to glycidamide. Arch Toxicol 87(8):1545–1556. doi:10.1007/s00204-013-1054-0 PubMedCrossRefGoogle Scholar
  39. Zarrindast MR, Ahmadi H, Nasehi M (2013) Interaction of GABA (A) system in the nucleus accumbens ahell with ACPA on anxiety-like behaviors in Wistar male rat. JEAAS 1(1):44–55Google Scholar
  40. Zellmer S, Schmidt-Heck W, Godoy P et al (2010) Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 52(6):2127–2136PubMedCrossRefGoogle Scholar
  41. Zimmer B, Pallocca G, Dreser N et al (2014) Profiling of drugs and environmental chemicals for functional impairment of neural crest migration in a novel stem cell-based test battery. Arch Toxicol 88(5):1109–1126. doi:10.1007/s00204-014-1231-9 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Seddik Hammad
    • 1
  • Mosaab A. Omar
    • 2
  • Mohammed F. Abdallah
    • 3
  • Ahmed A. A. Abdel-Wareth
    • 4
  • Mohammad S. Al-Aboody
    • 2
  • Hassan Ahmed
    • 5
  1. 1.Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary MedicineSouth Valley UniversityQenaEgypt
  2. 2.Department of Medical Laboratories, College of ScienceMajmaah UniversityAlZulfiKSA
  3. 3.Department of Pharmaceutical Toxicology, Faculty of PharmacyHacettepe UniversitySıhyyie/AnkaraTurkey
  4. 4.Animal Nutrition Group, Institute of Animal ScienceUniversity of BonnBonnGermany
  5. 5.Division of Cerebral CircuitryNational Institute for Physiological SciencesOkazakiJapan

Personalised recommendations