Archives of Toxicology

, Volume 89, Issue 7, pp 1035–1044 | Cite as

Biomarkers of lipid peroxidation in Alzheimer disease (AD): an update

  • Melissa A. Bradley-Whitman
  • Mark A. Lovell
Review Article


Increasing evidence suggests that free radical-mediated oxidation of biological substrates is a key feature of Alzheimer’s disease (AD) pathogenesis. While it has long been established that biomarkers of lipid peroxidation (LPO) are elevated in AD brain as well as ventricular CSF postmortem, more recent studies have demonstrated increased LPO biomarkers in postmortem brain from subjects with mild cognitive impairment, the earliest clinically detectable phase of dementia and preclinical AD, the earliest detectable pathological phase. Furthermore, multiple LPO biomarkers are elevated in readily accessible biological fluids throughout disease progression. Collectively, these studies demonstrate that LPO is an early feature during disease progression and may be considered a key pathway for targeted therapeutics as well as an enhancer of diagnostic accuracy for early detection of subjects during the prodromal phase.


Mild cognitive impairment Preclinical Alzheimer’s disease Alzheimer’s disease Oxidative stress Lipid peroxidation 



This work was supported by NIH Grant 5P01-AG05119. The authors thank Ms. Paula Thomason for editorial assistance.


  1. Aluise CD, Robinson RA, Beckett TL et al (2010) Preclinical Alzheimer disease: brain oxidative stress, Abeta peptide and proteomics. Neurobiol Dis 39(2):221–228. doi: 10.1016/j.nbd.2010.04.011 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ando Y, Brannstrom T, Uchida K et al (1998) Histochemical detection of 4-hydroxynonenal protein in Alzheimer amyloid. J Neurol Sci 156(2):172–176PubMedCrossRefGoogle Scholar
  3. Aybek H, Ercan F, Aslan D, Sahiner T (2007) Determination of malondialdehyde, reduced glutathione levels and APOE4 allele frequency in late-onset Alzheimer’s disease in Denizli Turkey. Clin Biochem 40(3–4):172–176. doi: 10.1016/j.clinbiochem.2006.09.005 PubMedCrossRefGoogle Scholar
  4. Bradley MA, Markesbery WR, Lovell MA (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic Biol Med 48:1570–1576PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bradley MA, Xiong-Fister S, Markesbery WR, Lovell MA (2012) Elevated 4-hydroxyhexenal in Alzheimer’s disease (AD) progression. Neurobiol Aging 33:10. doi: 10.1016/j.neurobiolaging.2010.08.016 CrossRefGoogle Scholar
  6. Burcham PC (1998) Genotoxic lipid peroxidation products: their DNA damaging properties and role in formation of endogenous DNA adducts. Mutagenesis 13(3):287–305PubMedCrossRefGoogle Scholar
  7. Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122(9):945–962PubMedCrossRefGoogle Scholar
  8. Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23(5):655–664PubMedCrossRefGoogle Scholar
  9. Butterfield DA, Reed T, Perluigi M et al (2006) Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neurosci Lett 397(3):170–173. doi: 10.1016/j.neulet.2005.12.017 PubMedCrossRefGoogle Scholar
  10. Calingasan NY, Uchida K, Gibson GE (1999a) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72(2):751–756PubMedCrossRefGoogle Scholar
  11. Calingasan NY, Uchida K, Gibson GE (1999b) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72(2):751–756PubMedCrossRefGoogle Scholar
  12. Casado A, Encarnacion Lopez-Fernandez M, Concepcion Casado M, de La Torre R (2008) Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem Res 33(3):450–458. doi: 10.1007/s11064-007-9453-3 PubMedCrossRefGoogle Scholar
  13. Cervellati C, Romani A, Seripa D et al (2014) Systemic oxidative stress and conversion to dementia of elderly patients with mild cognitive impairment. BioMed Res Int 2014:309507. doi: 10.1155/2014/309507 PubMedCentralPubMedGoogle Scholar
  14. Chang YT, Chang WN, Tsai NW et al (2014) The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: a systematic review. BioMed research international 2014:182303. doi: 10.1155/2014/182303 PubMedCentralPubMedGoogle Scholar
  15. Dalle-Donne I, Scaloni A, Giustarini D et al (2005) Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev 24(1):55–99. doi: 10.1002/mas.20006 PubMedCrossRefGoogle Scholar
  16. Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis NMCD 15(4):316–328. doi: 10.1016/j.numecd.2005.05.003 CrossRefGoogle Scholar
  17. DiCiero MM, de Bruin VM, Vale MR, Viana GS (2000) Lipid peroxidation and nitrite plus nitrate levels in brain tissue from patients with Alzheimer’s disease. Gerontology 46(4):179–184CrossRefGoogle Scholar
  18. Fam SS, Murphey LJ, Terry ES et al (2002) Formation of highly reactive A-ring and J-ring isoprostane-like compounds (A4/J4-neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 277(39):36076–36084. doi: 10.1074/jbc.M205638200 PubMedCrossRefGoogle Scholar
  19. Feillet-Coudray C, Tourtauchaux R, Niculescu M et al (1999) Plasma levels of 8-epiPGF2alpha, an in vivo marker of oxidative stress, are not affected by aging or Alzheimer’s disease. Free Radic Biol Med 27(3–4):463–469PubMedCrossRefGoogle Scholar
  20. Fukuda M, Kanou F, Shimada N et al (2009) Elevated levels of 4-hydroxynonenal-histidine Michael adduct in the hippocampi of patients with Alzheimer’s disease. Biomed Res 30(4):227–233PubMedCrossRefGoogle Scholar
  21. Gotz ME, Wacker M, Luckhaus C et al (2002) Unaltered brain levels of 1, N 2-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal in Alzheimer’s disease. Neurosci Lett 324(1):49–52PubMedCrossRefGoogle Scholar
  22. Guan JZ, Guan WP, Maeda T, Makino N (2012) Effect of vitamin E administration on the elevated oxygen stress and the telomeric and subtelomeric status in Alzheimer’s disease. Gerontology 58(1):62–69. doi: 10.1159/000327821 PubMedCrossRefGoogle Scholar
  23. Gustaw-Rothenberg K, Kowalczuk K, Stryjecka-Zimmer M (2010) Lipids’ peroxidation markers in Alzheimer’s disease and vascular dementia. Geriatr Gerontol Int 10(2):161–166. doi: 10.1111/j.1447-0594.2009.00571.x PubMedGoogle Scholar
  24. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5 Suppl):715S–724S (discussion 724S–725S)PubMedGoogle Scholar
  25. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255. doi: 10.1038/sj.bjp.0705776 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300PubMedCrossRefGoogle Scholar
  27. Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80(19):1778–1783. doi: 10.1212/WNL.0b013e31828726f5 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Jack CR Jr, Weigand SD, Shiung MM et al (2008) Atrophy rates accelerate in amnestic mild cognitive impairment. Neurology 70(19 Pt 2):1740–1752. doi: 10.1212/01.wnl.0000281688.77598.35 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30(6):620–650PubMedCrossRefGoogle Scholar
  30. Liu X, Lovell MA, Lynn BC (2006) Detection and quantification of endogenous cyclic DNA adducts derived from trans-4-hydroxy-2-nonenal in human brain tissue by isotope dilution capillary liquid chromatography nanoelectrospray tandem mass spectrometry. Chem Res Toxicol 19(5):710–718. doi: 10.1021/tx0502903 PubMedCrossRefGoogle Scholar
  31. Long EK, Picklo MJ Sr (2010) Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: make some room HNE. Free Radic Biol Med 49(1):1–8. doi: 10.1016/j.freeradbiomed.2010.03.015 PubMedCrossRefGoogle Scholar
  32. LoPachin RM, Gavin T, Petersen DR, Barber DS (2009) Molecular mechanisms of 4-hydroxy-2-nonenal and acrolein toxicity: nucleophilic targets and adduct formation. Chem Res Toxicol 22(9):1499–1508. doi: 10.1021/tx900147g PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lovell MA, Markesbery WR (2007) Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res 35(22):7497–7504. doi: 10.1093/nar/gkm821 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45(8):1594–1601PubMedCrossRefGoogle Scholar
  35. Lovell MA, Ehmann WD, Mattson MP, Markesbery WR (1997) Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol Aging 18(5):457–461PubMedCrossRefGoogle Scholar
  36. Lovell MA, Xie C, Markesbery WR (2001) Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol Aging 22(2):187–194PubMedCrossRefGoogle Scholar
  37. Lyras L, Cairns NJ, Jenner A, Jenner P, Halliwell B (1997) An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J Neurochem 68(5):2061–2069PubMedCrossRefGoogle Scholar
  38. Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19(1):33–36PubMedCrossRefGoogle Scholar
  39. Markesbery WR, Lovell MA (2006) DNA oxidation in Alzheimer’s disease. Antioxid Redox Signal 8(11–12):2039–2045. doi: 10.1089/ars.2006.8.2039 PubMedCrossRefGoogle Scholar
  40. Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD (2005) Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol 58:730–735PubMedCrossRefGoogle Scholar
  41. Martin-Aragon S, Bermejo-Bescos P, Benedi J et al (2009) Metalloproteinase’s activity and oxidative stress in mild cognitive impairment and Alzheimer’s disease. Neurochem Res 34(2):373–378. doi: 10.1007/s11064-008-9789-3 PubMedCrossRefGoogle Scholar
  42. McGrath LT, McGleenon BM, Brennan S, McColl D, Mc IS, Passmore AP (2001) Increased oxidative stress in Alzheimer’s disease as assessed with 4-hydroxynonenal but not malondialdehyde. QJM 94(9):485–490PubMedCrossRefGoogle Scholar
  43. Mizoi M, Yoshida M, Saiki R et al (2014) Distinction between mild cognitive impairment and Alzheimer’s disease by CSF amyloid beta40 and beta42, and protein-conjugated acrolein. Clin Chim Acta 430:150–155. doi: 10.1016/j.cca.2014.01.007 PubMedCrossRefGoogle Scholar
  44. Montine KS, Kim PJ, Olson SJ, Markesbery WR, Montine TJ (1997a) 4-hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease. J Neuropathol Exp Neurol 56(8):866–871PubMedCrossRefGoogle Scholar
  45. Montine KS, Olson SJ, Amarnath V, Whetsell WO Jr, Graham DG, Montine TJ (1997b) Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. Am J Pathol 150(2):437–443PubMedCentralPubMedGoogle Scholar
  46. Montine TJ, Markesbery WR, Zackert W, Sanchez SC, Roberts LJ 2nd, Morrow JD (1999) The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillary tangles or with APOE genotype in Alzheimer’s disease patients. Am J Pathol 155(3):863–868. doi: 10.1016/S0002-9440(10)65185-1 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Montine TJ, Neely MD, Quinn JF et al (2002) Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radic Biol Med 33(5):620–626PubMedCrossRefGoogle Scholar
  48. Moreira PI, Nunomura A, Nakamura M et al (2008) Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med 44(8):1493–1505. doi: 10.1016/j.freeradbiomed.2008.01.002 PubMedCrossRefGoogle Scholar
  49. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87(23):9383–9387PubMedCentralPubMedCrossRefGoogle Scholar
  50. Mufson EJ, Leurgans S (2010) Inability of plasma and urine F2A-isoprostane levels to differentiate mild cognitive impairment from Alzheimer’s disease. Neurodegener Dis 7(1–3):139–142. doi: 10.1159/000289224 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Musiek ES, Cha JK, Yin H et al (2004) Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. J Chromatogr B Analyt Technol Biomed Life Sci 799(1):95–102PubMedCrossRefGoogle Scholar
  52. Nourooz-Zadeh J, Liu EH, Yhlen B, Anggard EE, Halliwell B (1999) F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease. J Neurochem 72(2):734–740PubMedCrossRefGoogle Scholar
  53. Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C (2010) Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 469(1):6–10. doi: 10.1016/j.neulet.2009.11.033 PubMedCrossRefGoogle Scholar
  54. Palmer AM, Burns MA (1994) Selective increase in lipid peroxidation in the inferior temporal cortex in Alzheimer’s disease. Brain Res 645(1–2):338–342PubMedCrossRefGoogle Scholar
  55. Perluigi M, Sultana R, Cenini G et al (2009) Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer’s disease: role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteomics Clin Appl 3(6):682–693. doi: 10.1002/prca.200800161 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3):303–308PubMedCrossRefGoogle Scholar
  57. Polidori MC, Mattioli P, Aldred S et al (2004) Plasma antioxidant status, immunoglobulin g oxidation and lipid peroxidation in demented patients: relevance to Alzheimer disease and vascular dementia. Dement Geriatr Cogn Disord 18(3–4):265–270. doi: 10.1159/000080027 PubMedCrossRefGoogle Scholar
  58. Pratico D, Lee VMY, Trojanowski JQ, Rokach J, Fitzgerald GA (1998) Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J 12(15):1777–1783PubMedGoogle Scholar
  59. Pratico D, Clark CM, Lee VM, Trojanowski JQ, Rokach J, FitzGerald GA (2000) Increased 8,12-iso-iPF2alpha-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann Neurol 48(5):809–812PubMedCrossRefGoogle Scholar
  60. Pratico D, Clark CM, Liun F, Rokach J, Lee VY, Trojanowski JQ (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 59(6):972–976PubMedCrossRefGoogle Scholar
  61. Puertas MC, Martinez-Martos JM, Cobo MP, Carrera MP, Mayas MD, Ramirez-Exposito MJ (2012) Plasma oxidative stress parameters in men and women with early stage Alzheimer type dementia. Exp Gerontol 47(8):625–630. doi: 10.1016/j.exger.2012.05.019 PubMedCrossRefGoogle Scholar
  62. Pulliam JF, Jennings CD, Kryscio RJ et al (2003) Association of HFE mutations with neurodegeneration and oxidative stress in Alzheimer’s disease and correlation with APOE. Am J Med Genet B Neuropsychiatr Genet 119B(1):48–53. doi: 10.1002/ajmg.b.10069 PubMedCrossRefGoogle Scholar
  63. Ramassamy C, Averill D, Beffert U et al (1999) Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer’s disease is related to the apolipoprotein E genotype. Free Radic Biol Med 27(5–6):544–553PubMedCrossRefGoogle Scholar
  64. Reed T, Perluigi M, Sultana R et al (2008) Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol Dis 30(1):107–120. doi: 10.1016/j.nbd.2007.12.007 PubMedCrossRefGoogle Scholar
  65. Reed TT, Pierce WM, Markesbery WR, Butterfield DA (2009) Proteomic identification of HNE-bound proteins in early Alzheimer disease: insights into the role of lipid peroxidation in the progression of AD. Brain Res 1274:66–76. doi: 10.1016/j.brainres.2009.04.009 PubMedCrossRefGoogle Scholar
  66. Reich EE, Zackert WE, Brame CJ et al (2000) Formation of novel D-ring and E-ring isoprostane-like compounds (D4/E4-neuroprostanes) in vivo from docosahexaenoic acid. Biochemistry 39(9):2376–2383PubMedCrossRefGoogle Scholar
  67. Reich EE, Markesbery WR, Roberts LJ 2nd, Swift LL, Morrow JD, Montine TJ (2001) Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. Am J Pathol 158(1):293–297. doi: 10.1016/S0002-9440(10)63968-5 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Roberts LJ 2nd, Montine TJ, Markesbery WR et al (1998) Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 273(22):13605–13612PubMedCrossRefGoogle Scholar
  69. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem 68(5):2092–2097PubMedCrossRefGoogle Scholar
  70. Schmitt FA, Davis DG, Wekstein DR, Smith CD, Ashford JW, Markesbery WR (2000) “Preclinical” AD revisited: neuropathology of cognitively normal older adults. Neurology 55(3):370–376PubMedCrossRefGoogle Scholar
  71. Schrag M, Mueller C, Zabel M et al (2013) Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol Dis 59:100–110. doi: 10.1016/j.nbd.2013.07.005 PubMedCrossRefGoogle Scholar
  72. Selley ML, Close DR, Stern SE (2002) The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol Aging 23(3):383–388PubMedCrossRefGoogle Scholar
  73. Shichiri M (2014) The role of lipid peroxidation in neurological disorders. J Clin Biochem Nutr 54(3):151–160. doi: 10.3164/jcbn.14-10 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Sultana R, Boyd-Kimball D, Poon HF et al (2006) Oxidative modification and down-regulation of Pin1 in Alzheimer’s disease hippocampus: a redox proteomics analysis. Neurobiol Aging 27(7):918–925. doi: 10.1016/j.neurobiolaging.2005.05.005 PubMedCrossRefGoogle Scholar
  75. Sultana R, Perluigi M, Allan Butterfield D (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169. doi: 10.1016/j.freeradbiomed.2012.09.027 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Torres LL, Quaglio NB, de Souza GT et al (2011) Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis JAD 26(1):59–68. doi: 10.3233/JAD-2011-110284 Google Scholar
  77. Tuppo EE, Forman LJ, Spur BW, Chan-Ting RE, Chopra A, Cavalieri TA (2001) Sign of lipid peroxidation as measured in the urine of patients with probable Alzheimer’s disease. Brain Res Bull 54(5):565–568PubMedCrossRefGoogle Scholar
  78. Waragai M, Yoshida M, Mizoi M et al (2012) Increased protein-conjugated acrolein and amyloid-beta40/42 ratio in plasma of patients with mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 32(1):33–41. doi: 10.3233/JAD-2012-120253 PubMedGoogle Scholar
  79. Williams TI, Lynn BC, Markesbery WR, Lovell MA (2006) Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer’s disease. Neurobiol Aging 27(8):1094–1099. doi: 10.1016/j.neurobiolaging.2005.06.004 PubMedCrossRefGoogle Scholar
  80. Yin H, Havrilla CM, Morrow JD, Porter NA (2002) Formation of isoprostane bicyclic endoperoxides from the autoxidation of cholesteryl arachidonate. J Am Chem Soc 124(26):7745–7754PubMedCrossRefGoogle Scholar
  81. Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111(10):5944–5972. doi: 10.1021/cr200084z PubMedCrossRefGoogle Scholar
  82. Yoshida M, Higashi K, Kuni K et al (2015) Distinguishing mild cognitive impairment from Alzheimer’s disease with acrolein metabolites and creatinine in urine. Clin Chim Acta 441:115–121. doi: 10.1016/j.cca.2014.12.023 PubMedCrossRefGoogle Scholar
  83. Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2013:316523. doi: 10.1155/2013/316523 PubMedCentralPubMedGoogle Scholar
  84. Zhu X, Castellani RJ, Moreira PI et al (2012) Hydroxynonenal-generated crosslinking fluorophore accumulation in Alzheimer disease reveals a dichotomy of protein turnover. Free Radic Biol Med 52(3):699–704. doi: 10.1016/j.freeradbiomed.2011.11.004 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Sanders Brown Center on AgingUniversity of KentuckyLexingtonUSA
  2. 2.Department of ChemistryUniversity of KentuckyLexingtonUSA

Personalised recommendations