Archives of Toxicology

, Volume 89, Issue 4, pp 519–539 | Cite as

Towards understanding of nanoparticle–protein corona

  • Cuicui Ge
  • Jian Tian
  • Yuliang Zhao
  • Chunying Chen
  • Ruhong Zhou
  • Zhifang ChaiEmail author
Review Article


With the rapid developments of nanotechnology, chances of exposing nanoscale particles to humans (e.g., workers and consumers) also increase correspondingly, which raises serious concerns on their biosafety. Entrance of nanoparticles into diverse biological environment endows them with new and dynamic biological identities as the so-called nanoparticle–protein corona. Therefore, understanding the role of these nanoparticle–protein coronas and resulting biological responses is crucial, as it helps to clarify the biological mechanism and prevent the potential adverse effects of nanoparticles. In this review, we summarize the latest developments relating to the nanoparticle–protein interaction and corresponding biological responses, with an emphasis on the characterization methods, induced biological effects and possible molecular mechanisms. In addition, we overview both the challenges and opportunities (particularly in nanomedicine) raised by this entrance of nanoparticles into the living creatures, especially human beings, with some future perspectives based on our understanding.


Nanoparticle Protein corona Interaction Biological response 



This work is partially supported by the National Basic Research Program of China (973 Program Grant No. 2014CB931900), National Natural Science Foundation of China (21207164), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection.


  1. Alsteens D, Trabelsi H, Soumillion P, Dufrêne YF (2013) Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat Commun. doi: 10.1038/ncomms3926 PubMedGoogle Scholar
  2. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867. doi: 10.1074/mcp.R200007-MCP200 CrossRefPubMedGoogle Scholar
  3. Babič M, Horák D, Jendelová P et al (2009) Poly(N, N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconj Chem 20(2):283–294. doi: 10.1021/bc800373x CrossRefGoogle Scholar
  4. Bastús NG, Sánchez-Tilló E, Pujals S et al (2009) Homogeneous conjugation of peptides onto gold nanoparticles enhances macrophage response. ACS Nano 3(6):1335–1344. doi: 10.1021/nn8008273 CrossRefPubMedGoogle Scholar
  5. Buijs J, Ramström M, Danfelter M, Larsericsdotter H, Håkansson P, Oscarsson S (2003) Localized changes in the structural stability of myoglobin upon adsorption onto silica particles, as studied with hydrogen/deuterium exchange mass spectrometry. J Colloid Interf Sci 263(2):441–448. doi: 10.1016/S0021-9797(03)00401-6 CrossRefGoogle Scholar
  6. Cai XN, Ramalingam R, Wong HS et al (2013) Characterization of carbon nanotube protein corona by using quantitative proteomics. Nanomed-Nanotechnol 9(5):583–593. doi: 10.1016/j.nano.2012.09.004 CrossRefGoogle Scholar
  7. Calvaresi M, Arnesano F, Bonacchi S et al (2014) C60@Lysozyme: direct observation by nuclear magnetic resonance of a 1:1 fullerene protein adduct. ACS Nano 8(2):1871–1877. doi: 10.1021/nn4063374 CrossRefPubMedGoogle Scholar
  8. Cedervall T, Lynch I, Lindman S et al (2007) Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055. doi: 10.1073/pnas.0608582104 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Chang TY, Chang CC, Ohgami N, Yamauchi Y (2006) Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol 22:129–157. doi: 10.1146/annurev.cellbio.22.010305.104656 CrossRefPubMedGoogle Scholar
  10. Cho EC, Xie J, Wurm PA, Xia Y (2009) Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett 9(3):1080–1084CrossRefPubMedGoogle Scholar
  11. Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5(7):374–381CrossRefPubMedGoogle Scholar
  12. Curtiss LK, Witztum JL (1985) Plasma apolipoproteins AI, AII, B, CI, and E are glucosylated in hyperglycemic diabetic subjects. Diabetes 34(5):452–461. doi: 10.2337/diab.34.5.452 CrossRefPubMedGoogle Scholar
  13. Dashti M, Kulik W, Hoek F, Veerman EC, Peppelenbosch MP, Rezaee F (2011) A phospholipidomic analysis of all defined human plasma lipoproteins. Sci Rep.
  14. Dashty M, Motazacker MM, Levels J et al (2014) Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism. Thromb Haemost 111(3):518–530. doi: 10.1160/TH13-02-0178 CrossRefPubMedGoogle Scholar
  15. De Paoli SH, Diduch LL, Tegegn TZ et al (2014) The effect of protein corona composition on the interaction of carbon nanotubes with human blood platelets. Biomaterials 35(24):6182–6194. doi: 10.1016/j.biomaterials.2014.04.067 CrossRefPubMedGoogle Scholar
  16. Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nano 6(1):39–44.
  17. Deng ZJ, Liang M, Toth I, Monteiro MJ, Minchin RF (2012) Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 6(10):8962–8969. doi: 10.1021/nn3029953 CrossRefPubMedGoogle Scholar
  18. El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37(5):326–333. doi: 10.1021/Ar020204f CrossRefPubMedGoogle Scholar
  19. Euliss LE, DuPont JA, Gratton S, DeSimone JM (2006) Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35(11):1095–1104. doi: 10.1039/B600913c CrossRefPubMedGoogle Scholar
  20. Faklaris O, Joshi V, Irinopoulou T et al (2009) Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3(12):3955–3962CrossRefPubMedGoogle Scholar
  21. Fleischer CC, Payne CK (2014a) Nanoparticle–cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res 47(8):2651–2659. doi: 10.1021/ar500190q CrossRefPubMedGoogle Scholar
  22. Fleischer CC, Payne CK (2014b) Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J Phys Chem B. doi: 10.1021/jp502624n PubMedGoogle Scholar
  23. Gaucher G, Asahina K, Wang JH, Leroux JC (2009) Effect of poly(N-vinyl-pyrrolidone)-block-poly(D, L-lactide) as coating agent on the opsonization, phagocytosis, and pharmacokinetics of biodegradable nanoparticles. Biomacromolecules 10(2):408–416. doi: 10.1021/Bm801178f CrossRefPubMedGoogle Scholar
  24. Ge C, Lao F, Li W et al (2008) Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. Anal Chem 80(24):9426–9434. doi: 10.1021/ac801469b CrossRefPubMedGoogle Scholar
  25. Ge C, Du J, Zhao L et al (2011a) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci 108(41):16968–16973. doi: 10.1073/pnas.1105270108 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Ge C, Li W, Li Y et al (2011b) Significance and systematic analysis of metallic impurities of carbon nanotubes produced by different manufacturers. J Nanosci Nanotechnol 11(3):2389–2397. doi: 10.1166/jnn.2011.3520 CrossRefPubMedGoogle Scholar
  27. Ge C, Li Y, Yin J-J et al (2012a) The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials. NPG Asia Mater 4:e32. doi: 10.1038/am.2012.60 CrossRefGoogle Scholar
  28. Ge C, Meng L, Xu L et al (2012b) Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes. Nanotoxicology 6(5):526–542. doi: 10.3109/17435390.2011.587905 CrossRefPubMedGoogle Scholar
  29. Giljohann DA, Seferos DS, Patel PC, Millstone JE, Rosi NL, Mirkin CA (2007) Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 7(12):3818–3821. doi: 10.1021/nl072471q CrossRefPubMedGoogle Scholar
  30. Goldstein JL, Anderson RG, Brown MS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279(5715):679–685CrossRefPubMedGoogle Scholar
  31. Greenfield NJ (2007) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890.
  32. Gunawan C, Lim M, Marquis CP, Amal R (2014) Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. J Mater Chem B 2(15):2060–2083. doi: 10.1039/C3TB21526A CrossRefGoogle Scholar
  33. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26(13):1565–1573. doi: 10.1016/j.biomaterials.2004.05.022 CrossRefPubMedGoogle Scholar
  34. Hajipour MJ, Laurent S, Aghaie A, Rezaee F, Mahmoudi M (2014) Personalized protein coronas: a “key” factor at the nanobiointerface. Biomater Sci 2(9):1210–1221. doi: 10.1039/C4BM00131A CrossRefGoogle Scholar
  35. Hall CE, Slayter HS (1959) The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol 5(1):11–27. doi: 10.1083/jcb.5.1.11 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Helm CA, Israelachvili JN, McGuiggan PM (1989) Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science 246(4932):919–922CrossRefPubMedGoogle Scholar
  37. Helm CA, Israelachvili JN, McGuiggan PM (1992) Role of hydrophobic forces in bilayer adhesion and fusion. Biochemistry 31(6):1794–1805. doi: 10.1021/bi00121a030 CrossRefPubMedGoogle Scholar
  38. Hu W, Peng C, Lv M et al (2011) Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5(5):3693–3700. doi: 10.1021/nn200021j CrossRefPubMedGoogle Scholar
  39. Jiang W, KimBetty YS, Rutka JT, ChanWarren CW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nano 3(3):145–150.
  40. Jiang X, Röcker C, Hafner M, Brandholt S, Dörlich RM, Nienhaus GU (2010) Endo-and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 4(11):6787–6797CrossRefPubMedGoogle Scholar
  41. Jimenez-Cruz CA, Kang SG, Zhou RH (2014) Large scale molecular simulations of nanotoxicity. Wires Syst Biol Med 6(4):265–279. doi: 10.1002/Wsbm.1271 Google Scholar
  42. Jin H, Heller DA, Strano MS (2008) Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett 8(6):1577–1585CrossRefPubMedGoogle Scholar
  43. Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K (2007) Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release 118(1):54–58. doi: 10.1016/j.jconrel.2006.12.012 CrossRefPubMedGoogle Scholar
  44. Krpetic Z, Porta F, Caneva E, Dal Santo V, Scarì G (2010) Phagocytosis of biocompatible gold nanoparticles. Langmuir 26(18):14799–14805CrossRefPubMedGoogle Scholar
  45. Laera S, Ceccone G, Rossi F et al (2011) Measuring protein structure and stability of protein–nanoparticle systems with synchrotron radiation circular dichroism. Nano Lett 11(10):4480–4484. doi: 10.1021/nl202909s CrossRefPubMedGoogle Scholar
  46. Lai ZW, Yan Y, Caruso F, Nice EC (2012) Emerging techniques in proteomics for probing nano–bio interactions. ACS Nano 6(12):10438–10448. doi: 10.1021/nn3052499 PubMedGoogle Scholar
  47. Laurent S, Burtea C, Thirifays C, Rezaee F, Mahmoudi M (2013a) Significance of cell “observer” and protein source in nanobiosciences. J Colloid Interf Sci 392:431–445. doi: 10.1016/j.jcis.2012.10.005 CrossRefGoogle Scholar
  48. Laurent S, Ng EP, Thirifays C et al (2013b) Corona protein composition and cytotoxicity evaluation of ultra-small zeolites synthesized from template free precursor suspensions. Toxicol Res 2(4):270–279. doi: 10.1039/C3TX50023C CrossRefGoogle Scholar
  49. Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A (2012) Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6(7):5845–5857. doi: 10.1021/nn300223w CrossRefPubMedGoogle Scholar
  50. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135(4):1438–1444. doi: 10.1021/ja309812z CrossRefPubMedGoogle Scholar
  51. Limbach LK, Li Y, Grass RN et al (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39(23):9370–9376CrossRefPubMedGoogle Scholar
  52. Lishko VK, Kudryk B, Yakubenko VP, Yee VC, Ugarova TP (2002) Regulated unmasking of the cryptic binding site for integrin αMβ2 in the γC-domain of fibrinogen†. Biochemistry 41(43):12942–12951. doi: 10.1021/bi026324c CrossRefPubMedGoogle Scholar
  53. Lundqvist M (2013) Nanoparticles: tracking protein corona over time. Nat Nanotechnol 8(10):701–702. doi: 10.1038/nnano.2013.196 CrossRefPubMedGoogle Scholar
  54. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270. doi: 10.1073/pnas.0805135105 CrossRefPubMedCentralPubMedGoogle Scholar
  55. Lunov O, Syrovets T, Loos C et al (2011) Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 5(3):1657–1669. doi: 10.1021/nn2000756 CrossRefPubMedGoogle Scholar
  56. Lynch I (2007) Are there generic mechanisms governing interactions between nanoparticles and cells? Epitope mapping the outer layer of the protein–material interface. Phys A Stat Mech Appl 373:511–520. doi: 10.1016/j.physa.2006.06.008 CrossRefGoogle Scholar
  57. Maiorano G, Sabella S, Sorce B et al (2010) Effects of cell culture media on the dynamic formation of protein–nanoparticle complexes and influence on the cellular response. ACS Nano 4(12):7481–7491. doi: 10.1021/nn101557e CrossRefPubMedGoogle Scholar
  58. Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9(7):543–556CrossRefPubMedGoogle Scholar
  59. Mirshafiee V, Mahmoudi M, Lou K, Cheng J, Kraft ML (2013) Protein corona significantly reduces active targeting yield. Chem Commun 49(25):2557–2559. doi: 10.1039/C3CC37307J CrossRefGoogle Scholar
  60. Mok H, Bae KH, Ahn C-H, Park TG (2008) PEGylated and MMP-2 specifically DePEGylated quantum dots: comparative evaluation of cellular uptake. Langmuir 25(3):1645–1650. doi: 10.1021/la803542v CrossRefGoogle Scholar
  61. Monopoli MP, Walczyk D, Campbell A et al (2011) Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534. doi: 10.1021/ja107583h CrossRefPubMedGoogle Scholar
  62. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nano 7(12):779–786CrossRefGoogle Scholar
  63. Mortensen NP, Hurst GB, Wang W, Foster CM, Nallathamby PD, Retterer ST (2013) Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity. Nanoscale 5(14):6372–6380. doi: 10.1039/C3NR33280B CrossRefPubMedGoogle Scholar
  64. Mosqueira VCF, Legrand P, Gulik A et al (2001) Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22(22):2967–2979. doi: 10.1016/S0142-9612(01)00043-6 CrossRefPubMedGoogle Scholar
  65. Mu Q, Jiang G, Chen L et al (2014) Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 114(15):7740–7781. doi: 10.1021/cr400295a CrossRefPubMedGoogle Scholar
  66. Nagayama S, K-i Ogawara, Fukuoka Y, Higaki K, Kimura T (2007a) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342(1):215–221. doi: 10.1016/j.ijpharm.2007.04.036 CrossRefPubMedGoogle Scholar
  67. Nagayama S, K-i Ogawara, Minato K et al (2007b) Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor. Int J Pharm 329(1–2):192–198. doi: 10.1016/j.ijpharm.2006.08.025 CrossRefPubMedGoogle Scholar
  68. Pan Y, Du X, Zhao F, Xu B (2012) Magnetic nanoparticles for the manipulation of proteins and cells. Chem Soc Rev 41(7):2912–2942. doi: 10.1039/c2cs15315g CrossRefPubMedGoogle Scholar
  69. Prapainop K, Witter DP, Wentworth P (2012) A chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins. J Am Chem Soc 134(9):4100–4103. doi: 10.1021/ja300537u CrossRefPubMedGoogle Scholar
  70. Queiroz KCS, Tio RA, Zeebregts CJ et al (2010) Human plasma very low density lipoprotein carries Indian Hedgehog. J Proteome Res 9(11):6052–6059. doi: 10.1021/pr100403q CrossRefPubMedGoogle Scholar
  71. Raemy DO, Limbach LK, Rothen-Rutishauser B et al (2011) Cerium oxide nanoparticle uptake kinetics from the gas-phase into lung cells in vitro is transport limited. Eur J Pharm and Biopharm 77(3):368–375. doi: 10.1016/j.ejpb.2010.11.017 CrossRefGoogle Scholar
  72. Rezaee F, Casetta B, Levels JHM, Speijer D, Meijers JCM (2006) Proteomic analysis of high-density lipoprotein. Proteomics 6(2):721–730. doi: 10.1002/pmic.200500191 CrossRefPubMedGoogle Scholar
  73. Rivera-Gil P, Jimenez De Aberasturi D, Wulf V et al (2012) The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res 46(3):743–749. doi: 10.1021/ar300039j CrossRefPubMedGoogle Scholar
  74. Rodahl M, Hook F, Fredriksson C et al (1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107:229–246CrossRefPubMedGoogle Scholar
  75. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592. doi: 10.1039/B502142c CrossRefPubMedGoogle Scholar
  76. Sacchetti C, Motamedchaboki K, Magrini A et al (2013) Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano 7(3):1974–1989. doi: 10.1021/nn400409h CrossRefPubMedGoogle Scholar
  77. Safi M, Courtois J, Seigneuret M, Conjeaud H, Berret JF (2011) The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32(35):9353–9363. doi: 10.1016/j.biomaterials.2011.08.048 CrossRefPubMedGoogle Scholar
  78. Salvati A, Åberg C, dos Santos T et al (2011) Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomed Nanotechnol Biol Med 7(6):818–826CrossRefGoogle Scholar
  79. Salvati A, Pitek AS, Monopoli MP et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143CrossRefPubMedGoogle Scholar
  80. Saptarshi S, Duschl A, Lopata A (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11(1):26CrossRefGoogle Scholar
  81. Schrand AM, Lin JB, Hens SC, Hussain SM (2011) Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds. Nanoscale 3(2):435–445CrossRefPubMedGoogle Scholar
  82. Sée V, Free P, Cesbron Y et al (2009) Cathepsin L digestion of nanobioconjugates upon endocytosis. ACS Nano 3(9):2461–2468. doi: 10.1021/nn9006994 CrossRefPubMedGoogle Scholar
  83. Shang L, Nienhaus K, Nienhaus G (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12(1):5CrossRefGoogle Scholar
  84. Sharma S, Benson HAE, Mukkur TKS, Rigby P, Chen Y (2013) Preliminary studies on the development of IgA-loaded chitosan–dextran sulphate nanoparticles as a potential nasal delivery system for protein antigens. J Microencapsul 30(3):283–294. doi: 10.3109/02652048.2012.726279 CrossRefPubMedGoogle Scholar
  85. Shi X, von Dem Bussche A, Hurt RH, Kane AB, Gao H (2011) Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat Nanotechnol 6(11):714–719CrossRefPubMedCentralPubMedGoogle Scholar
  86. Shrivastava S, Nuffer JH, Siegel RW, Dordick JS (2012) Position-specific chemical modification and quantitative proteomics disclose protein orientation adsorbed on silica nanoparticles. Nano Lett 12(3):1583–1587. doi: 10.1021/nl2044524 CrossRefPubMedGoogle Scholar
  87. Singh S, Kumar A, Karakoti A, Seal S, Self WT (2010) Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol BioSyst 6(10):1813–1820CrossRefPubMedCentralPubMedGoogle Scholar
  88. Song Y, Zhang Z, Elsayed-Ali HE et al (2011) Identification of single nanoparticles. Nanoscale 3(1):31–44. doi: 10.1039/c0nr00412j Google Scholar
  89. Tedja R, Lim M, Amal R, Marquis C (2012) Effects of serum adsorption on cellular uptake profile and consequent impact of titanium dioxide nanoparticles on human lung cell lines. ACS Nano 6(5):4083–4093. doi: 10.1021/nn3004845 CrossRefPubMedGoogle Scholar
  90. Tenzer S, Docter D, Rosfa S et al (2011) Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5(9):7155–7167. doi: 10.1021/Nn201950e CrossRefPubMedGoogle Scholar
  91. Tenzer S, Docter D, Kuharev J et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nano 8(10):772–781. doi: 10.1038/nnano.2013.181 CrossRefGoogle Scholar
  92. Tu Y, Lv M, Xiu P et al (2013) Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nano 8(8):594–601. doi: 10.1038/nnano.2013.125 CrossRefGoogle Scholar
  93. Vroman L, Adams AL, Fischer GC, Munoz PC (1980) Interaction of high molecular-weight kininogen, factor-Xii, and fibrinogen in plasma at interfaces. Blood 55(1):156–159PubMedGoogle Scholar
  94. Wagner S, Zensi A, Wien SL, et al (2012) Uptake mechanism of apoe-modified nanoparticles on brain capillary endothelial cells as a blood–brain barrier model. Plos One. doi: 10.1371/journal.pone.0032568
  95. Walkey CD, Chan WC (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41(7):2780–2799. doi: 10.1039/c1cs15233e CrossRefPubMedGoogle Scholar
  96. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW (2011) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134(4):2139–2147. doi: 10.1021/ja2084338 CrossRefGoogle Scholar
  97. Walrant A, Correia I, Jiao C-Y, et al (2011) Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. Biochimica et Biophysica Acta (BBA)-Biomembr 1808(1):382–393. doi: 10.1016/j.bbamem.2010.09.009
  98. Wang F, Yu L, Monopoli MP et al (2013a) The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomed Nanotechnol Biol Med 9(8):1159–1168. doi: 10.1016/j.nano.2013.04.010 CrossRefGoogle Scholar
  99. Wang L, Li J, Pan J et al (2013b) Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. J Am Chem Soc 135(46):17359–17368. doi: 10.1021/ja406924v CrossRefPubMedGoogle Scholar
  100. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 89(5):392–400. doi: 10.1002/bip.20853 CrossRefPubMedGoogle Scholar
  101. Wilhelm C, Gazeau F, Roger J, Pons J, Bacri J-C (2002) Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18(21):8148–8155CrossRefGoogle Scholar
  102. Yang H, Fung S-Y, Liu M (2011) Programming the cellular uptake of physiologically stable peptide-gold nanoparticle hybrids with single amino acids. Angew Chem Int Ed 50(41):9643–9646. doi: 10.1002/anie.201102911 CrossRefGoogle Scholar
  103. Yuan H, Li J, Bao G, Zhang S (2010) Variable nanoparticle–cell adhesion strength regulates cellular uptake. Phys Rev Lett 105(13):138101CrossRefPubMedGoogle Scholar
  104. Zhao YL, Xing GM, Chai ZF (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol 3(4):191–192. doi: 10.1038/nnano.2008.77 CrossRefPubMedGoogle Scholar
  105. Zhou RH, Gao HJ (2014) Cytotoxicity of graphene: recent advances and future perspective. Wires Nanomed Nanobi 6(5):452–474. doi: 10.1002/Wnan.1277 CrossRefGoogle Scholar
  106. Zhu J, Zhang B, Tian J, Wang J, Chong Y, Wang X, Deng Y, Tang M, Li Y, Ge C, Pan Y, Gu H (2015) Synthesis of heterodimer radionuclide nanoparticles for magnetic resonance and single-photon emission computed tomography dual-modality imaging. Nanoscale. doi: 10.1039/C4NR07255C
  107. Zuo GH, Kang SG, Xiu P, Zhao YL, Zhou RH (2013) Interactions between proteins and carbon-based nanoparticles: exploring the origin of nanotoxicity at the molecular level. Small 9(9–10):1546–1556. doi: 10.1002/smll.201201381 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Cuicui Ge
    • 1
  • Jian Tian
    • 1
  • Yuliang Zhao
    • 2
  • Chunying Chen
    • 2
  • Ruhong Zhou
    • 1
    • 3
  • Zhifang Chai
    • 1
    Email author
  1. 1.School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
  2. 2.CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijingChina
  3. 3.Computational Biology CenterIBM Thomas J Watson Research CenterYorktown HeightsUSA

Personalised recommendations