Advertisement

Archives of Toxicology

, Volume 89, Issue 6, pp 899–921 | Cite as

Microsatellite instability: an update

  • Hiroyuki YamamotoEmail author
  • Kohzoh Imai
Review Article

Abstract

Deficient DNA mismatch repair (MMR) results in a strong mutator phenotype known as microsatellite instability (MSI), which is a hallmark of Lynch syndrome-associated cancers. MSI is characterized by length alterations within simple repeated sequences that are called microsatellites. Lynch syndrome is primarily caused by mutations in the MMR genes, mainly MLH1 and MSH2, and less frequently in MSH6, and rarely PMS2, and large genomic rearrangements account for 5–20 % of all mutations. Germ line hemiallelic methylations of MLH1 or MSH2 are termed as epimutations and have been identified as causative of Lynch syndrome. Moreover, germ line 3′ deletions of EPCAM gene is involved in MSH2 methylation. MSI is also observed in about 15 % of sporadic colorectal cancer (CRC), gastric cancer (GC), and endometrial cancer (EC), and at lower frequencies in other cancers, often in association with hypermethylation of the MLH1 gene. Trimethylation of histone H3 on Lys36 (H3K36 me3) is an epigenetic histone mark that was required for DNA MMR in vivo. Thus, mutations in the H3K36 trimethyltransferase SETD2 have been reported as a potential cause of MSI. Genetic, epigenetic, and transcriptomic differences have been identified between cancers with and without MSI. Recent comprehensive molecular characterizations of CRC, EC, and GC by The Cancer Genome Atlas indicate that MSI+ cancers are distinct biological entities. The BRAF V600E mutation is specifically associated with sporadic MSI+ CRCs with methylated MLH1, but is not associated with Lynch syndrome-related CRCs. Accumulating evidence indicates a role of interactions between MSI and microRNA (miRNA) in the pathogenesis of MSI-positive (MSI+) cancer. As another new mechanism underlying MSI, overexpression of miR-155 or miR-21 has been shown to downregulate the expression of the MMR genes. Gene targets of frameshift mutations caused by MSI are involved in various cellular functions, including DNA repair (MSH3 and MSH6), cell signaling (TGFBR2 and ACVR2A), apoptosis (BAX), epigenetic regulation (HDAC2 and ARID1A), and miRNA processing (TARBP2 and XPO5), and a subset of MSI+ CRCs reportedly shows the mutated miRNA machinery phenotype. Moreover, microsatellite repeats in miRNA genes, such as hsa-miR-1273c, may be novel MSI targets for CRC, and mutations in noncoding regulatory regions of MRE11, BAX (BaxΔ2), and HSP110 (HSP110ΔE9) may affect the efficiency of chemotherapy. Thus, analyses of MSI and its related molecular alterations in cancers are increasingly relevant in clinical settings, and MSI is a useful screening marker for identifying patients with Lynch syndrome and a prognostic factor for chemotherapeutic interventions. In this review, we summarize recent advances in the pathogenesis of MSI and focus on genome-wide analyses that indicate the potential use of MSI and related alterations as biomarkers and novel therapeutic targets.

Keywords

Microsatellite instability microRNA DNA mismatch repair Frameshift mutation microRNA processing 

References

  1. Aaltonen LA, Peltomaki P, Leach FS, Sistonen P, Pylkkanen L, Mecklin JP, Javinen H, Powell SM, Jen J, Hamilton SR, Petersen GM, Kinzler KW, Vogelstein B, Chapelle A (1993) Clues to the pathogenesis of familial colorectal cancer. Science 260:812–816PubMedGoogle Scholar
  2. Abdel-Rahman WM, Mecklin JP, Peltomaki P (2006) The genetics of HNPCC: application to diagnosis and screening. Crit Rev Oncol Hematol 58:208–220PubMedGoogle Scholar
  3. Abe H, Maeda D, Hino R, Otake Y, Isogai M, Ushiku AS, Matsusaka K, Kunita A, Ushiku T, Uozaki H, Tateishi Y, Hishima T, Iwasaki Y, Ishikawa S, Fukayama M (2012) ARID1A expression loss in gastric cancer: pathway-dependent roles with and without Epstein–Barr virus infection and microsatellite instability. Virchows Arch 461:367–377PubMedGoogle Scholar
  4. Alhopuro P, Sammalkorpi H, Niittymaki I, Bistrom M, Raitila A, Saharinen J, Nousiainen K, Lehtonen HJ, Heliövaara E, Puhakka J, Tuupanen S, Sousa S, Seruca R, Ferreira AM, Hofstra RM, Mecklin JP, Järvinen H, Ristimäki A, Orntoft TF, Hautaniemi S, Arango D, Karhu A, Aaltonen LA (2012) Candidate driver genes in microsatellite-unstable colorectal cancer. Int J Cancer 130:1558–1566PubMedGoogle Scholar
  5. An CH, Je EM, Yoo NJ, Lee SH (2015) Frameshift mutations of cadherin genes DCHS2, CDH10 and CDH24 genes in gastric and colorectal cancers with high microsatellite instability. Pathol Oncol Res 21:181–185PubMedGoogle Scholar
  6. Arai T, Sakurai U, Sawabe M, Honma N, Aida J, Ushio Y, Kanazawa N, Kuroiwa K, Takubo K (2013) Frequent microsatellite instability in papillary and solid-type, poorly differentiated adenocarcinomas of the stomach. Gastric Cancer 16:505–512PubMedGoogle Scholar
  7. Azad N, Zahnow CA, Rudin CM, Baylin SB (2013) The future of epigenetic therapy in solid tumours—lessons from the past. Nat Rev Clin Oncol 10:256–266PubMedCentralPubMedGoogle Scholar
  8. Bader AG, Brown D, Winkler M (2010) The promise of microRNA replacement therapy. Cancer Res 70:7027–7030PubMedCentralPubMedGoogle Scholar
  9. Banerjea A, Ahmed S, Hands RE, Huang F, Han X, Shaw PM, Feakins R, Bustin SA, Dorudi S (2004) Colorectal cancers with microsatellite instability display mRNA expression signatures characteristic of increased immunogenicity. Mol Cancer 3:21PubMedCentralPubMedGoogle Scholar
  10. Benatti P, Gafa R, Barana D, Marino M, Scarselli A, Pedroni M, Maestri I, Guerzoni L, Roncucci L, Menigatti M, Roncari B, Maffei S, Rossi G, Ponti G, Santini A, Losi L, Di Gregorio C, Oliani C, Ponz de Leon M, Lanza G (2005) Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 11:8332–8340PubMedGoogle Scholar
  11. Bettington M, Walker N, Clouston A, Brown I, Leggett B, Whitehall V (2013) The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology 62:367–386PubMedGoogle Scholar
  12. Bilbao C, Ramirez R, Rodriguez G, Falcon O, Leon L, Diaz-Chico N, Perucho M, Diaz-Chico JC (2010) Double strand break repair components are frequent targets of microsatellite instability in endometrial cancer. Eur J Cancer 46:2821–2827PubMedGoogle Scholar
  13. Billingsley CC, Cohn DE, Mutch DG, Stephens JA, Suarez AA, Goodfellow PJ (2015) Polymerase ɛ (POLE) mutations in endometrial cancer: clinical outcomes and implications for Lynch syndrome testing. Cancer 121:386–394PubMedGoogle Scholar
  14. Boland CR, Fishel R (2005) Lynch syndrome: form, function, proteins, and basketball. Gastroenterology 129:751–755PubMedGoogle Scholar
  15. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138:2073–2087PubMedCentralPubMedGoogle Scholar
  16. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257PubMedGoogle Scholar
  17. Cajuso T, Hänninen UA, Kondelin J, Gylfe AE, Tanskanen T, Katainen R, Pitkänen E, Ristolainen H, Kaasinen E, Taipale M, Taipale J, Böhm J, Renkonen-Sinisalo L, Mecklin JP, Järvinen H, Tuupanen S, Kilpivaara O, Vahteristo P (2014) Exome sequencing reveals frequent inactivating mutations in ARID1A, ARID1B, ARID2 and ARID4A in microsatellite unstable colorectal cancer. Int J Cancer 135:611–623PubMedGoogle Scholar
  18. Calcagno DQ, Gigek CO, Chen ES, Burbano RR, Smith M de A (2013) DNA and histone methylation in gastric carcinogenesis. World J Gastroenterol 19:1182–1192PubMedCentralPubMedGoogle Scholar
  19. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866PubMedGoogle Scholar
  20. Cancer Genome Atlas Network (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337Google Scholar
  21. Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R, Mardis ER, Levine DA (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497:67–73Google Scholar
  22. Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–209Google Scholar
  23. Capper D, Voigt A, Bozukova G, Ahadova A, Kickingereder P, von Deimling A, von Knebel Doeberitz M, Kloor M (2013) BRAF V600E-specific immunohistochemistry for the exclusion of Lynch syndrome in MSI-H colorectal cancer. Int J Cancer 133:1624–1630PubMedGoogle Scholar
  24. Carethers JM, Smith EJ, Behling CA, Nguyen L, Tajima A, Doctolero RT, Cabrera BL, Goel A, Arnold CA, Miyai K, Boland CR (2004) Use of 5-fluorouracil and survival in patients with microsatellite unstable colorectal cancer. Gastroenterology 126:394–401PubMedGoogle Scholar
  25. Chan TL, Yuen ST, Kong CK, Chan YW, Chan AS, Ng WF, Tsui WY, Lo MW, Tam WY, Li VS, Leung SY (2006) Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat Genet 38:1178–1183PubMedGoogle Scholar
  26. Chang DK, Metzgar D, Wills C, Boland CR (2011) Microsatellites in the eukaryotic DNA mismatch repair genes as modulators of evolutionary mutation rate. Genome Res 11:1145–1146Google Scholar
  27. Choi YJ, Oh HR, Choi MR, Gwak M, An CH, Chung YJ, Yoo NJ, Lee SH (2014a) Frameshift mutation of a histone methylation-related gene SETD1B and its regional heterogeneity in gastric and colorectal cancers with high microsatellite instability. Hum Pathol 45:1674–1681PubMedGoogle Scholar
  28. Choi YY, Bae JM, An JY, Kwon IG, Cho I, Shin HB, Eiji T, Aburahmah M, Kim HI, Cheong JH, Hyung WJ, Noh SH (2014b) Is microsatellite instability a prognostic marker in gastric cancer? A systematic review with meta-analysis. J Surg Oncol 110:129–135PubMedGoogle Scholar
  29. Ciriello G, Cerami E, Sander C, Schultz N (2012) Mutual exclusivity analysis identifies oncogenic network modules. Genome Res 22:398–406PubMedCentralPubMedGoogle Scholar
  30. Collura A, Lagrange A, Svrcek M, Marisa L, Buhard O, Guilloux A, Wanherdrick K, Dorard C, Taieb A, Saget A, Loh M, Soong R, Zeps N, Platell C, Mews A, Iacopetta B, De Thonel A, Seigneuric R, Marcion G, Chapusot C, Lepage C, Bouvier AM, Gaub MP, Milano G, Selves J, Senet P, Delarue P, Arzouk H, Lacoste C, Coquelle A, Bengrine-Lefèvre L, Tournigand C, Lefèvre JH, Parc Y, Biard DS, Fléjou JF, Garrido C, Duval A (2014) Patients with colorectal tumors with microsatellite instability and large deletions in HSP110 T17 have improved response to 5-fluorouracil-based chemotherapy. Gastroenterology 146:401–411PubMedGoogle Scholar
  31. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467–477PubMedCentralPubMedGoogle Scholar
  32. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, Davies H, Edkins S, Hardy C, Latimer C et al (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463:360–363PubMedCentralPubMedGoogle Scholar
  33. Davalos V, Dopeso H, Velho S, Ferreira AM, Cirnes L, Díaz-Chico N, Bilbao C, Ramírez R, Rodríguez G, Falcón O, León L, Niessen RC, Keller G, Dallenbach-Hellweg G, Espín E, Armengol M, Plaja A, Perucho M, Imai K, Yamamoto H, Gebert JF, Díaz-Chico JC, Hofstra RM, Woerner SM, Seruca R, Schwartz S Jr, Arango D (2007) High EPHB2 mutation rate in gastric but not endometrial tumors with microsatellite instability. Oncogene 26:308–311PubMedGoogle Scholar
  34. Davis BN, Hata A (2010) microRNA in Cancer—the involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer 1:1100–1114Google Scholar
  35. Deng G, Bell I, Crawley S, Gum J, Terdiman JP, Allen BA, Truta B, Sleisenger MH, Kim YS (2004) BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res 10:191–195PubMedGoogle Scholar
  36. Dhomen N, Marais R (2007) New insight into BRAF mutations in cancer. Curr Opin Genet Dev 17:31–39PubMedGoogle Scholar
  37. Diaz-Padilla I, Romero N, Amir E, Matias-Guiu X, Vilar E, Muggia F, Garcia-Donas J (2013) Mismatch repair status and clinical outcome in endometrial cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol 88:154–167PubMedGoogle Scholar
  38. Dierssen JW, de Miranda NF, Ferrone S, van Puijenbroek M, Cornelisse CJ, Fleuren GJ, van Wezel T, Morreau H (2007) HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer 7:33PubMedCentralPubMedGoogle Scholar
  39. Domingo E, Espín E, Armengol M, Oliveira C, Pinto M, Duval A, Brennetot C, Seruca R, Hamelin R, Yamamoto H, Schwartz S Jr (2004a) Activated BRAF targets proximal colon tumors with mismatch repair deficiency and MLH1 inactivation. Genes Chromosomes Cancer 39:138–142PubMedGoogle Scholar
  40. Domingo E, Laiho P, Ollikainen M, Pinto M, Wang L, French AJ, Westra J, Frebourg T, Espín E, Armengol M, Hamelin R, Yamamoto H, Hofstra RM, Seruca R, Lindblom A, Peltomäki P, Thibodeau SN, Aaltonen LA, Schwartz S Jr (2004b) BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet 41:663–667Google Scholar
  41. Domingo E, Niessen RC, Oliveira C, Alhopuro P, Moutinho C, Espín E, Armengol M, Sijmons RH, Kleibeuker JH, Seruca R, Aaltonen LA, Imai K, Yamamoto H, Schwartz S Jr, Hofstra RM (2005) BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene 24:3995–3998PubMedGoogle Scholar
  42. Dorard C, de Thonel A, Collura A, Marisa L, Svrcek M, Lagrange A, Jego G, Wanherdrick K, Joly AL, Buhard O, Gobbo J, Penard-Lacronique V, Zouali H, Tubacher E, Kirzin S, Selves J, Milano G, Etienne-Grimaldi MC, Bengrine-Lefèvre L, Louvet C, Tournigand C, Lefèvre JH, Parc Y, Tiret E, Fléjou JF, Gaub MP, Garrido C, Duval A (2011) Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med 17:1283–1289PubMedGoogle Scholar
  43. Duchaine TF, Slack FJ (2009) RNA interference and micro RNA-oriented therapy in cancer: rationales, promises, and challenges. Curr Oncol 16:61–66PubMedCentralPubMedGoogle Scholar
  44. Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62:2447–2454PubMedGoogle Scholar
  45. Edwards RA, Witherspoon M, Wang K, Afrasiabi K, Pham T, Birnbaumer L, Lipkin SM (2009) Epigenetic repression of DNA mismatch repair by inflammation and hypoxia in inflammatory bowel disease-associated colorectal cancer. Cancer Res 69:6423–6429PubMedCentralPubMedGoogle Scholar
  46. El-Murr N, Abidi Z, Wanherdrick K, Svrcek M, Gaub MP, Fléjou JF, Hamelin R, Duval A, Lesuffleur T (2012) MiRNA genes constitute new targets for microsatellite instability in colorectal cancer. PLoS ONE 7:e31862PubMedCentralPubMedGoogle Scholar
  47. Fang M, Ou J, Hutchinson L, Green MR (2014) The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG Island Methylator phenotype. Mol Cell 55:904–915PubMedGoogle Scholar
  48. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921PubMedGoogle Scholar
  49. Findeisen P, Kloor M, Merx S, Sutter C, Woerner SM, Dostmann N, Benner A, Dondog B, Pawlita M, Dippold W, Wagner R, Gebert J, von Knebel Doeberitz M (2005) T25 repeat in the 3′ untranslated region of the CASP2 gene: a sensitive and specific marker for microsatellite instability in colorectal cancer. Cancer Res 65:8072–8078PubMedGoogle Scholar
  50. Gatalica Z, Snyder C, Maney T, Ghazalpour A, Holterman DA, Xiao N, Overberg P, Rose I, Basu GD, Vranic S, Lynch HT, Von Hoff DD, Hamid O (2014) Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomark Prev 23:2965–2970Google Scholar
  51. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468PubMedGoogle Scholar
  52. Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD (2002) A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res 62:3925–3928PubMedGoogle Scholar
  53. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl J Med 366:883–892PubMedGoogle Scholar
  54. Giannini G, Rinaldi C, Ristori E, Ambrosini MI, Cerignoli F, Viel A, Bidoli E, Berni S, D’Amati G, Scambia G, Frati L, Screpanti I, Gulino A (2004) Mutations of an intronic repeat induce impaired MRE11 expression in primary human cancer with microsatellite instability. Oncogene 23:2640–2647PubMedGoogle Scholar
  55. Gigek CO, Chen ES, Calcagno DQ, Wisnieski F, Burbano RR, Smith MA (2012) Epigenetic mechanisms in gastric cancer. Epigenomics 4:279–294PubMedGoogle Scholar
  56. Gil J, Yamamoto H, Zapata JM, Reed JC, Perucho M (1999) Impairment of the proapoptotic activity of Bax by missense mutations found in gastrointestinal cancers. Cancer Res 59:2034–2037PubMedGoogle Scholar
  57. Goel A, Boland CR (2010) Recent insights into the pathogenesis of colorectal cancer. Curr Opin Gastroenterol 26:47–52PubMedCentralPubMedGoogle Scholar
  58. Goldstein NS (2006) Serrated pathway and APC (conventional)-type colorectal polyps: molecular-morphologic correlations, genetic pathways, and implications for classification. Am J Clin Pathol 125:146–153PubMedGoogle Scholar
  59. Goldstein NS, Bhanot P, Odish E, Hunter S (2003) Hyperplastic-like colon polyps that preceded microsatellite-unstable adenocarcinomas. Am J Clin Pathol 119:778–796PubMedGoogle Scholar
  60. Gologan A, Krasinskas A, Hunt J, Thull DL, Farkas L, Sepulveda AR (2005) Performance of the revised Bethesda guidelines for identification of colorectal carcinomas with a high level of microsatellite instability. Arch Pathol Lab Med 129:1390–1397PubMedGoogle Scholar
  61. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, Maher CA, Fulton R, Fulton L, Wallis J, Chen K, Walker J, McDonald S, Bose R, Ornitz D, Xiong D, You M, Dooling DJ, Watson M, Mardis ER, Wilson RK (2012) Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150:1121–1134PubMedCentralPubMedGoogle Scholar
  62. Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD, Neumann A, Brattain MG, Chang J, Kim SJ, Kinzler KW, Vogelstein B, Willson JK, Markowitz S (1999) Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 59:320–324PubMedGoogle Scholar
  63. Grosshans H, Büssing I (2010) MicroRNA biogenesis takes another single hit from microsatellite instability. Cancer Cell 18:295–297PubMedGoogle Scholar
  64. Gylfe AE, Kondelin J, Turunen M, Ristolainen H, Katainen R, Pitkänen E, Kaasinen E, Rantanen V, Tanskanen T, Varjosalo M, Lehtonen H, Palin K, Taipale M, Taipale J, Renkonen-Sinisalo L, Järvinen H, Böhm J, Mecklin JP, Ristimäki A, Kilpivaara O, Tuupanen S, Karhu A, Vahteristo P, Aaltonen LA (2013) Identification of candidate oncogenes in human colorectal cancers with microsatellite instability. Gastroenterology 145:540–543PubMedGoogle Scholar
  65. Haferkamp B, Zhang H, Lin Y, Yeap X, Bunce A, Sharpe J, Xiang J (2012) BaxΔ2 is a novel bax isoform unique to microsatellite unstable tumors. J Biol Chem 287:34722–34729PubMedCentralPubMedGoogle Scholar
  66. Haferkamp B, Zhang H, Kissinger S, Wang X, Lin Y, Schultz M, Xiang J (2013) BaxΔ2 family alternative splicing salvages Bax microsatellite-frameshift mutations. Genes Cancer 4:501–512PubMedCentralPubMedGoogle Scholar
  67. Hallermalm K, Seki K, De Geer A, Motyka B, Bleackley RC, Jager MJ, Froelich CJ, Kiessling R, Levitsky V, Levitskaya J (2008) Modulation of the tumor cell phenotype by IFN-γ results in resistance of uveal melanoma cells to granule-mediated lysis by cytotoxic lymphocytes. J Immunol 180:3766–3774PubMedGoogle Scholar
  68. Halvey PJ, Wang X, Wang J, Bhat AA, Dhawan P, Li M, Zhang B, Liebler DC, Slebos RJ (2014) Proteogenomic analysis reveals unanticipated adaptations of colorectal tumor cells to deficiencies in DNA mismatch repair. Cancer Res 74:387–397PubMedCentralPubMedGoogle Scholar
  69. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, Nakagawa H, Sotamaa K, Prior TW, Westman J, Panescu J, Fix D, Lockman J, Comeras I, de la Chapelle A (2005) Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med 5352:1851–1860Google Scholar
  70. Hewish M, Lord CJ, Martin SA, Cunningham D, Ashworth A (2010) Mismatch repair deficient colorectal cancer in the era of personalized treatment. Nat Rev Clin Oncol 7:197–208PubMedGoogle Scholar
  71. Hill DA, Ivanovich J, Priest JR, Gurnett CA, Dehner LP, Desruisseau D, Jarzembowski JA, Wikenheiser-Brokamp KA, Suarez BK, Whelan AJ, Williams G, Bracamontes D, Messinger Y, Goodfellow PJ (2009) DICER1 mutations in familial pleuropulmonary blastoma. Science 325:965PubMedCentralPubMedGoogle Scholar
  72. Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk CM, Tollenaar RA, Laird PW (2012) Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 22:271–282PubMedCentralPubMedGoogle Scholar
  73. Hirata T, Yamamoto H, Taniguchi H, Horiuchi S, Oki M, Adachi Y, Imai K, Shinomura Y (2007) Characterization of the immune escape phenotype of human gastric cancers with and without high-frequency microsatellite instability. J Pathol 211:516–523PubMedGoogle Scholar
  74. Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI, Hawkins NJ, Ward RL (2007) Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med 356:697–705PubMedGoogle Scholar
  75. Hugo H, Cures A, Suraweera N, Drabsch Y, Purcell D, Mantamadiotis T, Phillips W, Dobrovic A, Zupi G, Gonda TJ, Iacopetta B, Ramsay RG (2006) Mutations in the MYB intron I regulatory sequence increase transcription in colon cancers. Genes Chromosomes Cancer 45:1143–1154PubMedGoogle Scholar
  76. Imai K, Yamamoto H (2008) Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis 29:673–680PubMedGoogle Scholar
  77. Inamura K, Yamauchi M, Nishihara R, Lochhead P, Qian ZR, Kuchiba A, Kim SA, Mima K, Sukawa Y, Jung S, Zhang X, Wu K, Cho E, Chan AT, Meyerhardt JA, Harris CC, Fuchs CS, Ogino S (2014) Tumor LINE-1 methylation level and microsatellite instability in relation to colorectal cancer prognosis. J Natl Cancer Inst 106Google Scholar
  78. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561PubMedGoogle Scholar
  79. Ionov Y, Yamamoto H, Krajewski S, Reed JC, Perucho M (2000) Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci USA 97:10872–10877PubMedCentralPubMedGoogle Scholar
  80. Ito M, Mitsuhashi K, Igarashi H, Nosho K, Naito T, Yoshii S, Takahashi H, Fujita M, Sukawa Y, Yamamoto E, Takahashi T, Adachi Y, Nojima M, Sasaki Y, Tokino T, Baba Y, Maruyama R, Suzuki H, Imai K, Yamamoto H, Shinomura Y (2014) MicroRNA-31 expression in relation to BRAF mutation, CpG island methylation and colorectal continuum in serrated lesions. Int J Cancer 135:2507–2515PubMedGoogle Scholar
  81. Jass JR (2006) Hereditary non-polyposis colorectal cancer: the rise and fall of a confusing term. World J Gastroenterol 12:4943–4950PubMedCentralPubMedGoogle Scholar
  82. Je EM, Gwak M, Oh H, Choi MR, Choi YJ, Lee SH, Yoo NJ (2013) Frameshift mutations of axon guidance genes ROBO1 and ROBO2 in gastric and colorectal cancers with microsatellite instability. Pathology 45:645–650PubMedGoogle Scholar
  83. Jover R, Zapater P, Castells A, Llor X, Andreu M, Cubiella J, Pinol V, Xicola RM, Bujanda L, Rene JM, Clofent J, Bessa X, Morillas JD, Nicolas-Perez D, Paya A, Alenda C, Gastrointestinal Oncology Group of the Spanish Gastroenterological Association (2006) Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut 55:848–855PubMedCentralPubMedGoogle Scholar
  84. Juo YY, Johnston FM, Zhang DY, Juo HH, Wang H, Pappou EP, Yu T, Easwaran H, Baylin S, van Engeland M, Ahuja N (2014) Prognostic value of CpG island methylator phenotype among colorectal cancer patients: a systematic review and meta-analysis. Ann Oncol 25:2314–2327PubMedGoogle Scholar
  85. Kaelin WG Jr (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5:689–698PubMedGoogle Scholar
  86. Kim JH, Kang GH (2014) Molecular and prognostic heterogeneity of microsatellite-unstable colorectal cancer. World J Gastroenterol 20:4230–4243PubMedCentralPubMedGoogle Scholar
  87. Kim TM, Park PJ (2014) A genome-wide view of microsatellite instability: old stories of cancer mutations revisited with new sequencing technologies. Cancer Res 74:6377–6382PubMedGoogle Scholar
  88. Kim MS, Oh JE, Kim YR, Park SW, Kang MR, Kim SS, Ahn CH, Yoo NJ, Lee SH (2010) Somatic mutations and losses of expression of microRNA regulation-related genes AGO2 and TNRC6A in gastric and colorectal cancers. J Pathol 221:139–146PubMedGoogle Scholar
  89. Kim TM, Laird PW, Park PJ (2013) The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 155:858–868PubMedGoogle Scholar
  90. Kim KJ, Lee KS, Cho HJ, Kim YH, Yang HK, Kim WH, Kang GH (2014) Prognostic implications of tumor-infiltrating FoxP3+ regulatory T cells and CD8+ cytotoxic T cells in microsatellite-unstable gastric cancers. Hum Pathol 45:285–293PubMedGoogle Scholar
  91. Klingbiel D, Saridaki Z, Roth AD, Bosman F, Delorenzi M, Tejpar S (2015) Prognosis of stage II and III colon carcinoma treated with adjuvant 5-FU or FOLFIRI in relation to microsatellite status, results of the PETACC-3 trial. Ann Oncol 26:126–132PubMedGoogle Scholar
  92. Kloor M, Becker C, Benner A, Woerner SM, Gebert J, Ferrone S, von Knebel Doeberitz M (2005) Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res 65:6418–6424PubMedGoogle Scholar
  93. Kloor M, Voigt AY, Schackert HK, Schirmacher P, von Knebel Doeberitz M, Bläker H (2011) Analysis of EPCAM protein expression in diagnostics of Lynch syndrome. J Clin Oncol 29:223–227PubMedGoogle Scholar
  94. Kmieciak M, Payne KK, Wang X-Y, Manjili MH (2013) IFN-γ Rα is a key determinant of CD8+ T cell-mediated tumor elimination of tumor escape and relapse in FVB mouse. PLoS ONE 8:e82544PubMedCentralPubMedGoogle Scholar
  95. Koh KH, Kang HJ, Li LS, Kim NG, You KT, Yang E, Kim H, Kim HJ, Yun CO, Kim KS, Kim H (2005) Impaired nonhomologous end-joining in mismatch repair-deficient colon carcinomas. Lab Invest 85:1130–1138PubMedGoogle Scholar
  96. Konishi K, Issa JP (2007) Targeting aberrant chromatin structure in colorectal carcinomas. Cancer J 13:49–55PubMedGoogle Scholar
  97. Kuan SF, Navina S, Cressman KL, Pai RK (2014) Immunohistochemical detection of BRAF V600E mutant protein using the VE1 antibody in colorectal carcinoma is highly concordant with molecular testing but requires rigorous antibody optimization. Hum Pathol 45:464–472PubMedGoogle Scholar
  98. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677PubMedGoogle Scholar
  99. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, Kirsch DG, Golub TR, Jacks T (2009) Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 23:2700–2704PubMedCentralPubMedGoogle Scholar
  100. Lagerstedt Robinson K, Liu T, Vandrovcova J, Halvarsson B, Clendenning M, Frebourg T, Papadopoulos N, Kinzler KW, Vogelstein B, Peltomaki P, Kolodner RD, Nilbert M, Lindblom A (2007) Lynch syndrome (hereditary nonpolyposis colorectal cancer) diagnostics. J Natl Cancer Inst 99:291–299PubMedGoogle Scholar
  101. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G (2014) Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501PubMedCentralPubMedGoogle Scholar
  102. Lax SF (2004) Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification. Virchows Arch 444:213–223PubMedGoogle Scholar
  103. Lee EJ, Luo J, Wilson JM, Shi H (2013) Analyzing the cancer methylome through targeted bisulfite sequencing. Cancer Lett 340:171–178PubMedGoogle Scholar
  104. Leung SY et al (2007) Reply to ‘‘Heritable germline epimutation is not the same as transgenerational epigenetic inheritance’’. Nat Genet 39:576Google Scholar
  105. Li GM (2013) Decoding the histone code: role of H3K36me3 in mismatch repair and implications for cancer susceptibility and therapy. Cancer Res 73:6379–6383PubMedGoogle Scholar
  106. Li F, Mao G, Tong D, Huang J, Gu L, Yang W, Li GM (2013) The histone mark H3 K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 153:590–600PubMedCentralPubMedGoogle Scholar
  107. Ligtenberg MJ, Kuiper RP, Chan TL, Goossens M, Hebeda KM, Voorendt M, Lee TY, Bodmer D, Hoenselaar E, Hendriks-Cornelissen SJ, Tsui WY, Kong CK, Brunner HG, van Kessel AG, Yuen ST, van Krieken JH, Leung SY, Hoogerbrugge N (2009) Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat Genet 41:112–117PubMedGoogle Scholar
  108. Llosa NJ, Cruise M, Tam A, Wick EC, Hechenbleikner EM, Taube JM, Blosser L, Fan H, Wang H, Luber B, Zhang M, Papadopoulos N, Kinzler KW, Vogelstein B, Sears CL, Anders RA, Pardoll DM, Housseau F (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5:43–51PubMedGoogle Scholar
  109. Lopez-Serra P, Esteller M (2012) DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene 31:1609–1622PubMedCentralPubMedGoogle Scholar
  110. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedGoogle Scholar
  111. Malkhosyan S, Rampino N, Yamamoto H, Perucho M (1996) Frameshift mutator mutations. Nature 382:499–500PubMedGoogle Scholar
  112. Malkhosyan SR, Yamamoto H, Piao Z, Perucho M (2000) Late onset and high incidence of colon cancer of the mutator phenotype with hypermethylated hMLH1 gene in women. Gastroenterology 119:598PubMedGoogle Scholar
  113. Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470:198–203PubMedGoogle Scholar
  114. Markowitz SD, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B et al (1995) Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338PubMedGoogle Scholar
  115. Martens-Uzunova ES, Olvedy M, Jenster G (2013) Beyond microRNA-novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Lett 340:201–211PubMedGoogle Scholar
  116. Martin SA, Lord CJ, Ashworth A (2010) Therapeutic targeting of the DNA mismatch repair pathway. Clin Cancer Res 16:5107–5113PubMedGoogle Scholar
  117. Mazzolini R, Rodrigues P, Bazzocco S, Dopeso H, Ferreira AM, Mateo-Lozano S, Andretta E, Woerner SM, Alazzouzi H, Landolfi S, Hernandez-Losa J, Macaya I, Suzuki H, Ramón y Cajal S, Mooseker MS, Mariadason JM, Gebert J, Hofstra RM, Reventós J, Yamamoto H, Schwartz S Jr, Arango D (2013) Brush border myosin Ia inactivation in gastric but not endometrial tumors. Int J Cancer 132:1790–1799PubMedGoogle Scholar
  118. McPherson LA, Shen Y, Ford JM (2014) Poly (ADP-ribose) polymerase inhibitor LT-626: sensitivity correlates with MRE11 mutations and synergizes with platinums and irinotecan in colorectal cancer cells. Cancer Lett 343:217–223PubMedGoogle Scholar
  119. Melo SA, Esteller M (2011a) A precursor microRNA in a cancer cell nucleus: get me out of here! Cell Cycle 10:922–925PubMedCentralPubMedGoogle Scholar
  120. Melo SA, Esteller M (2011b) Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 585:2087–2099PubMedGoogle Scholar
  121. Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, Rossi S, Fernandez AF, Carneiro F, Oliveira C, Ferreira B, Liu CG, Villanueva A, Capella G, Schwartz S Jr, Shiekhattar R, Esteller M (2009) A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 41:365–370PubMedGoogle Scholar
  122. Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, Fernandez AF, Davalos V, Villanueva A, Montoya G, Yamamoto H, Schwartz S Jr, Esteller M (2010) A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 18:303–315PubMedGoogle Scholar
  123. Melo S, Villanueva A, Moutinho C, Davalos V, Spizzo R, Ivan C, Rossi S, Setien F, Casanovas O, Simo-Riudalbas L, Carmona J, Carrere J, Vidal A, Aytes A, Puertas S, Ropero S, Kalluri R, Croce CM, Calin GA, Esteller M (2011) Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci USA 108:4394–4399PubMedCentralPubMedGoogle Scholar
  124. Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685–696PubMedGoogle Scholar
  125. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518PubMedCentralPubMedGoogle Scholar
  126. Miyakura Y, Sugano K, Akasu T, Yoshida T, Maekawa M, Saitoh S, Sasaki H, Nomizu T, Konishi F, Fujita S, Moriya Y, Nagai H (2004) Extensive but hemiallelic methylation of the hMLH1 promoter region in early-onset sporadic colon cancers with microsatellite instability. Clin Gastroenterol Hepatol 2:147–156PubMedGoogle Scholar
  127. Moorcraft SY, Chau I, Peckitt C, Cunningham D, Rao S, Yim KL, Walther A, Jackson CG, Stamp G, Webb J, Smith G, Gillbanks A, Swanton C (2013) Patupilone in patients with pretreated metastatic/locally recurrent colorectal cancer: results of the Phase II CINATRA trial. Invest New Drugs 31:1339–1344PubMedGoogle Scholar
  128. Morandi L, de Biase D, Visani M, Monzoni A, Tosi A, Brulatti M, Turchetti D, Baccarini P, Tallini G, Pession A (2012) T([20]) repeat in the 3′-untranslated region of the MT1X gene: a marker with high sensitivity and specificity to detect microsatellite instability in colorectal cancer. Int J Colorectal Dis 27:647–656PubMedGoogle Scholar
  129. Mori Y, Selaru FM, Sato F, Yin J, Simms LA, Xu Y, Olaru A, Deacu E, Wang S, Taylor JM, Young J, Leggett B, Jass JR, Abraham JM, Shibata D, Meltzer SJ (2003) The impact of microsatellite instability on the molecular phenotype of colorectal tumors. Cancer Res 63:4577–4582PubMedGoogle Scholar
  130. Nagarajan N, Bertrand D, Hillmer AM, Zang ZJ, Yao F, Jacques PE, Teo AS, Cutcutache I, Zhang Z, Lee WH, Sia YY, Gao S, Ariyaratne PN, Ho A, Woo XY, Veeravali L, Ong CK, Deng N, Desai KV, Khor CC, Hibberd ML, Shahab A, Rao J, Wu M, Teh M, Zhu F, Chin SY, Pang B, So JB, Bourque G, Soong R, Sung WK, Tean Teh B, Rozen S, Ruan X, Yeoh KG, Tan PB, Ruan Y (2012) Whole-genome reconstruction and mutational signatures in gastric cancer. Genome Biol 13:R115PubMedCentralPubMedGoogle Scholar
  131. Nagasaka T, Rhees J, Kloor M, Gebert J, Naomoto Y, Boland CR, Goel A (2010) Somatic hypermethylation of MSH2 is a frequent event in Lynch Syndrome colorectal cancers. Cancer Res 70:3098–3108PubMedCentralPubMedGoogle Scholar
  132. Nosho K, Igarashi H, Nojima M, Ito M, Maruyama R, Yoshii S, Naito T, Sukawa Y, Mikami M, Sumioka W, Yamamoto E, Kurokawa S, Adachi Y, Takahashi H, Okuda H, Kusumi T, Hosokawa M, Fujita M, Hasegawa T, Okita K, Hirata K, Suzuki H, Yamamoto H, Shinomura Y (2014) Association of microRNA-31 with BRAF mutation, colorectal cancer survival and serrated pathway. Carcinogenesis 35:776–783PubMedGoogle Scholar
  133. Ogino S, Kawasaki T, Kirkner GJ, Loda M, Fuchs CS (2006) CpG island methylator phenotype-low (CIMP-low) in colorectal cancer: possible associations with male sex and KRAS mutations. J Mol Diagn 8:582–588PubMedCentralPubMedGoogle Scholar
  134. Oliveira C, Pinto M, Duval A, Brennetot C, Domingo E, Espín E, Armengol M, Yamamoto H, Hamelin R, Seruca R, Schwartz S Jr (2003) BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency. Oncogene 22:9192–9196PubMedGoogle Scholar
  135. Oliveira C, Westra JL, Arango D, Ollikainen M, Domingo E, Ferreira A, Velho S, Niessen R, Lagerstedt K, Alhopuro P, Laiho P, Veiga I, Teixeira MR, Ligtenberg M, Kleibeuker JH, Sijmons RH, Plukker JT, Imai K, Lage P, Hamelin R, Albuquerque C, Schwartz S Jr, Lindblom A, Peltomaki P, Yamamoto H, Aaltonen LA, Seruca R, Hofstra RM (2004) Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 methylation status. Hum Mol Genet 13:2303–2311PubMedGoogle Scholar
  136. Ollikainen M, Hannelius U, Lindgren CM, Abdel-Rahman WM, Kere J, Peltomäki P (2007) Mechanisms of inactivation of MLH1 in hereditary nonpolyposis colorectal carcinoma: a novel approach. Oncogene 26:4541–4549PubMedGoogle Scholar
  137. Otani K, Li X, Arakawa T, Chan FK, Yu J (2013) Epigenetic-mediated tumor suppressor genes as diagnostic or prognostic biomarkers in gastric cancer. Expert Rev Mol Diagn 13:445–455PubMedGoogle Scholar
  138. Papagiorgis P (2013) Colorectal cancer: dichotomous or continuum model? Perhaps, a combination of both. Gut 62:1519–1520PubMedGoogle Scholar
  139. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264PubMedGoogle Scholar
  140. Patel LR, Nykter M, Chen K, Zhang W (2013) Cancer genome sequencing: understanding malignancy as a disease of the genome, its conformation, and its evolution. Cancer Lett 340:152–160PubMedGoogle Scholar
  141. Perucho M (1996) Microsatellite instability: the mutator that mutates the other mutator. Nat Med 2:630–631PubMedGoogle Scholar
  142. Perucho M (1999) Correspondence re: Boland CR et al. (1998) A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 59:249–253PubMedGoogle Scholar
  143. Perucho M (2003) Tumors with microsatellite instability: many mutations, targets and paradoxes. Oncogene 22:2223–2235PubMedGoogle Scholar
  144. Phillips SM, Banerjea A, Feakins R, Li SR, Bustin SA, Dorudi S (2004) Tumour-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. Br J Surg 91:469–475PubMedGoogle Scholar
  145. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordóñez GR, Bignell GR et al (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463:191–196PubMedCentralPubMedGoogle Scholar
  146. Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23:609–618PubMedGoogle Scholar
  147. Poulogiannis G, Frayling IM, Arends MJ (2010) DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch syndrome. Histopathology 56:167–179PubMedGoogle Scholar
  148. Prat J, Gallardo A, Cuatrecasas M, Catasus L (2007) Endometrial carcinoma: pathology and genetics. Pathology 39:72–87PubMedGoogle Scholar
  149. Qu Y, Dang S, Hou P (2013) Gene methylation in gastric cancer. Clin Chim Acta 424:53–65PubMedGoogle Scholar
  150. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418:934PubMedGoogle Scholar
  151. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M (1997) Somatic framesfhift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275:967–969PubMedGoogle Scholar
  152. Rex DK, Ahnen DJ, Baron JA, Batts KP, Burke CA, Burt RW, Goldblum JR, Guillem JG, Kahi CJ, Kalady MF, O’Brien MJ, Odze RD, Ogino S, Parry S, Snover DC, Torlakovic EE, Wise PE, Young J, Church J (2012) Serrated lesions of the colorectum: review and recommendations from an expert panel. Am J Gastroenterol 107:1315–1329PubMedCentralPubMedGoogle Scholar
  153. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, Hamilton SR, Laurent-Puig P, Gryfe R, Shepherd LE, Tu D, Redston M, Gallinger S (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257PubMedCentralPubMedGoogle Scholar
  154. Rodriguez-Bigas MA, Boland CR, Hamilton SR, Henson DE, Jass JR, Khan PM, Lynch H, Perucho M, Smyrk T, Sobin L, Srivastava S (1997) A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89:1758–1762PubMedGoogle Scholar
  155. Ropero S, Fraga MF, Ballestar E, Hamelin R, Yamamoto H, Boix-Chornet M, Caballero R, Alaminos M, Setien F, Paz MF, Herranz M, Palacios J, Arango D, Orntoft TF, Aaltonen LA, Schwartz S Jr, Esteller M (2006) A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet 38:566–569PubMedGoogle Scholar
  156. Rossi L, Bonmassar E, Faraoni I (2007) Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res 56:248–253PubMedGoogle Scholar
  157. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s role in cancer suppression and promotion. Science 331:1565–1570PubMedGoogle Scholar
  158. Schwartz S Jr, Yamamoto H, Navarro M, Maestro M, Reventós J, Perucho M (1999) Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 59:2995–3002PubMedGoogle Scholar
  159. Sehgal R, Sheahan K, O’Connell PR, Hanly AM, Martin ST, Winter DC (2014) Lynch syndrome: an updated review. Genes (Basel) 5:497–507Google Scholar
  160. Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, Hernandez NS, Chen X, Ahmed S, Konishi K, Hamilton SR, Issa JP (2007) Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA 104:18654–18659PubMedCentralPubMedGoogle Scholar
  161. Shia J, Ellis NA, Paty PB, Nash GM, Qin J, Offit K, Zhang XM, Markowitz AJ, Nafa K, Guillem JG, Wong WD, Gerald WL, Klimstra DS (2003) Value of histopathology in predicting microsatellite instability in hereditary nonpolyposis colorectal cancer and sporadic colorectal cancer. Am J Surg Pathol 27:1407–1417PubMedGoogle Scholar
  162. Sinicrope FA, Sargent DJ (2009) Clinical implications of microsatellite instability in sporadic colon cancers. Curr Opin Oncol 21:369–373PubMedCentralPubMedGoogle Scholar
  163. Spring KJ, Spring KJ, Zhao ZZ, Karamatic R, Walsh MD, Whitehall VL, Pike T, Simms LA, Young J, James M, Montgomery GW, Appleyard M, Hewett D, Togashi K, Jass JR, Leggett BA (2006) High prevalence of sessile serrated adenomas with BRAF mutations: a prospective study of patients undergoing colonoscopy. Gastroenterology 131:1400–1407PubMedGoogle Scholar
  164. Sukawa Y, Yamamoto H, Nosho K, Kunimoto H, Suzuki H, Adachi Y, Nakazawa M, Nobuoka T, Kawayama M, Mikami M, Matuno T, Hasegawa T, Hirata K, Imai K, Shinomura Y (2012) Clinicopathological and molecular correlates of HER2 expression, PIK3CA mutations and EBV infection involved in the PI3K-Akt pathway in gastric cancer. World J Gastroenterol 18:6577–6586PubMedCentralPubMedGoogle Scholar
  165. Suraweera N, Duval A, Reperant M, Vaury C, Furlan D, Leroy K, Seruca R, Iacopetta B, Hamelin R (2002) Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 123:1804–1811PubMedGoogle Scholar
  166. Susini T, Amunni G, Molino C, Carriero C, Rapi S, Branconi F, Marchionni M, Taddei G, Scarselli G (2007) Ten-year results of a prospective study on the prognostic role of ploidy in endometrial carcinoma: DNA aneuploidy identifies high-risk cases among the so-called ‘low-risk’ patients with well and moderately differentiated tumors. Cancer 109:882–890PubMedGoogle Scholar
  167. Suzuki H, Yamamoto E, Maruyama R, Niinuma T, Kai M (2014) Biological significance of the CpG island methylator phenotype. Biochem Biophys Res Commun 455:35–42PubMedGoogle Scholar
  168. Tahara T, Yamamoto E, Madireddi P, Suzuki H, Maruyama R, Chung W, Garriga J, Jelinek J, Yamano HO, Sugai T, Kondo Y, Toyota M, Issa JP, Estécio MR (2014a) Colorectal carcinomas with CpG island methylator phenotype 1 frequently contain mutations in chromatin regulators. Gastroenterology 146:530–538PubMedCentralPubMedGoogle Scholar
  169. Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, Jelinek J, Yamano HO, Sugai T, An B, Shureiqi I, Toyota M, Kondo Y, Estécio MR, Issa JP (2014b) Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res 74:1311–1318PubMedCentralPubMedGoogle Scholar
  170. Thibodeau S, Bren G, Schaid D (1993) Microsatellite instability in cancer of the proximal colon. Science 260:816–819PubMedGoogle Scholar
  171. Thiel A, Heinonen M, Kantonen J, Gylling A, Lahtinen L, Korhonen M, Kytölä S, Mecklin JP, Orpana A, Peltomäki P, Ristimäki A (2013) BRAF mutation in sporadic colorectal cancer and Lynch syndrome. Virchows Arch 463:613–621PubMedGoogle Scholar
  172. Tian S, Roepman P, Popovici V, Michaut M, Majewski I, Salazar R, Santos C, Rosenberg R, Nitsche U, Mesker WE, Bruin S, Tejpar S, Delorenzi M, Bernards R, Simon I (2012) A robust genomic signature for the detection of colorectal cancer patients with microsatellite instability phenotype and high mutation frequency. J Pathol 228:586–595PubMedCentralPubMedGoogle Scholar
  173. Torlakovic E, Skovlund E, Snover DC, Torlakovic G, Nesland JM (2003) Morphologic reappraisal of serrated colorectal polyps. Am J Surg Pathol 27:65–81PubMedGoogle Scholar
  174. Toyota M, Ohe-Toyota M, Ahuja N, Issa JP (2000) Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc Natl Acad Sci USA 97:710–715PubMedCentralPubMedGoogle Scholar
  175. Tuupanen S, Hänninen UA, Kondelin J, von Nandelstadh P, Cajuso T, Gylfe AE, Katainen R, Tanskanen T, Ristolainen H, Böhm J, Mecklin JP, Järvinen H, Renkonen-Sinisalo L, Andersen CL, Taipale M, Taipale J, Vahteristo P, Lehti K, Pitkänen E, Aaltonen LA (2014) Identification of 33 candidate oncogenes by screening for base-specific mutations. Br J Cancer 111:1657–1662PubMedGoogle Scholar
  176. Ulahannan D, Kovac MB, Mulholland PJ, Cazier JB, Tomlinson I (2013) Technical and implementation issues in using next-generation sequencing of cancers in clinical practice. Br J Cancer 109:827–835PubMedCentralPubMedGoogle Scholar
  177. Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, Sumani KM, Alder H, Amadori D, Patel T, Nuovo GJ, Fishel R, Croce CM (2010a) MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci USA 107:21098–21103PubMedCentralPubMedGoogle Scholar
  178. Valeri N, Gasparini P, Fabbri M, Braconi C, Veronese A, Lovat F, Adair B, Vannini I, Fanini F, Bottoni A, Costinean S, Sandhu SK, Nuovo GJ, Alder H, Gafa R, Calore F, Ferracin M, Lanza G, Volinia S, Negrini M, McIlhatton MA, Amadori D, Fishel R, Croce CM (2010b) Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci USA 107:6982–6987PubMedCentralPubMedGoogle Scholar
  179. van Kouwenhove M, Kedde M, Agami R (2011) MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 11:644–656PubMedGoogle Scholar
  180. Vasen HF (2005) Clinical description of the Lynch syndrome [hereditary nonpolyposis colorectal cancer (HNPCC)]. Fam Cancer 4:219–225PubMedGoogle Scholar
  181. Vasen HF, Boland CR (2005) Progress in genetic testing, classification, and identification of Lynch syndrome. JAMA 293:2028–2030PubMedGoogle Scholar
  182. Vasen HF, Moslein G, Alonso A, Bernstein I, Bertario L, Blanco I, Burn J, Capella G, Engel C, Frayling I, Friedl W, Hes FJ, Hodgson S, Mecklin JP, Moller P, Nagengast FN, Parc Y, Renkonen-Sinisalo L, Sampson JR, Stormorken A, Wijnen J (2007) Guidelines for the clinical management of Lynch syndrome (HNPCC). J Med Genet 44:353–362PubMedCentralPubMedGoogle Scholar
  183. Vilar E, Gruber SB (2010) Microsatellite instability in colorectal cancer—the stable evidence. Nat Rev Clin Oncol 7:153–162PubMedCentralPubMedGoogle Scholar
  184. Vilar E, Bartnik CM, Stenzel SL, Raskin L, Ahn J, Moreno V, Mukherjee B, Iniesta MD, Morgan MA, Rennert G, Gruber SB (2011) MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers. Cancer Res 71:2632–2642PubMedCentralPubMedGoogle Scholar
  185. Viswanathan SR, Daley GQ (2010) Lin28: a microRNA regulator with a macro role. Cell 140:445–449PubMedGoogle Scholar
  186. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339:1546–1558PubMedCentralPubMedGoogle Scholar
  187. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261PubMedCentralPubMedGoogle Scholar
  188. von Knebel Doeberitz M, Kloor M (2013) Towards a vaccine to prevent cancer in Lynch syndrome patients. Fam Cancer 12:307–312Google Scholar
  189. Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, Chan TL, Kan Z, Chan AS, Tsui WY, Lee SP, Ho SL, Chan AK, Cheng GH, Roberts PC, Rejto PA, Gibson NW, Pocalyko DJ, Mao M, Xu J, Leung SY (2011) Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 43:1219–1223PubMedGoogle Scholar
  190. Woerner SM, Kloor M, Mueller A, Rueschoff J, Friedrichs N, Buettner R, Buzello M, Kienle P, Knaebel HP, Kunstmann E, Pagenstecher C, Schackert HK, Moslein G, Vogelsang H, von Knebel Doeberitz M, Gebert JF, German HNPCC Consortium (2005) Microsatellite instability of selective target genes in HNPCC-associated colon adenomas. Oncogene 24:2525–2535PubMedGoogle Scholar
  191. Woerner SM, Benner A, Sutter C, Schiller M, Yuan YP, Keller G, Bork P, Doeberitz MK, Gebert JF (2003) Pathogenesis of DNA repair-deficient cancers: a statistical meta-analysis of putative Real Common Target genes. Oncogene 22:2226–2235PubMedGoogle Scholar
  192. Woerner SM, Yuan YP, Benner A, Korff S, von Knebel Doeberitz M, Bork P (2010) SelTarbase, a database of human mononucleotide–microsatellite mutations and their potential impact to tumorigenesis and immunology. Nucl Acids Res 38:D682–D689PubMedCentralPubMedGoogle Scholar
  193. Xuan J, Yu Y, Qing T, Guo L, Shi L (2013) Next-generation sequencing in the clinic: promises and challenges. Cancer Lett 340:284–295PubMedGoogle Scholar
  194. Yamamoto H, Sawai H, Perucho M (1997) Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 57:4420–4426PubMedGoogle Scholar
  195. Yamamoto H, Sawai H, Weber TK, Rodriguez-Bigas MA, Perucho M (1998) Somatic frameshift mutations in DNA mismatch repair and proapoptosis genes in hereditary nonpolyposis colorectal cancer. Cancer Res 58:997–1003PubMedGoogle Scholar
  196. Yamamoto H, Perez-Piteira J, Yoshida T, Terada M, Itoh F, Imai K, Perucho M (1999) Gastric cancers of the microsatellite mutator phenotype display characteristic genetic and clinical features. Gastroenterology 116:1348–1357PubMedGoogle Scholar
  197. Yamamoto H, Gil J, Schwartz S Jr, Perucho M (2000) Frameshift mutations in Fas, Apaf-1, and Bcl-10 in gastrointestinal cancer of the microsatellite mutator phenotype. Cell Death Differ 7:238–239PubMedGoogle Scholar
  198. Yamamoto H, Yamashita K, Perucho M (2001) Somatic mutation of the beta2-microglobulin gene associates with unfavorable prognosis in gastrointestinal cancer of the microsatellite mutator phenotype. Gastroenterology 120:1565–1567PubMedGoogle Scholar
  199. Yamamoto H, Imai K, Perucho M (2003) Gastrointestinal cancer of the microsatellite mutator phenotype pathway. J Gastroenterol 37:153–163Google Scholar
  200. Yamamoto H, Adachi Y, Taniguchi H, Kunimoto H, Nosho K, Suzuki H, Shinomura Y (2012) The interrelationship between microsatellite instability and microRNA in gastrointestinal cancer. World J Gastroenterol 18:2745–2755PubMedCentralPubMedGoogle Scholar
  201. Yamamoto H, Watanabe Y, Maehata T, Morita R, Yoshida Y, Oikawa R, Ishigooka S, Ozawa S, Matsuo Y, Hosoya K, Yamashita M, Taniguchi H, Nosho K, Suzuki H, Yasuda H, Shinomura Y, Itoh F (2014) An updated review of gastric cancer in the next-generation sequencing era: insights from bench to bedside and vice versa. World J Gastroenterol 20:3927–3937PubMedCentralPubMedGoogle Scholar
  202. Yamauchi M, Lochhead P, Morikawa T, Huttenhower C, Chan AT, Giovannucci E, Fuchs C, Ogino S (2012) Colorectal cancer: a tale of two sides or a continuum? Gut 61:794–797PubMedCentralPubMedGoogle Scholar
  203. Yoon K, Lee S, Han TS, Moon SY, Yun SM, Kong SH, Jho S, Choe J, Yu J, Lee HJ, Park JH, Kim HM, Lee SY, Park J, Kim WH, Bhak J, Yang HK, Kim SJ (2013) Comprehensive genome- and transcriptome-wide analyses of mutations associated with microsatellite instability in Korean gastric cancers. Genome Res 23:1109–1117PubMedCentralPubMedGoogle Scholar
  204. Young J, Barker MA, Simms LA, Walsh MD, Biden KG, Buchanan D, Buttenshaw R, Whitehall VL, Arnold S, Jackson L, Kambara T, Spring KJ, Jenkins MA, Walker GJ, Hopper JL, Leggett BA, Jass JR (2005) Evidence for BRAF mutation and variable levels of microsatellite instability in a syndrome of familial colorectal cancer. Clin Gastroenterol Hepatol 3:254–263PubMedGoogle Scholar
  205. Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A, Lim KH, Ong CK, Huang D, Chin SY, Tan IB, Ng CC, Yu W, Wu Y, Lee M, Wu J, Poh D, Wan WK, Rha SY, So J, Salto-Tellez M, Yeoh KG, Wong WK, Zhu YJ, Futreal PA, Pang B, Ruan Y, Hillmer AM, Bertrand D, Nagarajan N, Rozen S, Teh BT, Tan P (2012) Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 44:570–574PubMedGoogle Scholar
  206. Zhang J, Lindroos A, Ollila S, Russell A, Marra G, Mueller H, Peltomaki P, Plasilova M, Heinimann K (2006) Gene conversion is a frequent mechanism of inactivation of the wild-type allele in cancers from MLH1/MSH2 deletion carriers. Cancer Res 66:659–664PubMedGoogle Scholar
  207. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, Easton J, Chen X, Wang J, Rusch M et al (2012) The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481:157–163PubMedCentralPubMedGoogle Scholar
  208. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, Davies SR, Wang S, Wang P, Kinsinger CR, Rivers RC, Rodriguez H, Townsend RR, Ellis MJ, Carr SA, Tabb DL, Coffey RJ, Slebos RJ, Liebler DC, NCI CPTAC (2014a) Proteogenomic characterization of human colon and rectal cancer. Nature 513:382–387PubMedCentralPubMedGoogle Scholar
  209. Zhang H, Lin Y, Mañas A, Zhao Y, Denning MF, Ma L, Xiang J (2014b) BaxΔ2 promotes apoptosis through caspase-8 activation in microsatellite-unstable colon cancer. Mol Cancer Res 12:1225–1232PubMedGoogle Scholar
  210. Zighelboim I, Goodfellow PJ, Gao F, Gibb RK, Powell MA, Rader JS, Mutch DG (2007) Microsatellite instability and epigenetic inactivation of MLH1 and outcome of patients with endometrial carcinomas of the endometrioid type. J Clin Oncol 25:2042–2048PubMedGoogle Scholar
  211. Zouridis H, Deng N, Ivanova T, Zhu Y, Wong B, Huang D, Wu YH, Wu Y, Tan IB, Liem N, Gopalakrishnan V, Luo Q, Wu J, Lee M, Yong WP, Goh LK, Teh BT, Rozen S, Tan P (2012) Methylation subtypes and large-scale epigenetic alterations in gastric cancer. Sci Transl Med 4:156ra140PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Division of Gastroenterology and Hepatology, Department of Internal MedicineSt. Marianna University School of MedicineKawasakiJapan
  2. 2.The Institute of Medical ScienceThe University of TokyoTokyoJapan

Personalised recommendations