Advertisement

Archives of Toxicology

, Volume 88, Issue 11, pp 1929–1938 | Cite as

Copper: toxicological relevance and mechanisms

  • Lisa M. Gaetke
  • Hannah S. Chow-Johnson
  • Ching K. Chow
Review Article

Abstract

Copper (Cu) is a vital mineral essential for many biological processes. The vast majority of all Cu in healthy humans is associated with enzyme prosthetic groups or bound to proteins. Cu homeostasis is tightly regulated through a complex system of Cu transporters and chaperone proteins. Excess or toxicity of Cu, which is associated with the pathogenesis of hepatic disorder, neurodegenerative changes and other disease conditions, can occur when Cu homeostasis is disrupted. The capacity to initiate oxidative damage is most commonly attributed to Cu-induced cellular toxicity. Recently, altered cellular events, including lipid metabolism, gene expression, alpha-synuclein aggregation, activation of acidic sphingomyelinase and release of ceramide, and temporal and spatial distribution of Cu in hepatocytes, as well as Cu-protein interaction in the nerve system, have been suggested to play a role in Cu toxicity. However, whether these changes are independent of, or secondary to, an altered cellular redox state of Cu remain to be elucidated.

Keywords

Copper homeostasis Copper exposure Copper toxicity Reactive oxygen species 

References

  1. Armstrong C, Leong W, Lees GJ (2001) Comparative effects of metal chelating agents on the neuronal cytotoxicity induced by copper (Cu2), iron (Fe3) and zinc in the hippocampus. Brain Res 892:51–62PubMedCrossRefGoogle Scholar
  2. Barceloux DG (1999) Copper. J Toxicol Clin Toxicol 37:217–230PubMedCrossRefGoogle Scholar
  3. Boal AK, Rosenzweig AC (2009). Structural biology of copper trafficking. Chem Rev 109:4760–4779Google Scholar
  4. Bleackley MR, Macgillivray RT (2011) Transition metal homeostasis: from yeast to human disease. Biometals 24:785–809PubMedCrossRefGoogle Scholar
  5. Braiterman LT, Murthy A, Jayakanthan S, Nyasae L, Tzeng E, Gromadzka G, Wolf TB, Lutsenko S, Hubbard AL (2014) Distinct phenotype of a Wilson disease mutation reveals a novel trafficking determinant in the copper transporter ATP7B. Proc Natl Acad Sci U S A 111:E1364–E1373PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bremner I (1998) Manifestations of copper excess. Am J Clin Nutr 67:1069S–1073SPubMedGoogle Scholar
  7. Brewer GJ (2007) A brand new mechanism for copper toxicity. J Hepatol 47:621–622PubMedCrossRefGoogle Scholar
  8. Buettner G (1993) The packing order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol and ascorbate. Arch Biochem Biophys 300:535–543PubMedCrossRefGoogle Scholar
  9. Burkhead JL, Gray LW, Lutsenko S (2011) Systems biology approach to Wilson’s disease. Biometals 24:455–466PubMedCrossRefPubMedCentralGoogle Scholar
  10. Burkitt MJ (2001) A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols and ceruloplasmin. Arch Biochem Biophys 394:117–135PubMedCrossRefGoogle Scholar
  11. Caliceti C, Nigro P, Rizzo P, Ferrari R (2014) ROS, Notch, and Wnt signaling pathways: crosstalk between three major regulators of cardiovascular biology. BioMed Res Int Article ID 318714, 8 pages,  10.1155/2014/318714
  12. Chow CK (1979) Nutritional influence on cellular antioxidant defense systems. Am J Clin Nutr 32:1066–1081PubMedGoogle Scholar
  13. Chow CK (1991) Vitamin E and oxidative stress. Free Radic Biol Med 11:215–232PubMedCrossRefGoogle Scholar
  14. Chow CK, Chow-Johnson HS (2013) Antioxidant function and health implication of vitamin E. Open Nutr J. 6:1–6CrossRefGoogle Scholar
  15. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824PubMedCrossRefGoogle Scholar
  16. de Romaña DL, Olivares M, Uauy R, Araya M (2011) Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol 25:3–13PubMedCrossRefGoogle Scholar
  17. Divertie MB, Owen CA Jr, Barham SS, Ludwig J (1982) Accumulation of radionuclide-labeled platelets and fibrinogen in paraquat-damaged rat lungs. Am Rev Respir Dis 125:574–578PubMedGoogle Scholar
  18. Evans PJ, Halliwell B (1994) Measurement of iron and copper in biological settings: bleomycin and Cu-phenanthroline assays. Methods Enzymol 233:82–92PubMedCrossRefGoogle Scholar
  19. Fields M, Lewis CG, Bureau I (2001) Aspirin reduces blood cholesterol in copper-deficient rats: a potential antioxidant agent. Metabolism 50:558–561PubMedCrossRefGoogle Scholar
  20. Food and Nutrition Board and Institute of Medicine (2006) Dietary Reference Intakes. In: Otten JJ, Hellwig JP, Meyers LD (eds) The essential guide to nutrient requirements, copper. National Academy Press, Washington, pp 304–311Google Scholar
  21. Fuentealba IC, Mullins JE, Aburto EM, Lau JC, Cherian GM (2000) Effect of age and sex on liver damage due to excess dietary copper in Fischer 344 rats. Clin Toxicol 38:709–717CrossRefGoogle Scholar
  22. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicol 189:147–163CrossRefGoogle Scholar
  23. Georgopoulos PG, Wang SW, Georgopoulos IG, Yonone-Lioy MJ, Lioy PJ (2006) Assessment of human exposure to copper: a case study using the NHEXAS database. J Expo Sci Environ Epidemiol 16:397–409PubMedCrossRefGoogle Scholar
  24. Goodman VL, Brewer GJ, Merajver SD (2004) Copper deficiency as an anti-cancer strategy. Endocr Relat Cancer 11:255–263PubMedCrossRefGoogle Scholar
  25. Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1:1125–1142PubMedCrossRefPubMedCentralGoogle Scholar
  26. Haidari M, Javadi E, Kadkhodaee M, Sanati A (2001) Enhanced susceptibility to oxidation and diminished vitamin E content of LDL from patients with stable coronary artery disease. Clin Chem 47:1234–1240PubMedGoogle Scholar
  27. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14PubMedPubMedCentralGoogle Scholar
  28. Harris ED (1992) Copper as a cofactor and regulator of Cu, zinc superoxide dismutase. J Nutr 122:636S–640SGoogle Scholar
  29. Harris E (1993) The transport of copper. In: Prasad AS (ed) Essential and toxic trace elements in human health and disease: an update. Wiley-Liss, New York, pp 163–179Google Scholar
  30. Hasan NM, Lutsenko S (2012) Regulation of copper transporters in human cells. Curr Top Membr Transp 69:137–161CrossRefGoogle Scholar
  31. Hatori Y, Clasen S, Hasan NM, Barry AN, Lutsenko S (2012) Functional partnership of the copper export machinery and glutathione balance in human cells. J Biol Chem 287:26678–26687PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hayashi M, Kuge T, Endoh D, Nakayama K, Arikawa J, Takazawa A, Okui T (2000) Hepatic copper accumulation induces DNA strand breaks in the liver cells of Long/Evans Cinnamon strain rats. Biochem Biophys Res Commun 276:174–178PubMedCrossRefGoogle Scholar
  33. Huster D, Lutsenko S (2007) Wilson disease: not just a copper disorder. Analysis of a Wilson disease model demonstrates the link between copper and lipid metabolism. Mol BioSyst 3:816–824PubMedCrossRefGoogle Scholar
  34. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicol 283:65–87CrossRefGoogle Scholar
  35. Kadiiska MB, Hanna PM, Jordan SJ, Mason RP (1993) Electron spin resonance evidence for free radical generation in copper-treated vitamin E- and selenium-deficient rats: invivo spin-trapping investigation. Mol Pharmacol 44:222–227PubMedGoogle Scholar
  36. Kawanishi S, Inoe S, Yamamoto K (1989) Hydroxyl radical and singlet oxygen production and DNA damage induced by carcinogenic metal compounds and hydrogen peroxide. Biol Trace Elem Res 21:367–372PubMedCrossRefGoogle Scholar
  37. Kelner GS, Lee M, Clark ME, Maciejewski D, McGrath D, Rabizadeh S, Lyons T, Bredesen D, Jenner P, Maki RA (2000) The copper transport protein Atox1 promotes neuronal survival. J Biol Chem 275:580–584PubMedCrossRefGoogle Scholar
  38. Kim H, Wu X, Lee J (2013) SLC31 (CTR) family of copper transporters in health and disease. Mol Asp Med 34:561–570CrossRefGoogle Scholar
  39. Lang F, Ullrich S, Gulbins E (2011) Ceramide formation as a target in beta-cell survival and function. Expert Opin Ther Targets 15:1061–1071PubMedCrossRefGoogle Scholar
  40. Letelier ME, Faúndez M, Jara-Sandoval J, Molina-Berríos A, Cortés-Troncoso J, Aracena-Parks P, Marín-Catalán R (2009) Mechanisms underlying the inhibition of the cytochrome P450 system by copper ions. J Appl Toxicol 29:695–702PubMedCrossRefGoogle Scholar
  41. Letelier ME, Sánchez-Jofré S, Peredo-Silva L, Cortés-Troncoso J, Aracena-Parks P (2010) Mechanisms underlying iron and copper ions toxicity in biological systems: pro-oxidant activity and protein-binding effects. Chem Biol Interact 188:220–227PubMedCrossRefGoogle Scholar
  42. Levy MA, Tsai Y, Reaume A, Bray TM (2001) Cellular response of antioxidant metalloproteins in Cu/Zn SOD transgenic mice exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol 281:L172–L182PubMedGoogle Scholar
  43. Liang Q, Dedon PC (2001) Cu(II)/H2O2-induced DNA damage is enhanced by packaging of DNA as a nucleosome. Chem Res Toxicol 14:416–422PubMedCrossRefGoogle Scholar
  44. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811SPubMedGoogle Scholar
  45. Linder MC, Wooten L, Cerveza P, Cotton S, Shulze R, Lomeli N (1998) Copper transport. Am J Clin Nutr 67:965S–971SPubMedGoogle Scholar
  46. Lippard SJ (1999) Free copper ions in the cell? Science 284:748–749PubMedCrossRefGoogle Scholar
  47. Long YC, Tan TMC, Inoue T, Tang BL (2014) The biochemistry and cell biology of aging: metabolic regulation through mitochondrial signaling. Am J Physiol Endocrinol Metab 306:E581–E591PubMedCrossRefGoogle Scholar
  48. Lucas LC, Lemons JE (1992) Biodegradation of restorative metallic systems. Adv Dent Res 6:32–37PubMedGoogle Scholar
  49. Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY (2007a) Function and regulation of human copper-transporting ATPases. Physiol Rev 87:1011–1046PubMedCrossRefGoogle Scholar
  50. Lutsenko S, LeShane ES, Shinde U (2007b) Biochemical basis of regulation of human copper-transporting ATPases. Arch Biochem Biophys 463:134–148PubMedCrossRefPubMedCentralGoogle Scholar
  51. Lynch SM, Frei B, Morrow JD, Roberts LJ, Xu A, Jackson T, Reyna R, Klevay LM, Vita JA, Keaney JF Jr (1997) Vascular superoxide dismutase deficiency impairs endothelial vasodilator function through direct inactivation of nitric oxide and increased lipid peroxidation. Arterioscler Thromb Vasc Biol 17:2975–2981PubMedCrossRefGoogle Scholar
  52. Marí M, Colell A, Morales A, Pañeda C, Varela-Nieto I, García-Ruiz C, Fernández-Checa JC (2004) Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor-induced lethal hepatitis. J Clin Invest 113:895–904PubMedCrossRefPubMedCentralGoogle Scholar
  53. Medici V, Trevisan CP, D’Incà R, Barollo M, Zancan L, Fagiuoli S, Martines D, Irato P, Sturniolo GC (2006) Diagnosis and management of Wilson’s disease: results of a single center experience. J Clin Gastroenterol 40:936–941PubMedCrossRefGoogle Scholar
  54. Multhaup G (1997) Amyloid precursor protein, copper, and Alzheimer’s disease. Biomed Pharmacother 51:105–111PubMedCrossRefGoogle Scholar
  55. Multhaup G, Masters CL, Beyreuther K (1998) Oxidative stress in Alzheimer’s disease. Alzheimer Rep 1:147–154Google Scholar
  56. Multhaup G, Hesse L, Borchardt T, Ruppert T, Cappai R, Masters CL, Beyreuther LK (1999) Autoxidation of amyloid precursor protein and formation of reactive oxygen species. Adv Exp Med Biol 36:365–387Google Scholar
  57. Myers BM, Prendergast FG, Holman R, Kuntz SM, Larusso NF (1993) Alterations in hepatocytes lysosomes in experimental hepatic copper overload in rats. Gastroenterology 105:1814–1823PubMedGoogle Scholar
  58. Ohhira M, Ono M, Sekiya C (1995) Changes in free radical metabolizing enzymes and lipid peroxides in the liver of Long-Evans with cinnamon-like coat rats. J Gastroenterol 30:619–623PubMedCrossRefGoogle Scholar
  59. Okereke T, Sternlieb I, Morell AG, Scheinberg IH (1972) Systemic absorption of intrauterine copper. Science 177:358–360PubMedCrossRefGoogle Scholar
  60. Olivares M, Méndez MA, Astudillo PA, Pizarro F (2008) Present situation of biomarkers for copper status. Am J Clin Nutr 88:859S–862SPubMedGoogle Scholar
  61. Ossola JO, Groppa MD, Tomaro ML (1997) Relationship between oxidative stress and heme oxygenase induction by copper sulfate. Arch Biochem Biophys 337:332–337PubMedCrossRefGoogle Scholar
  62. Pandit A, Bhave S (1996) Present interpretation of the role of copper in Indian childhood cirrhosis. Am J Clin Nutr 63:830S–835SPubMedGoogle Scholar
  63. Pankit AN, Bhave SA (2002) Copper metabolic defects and liver disease: environmental aspects. J Gastroenterol Hepatol 17:S403–S407PubMedCrossRefGoogle Scholar
  64. Pohl HR, Roney N, Abadin HG (2011) Metal ions affecting the neurological system. Met Ions Life Sci 8:247–262PubMedGoogle Scholar
  65. Polishchuk R, Lutsenko S (2013) Golgi in copper homeostasis: a view from the membrane trafficking field. Histochem Cell Biol 140:285–295PubMedCrossRefPubMedCentralGoogle Scholar
  66. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454SPubMedGoogle Scholar
  67. Prohaska JR (2008) Role of copper transporters in copper homeostasis. Am J Clin Nutr 88:826S–829SPubMedPubMedCentralGoogle Scholar
  68. Ralle M, Huster D, Vogt S, Schirrmeister W, Burkhead JL, Capps TR, Gray L, Lai B, Maryon E, Lutsenko S (2010) Wilson disease at a single cell level: intracellular copper trafficking activates compartment-specific responses in hepatocytes. J Biol Chem 285:30875–30883PubMedCrossRefPubMedCentralGoogle Scholar
  69. Rana SV (2008) Metals and apoptosis: recent developments. J Trace Elem Med Biol 22:262–284PubMedCrossRefGoogle Scholar
  70. Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186:184–199PubMedCrossRefGoogle Scholar
  71. Rodriguez-Granillo A, Crespo A, Estrin DA, Wittung-Stafshede P (2010) Copper-transfer mechanism from the human chaperone Atox1 to a metal-binding domain of Wilson disease protein. J Phys Chem B 114:3698–3706PubMedCrossRefGoogle Scholar
  72. Rosenzweig AC (2001) Copper delivery by metallochaperone proteins. Acc Chem Res 34:119–128PubMedCrossRefGoogle Scholar
  73. Rossi L, Arciello M, Capo C, Rotilio G (2006) Copper imbalance and oxidative stress in neurodegeneration. Ital J Biochem 55:212–221PubMedGoogle Scholar
  74. Sansinanea AS, Cerone SI, Streitenberger SA, Garcia C, Auza N (1998) Oxidative effect of hepatic copper overload. Acta Physiol Pharmacol Ther Latinoam 48:25–31PubMedGoogle Scholar
  75. Santos EM, Ball JS, Williams TD, Wu H, Ortega F, van Aerle R, Katsiadaki I, Falciani F, Viant MR, Chipman JK, Tyler CR (2010) Identifying health impacts of exposure to copper using transcriptomics and metabolomics in a fish model. Environ Sci Technol 44:820–826PubMedCrossRefGoogle Scholar
  76. Sayre LM, Perry G, Harris PLR, Liu YH, Schubert KA, Smith MA (2000) In situ oxidative catalysis by neurofibrillary tangles and senile in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 74:270–279PubMedCrossRefGoogle Scholar
  77. Sokol RJ, Devereaux M, Mierau G, Hambidge KM, Shikes H (1990) Oxidant injury to hepatic mitochondrial lipids in rats with dietary copper overload. Gastroenterology 90:1061–1071Google Scholar
  78. Song M, Zhou Z, Chen T, Zhang J, McClain CJ (2011) Copper deficiency exacerbates bile duct ligation-induced liver injury and fibrosis in rats. J Pharmacol Exp Ther 339:298–306PubMedCrossRefPubMedCentralGoogle Scholar
  79. Squitti R, Bressi F, Pasqualetti P, Bonomini C, Ghidoni R, Binetti G, Cassetta E, Moffa F, Ventriglia M, Vernieri F, Rossini PM (2009) Longitudinal prognostic value of serum “free” copper in patients with Alzheimer’s disease. Neurology 72:50–55PubMedCrossRefGoogle Scholar
  80. Stern BR (2010) Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations. J Toxicol Environ Health A 73:114–127PubMedCrossRefGoogle Scholar
  81. Strausak D, Mercer JF, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes and Wilson diseases. Brain Res Bull 55:175–185PubMedCrossRefGoogle Scholar
  82. Su LC, Ravanshad S, Owen CA Jr, McCall JT, Zollman PE, Hardy RM (1982) A comparison of copper-loading disease in Bedlington terriers and Wilson’s disease in humans. Am J Physiol 243:G226–G230PubMedGoogle Scholar
  83. Trumbo P, Yates AA, Schlicker S, Poos M (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc 101:294–301PubMedCrossRefGoogle Scholar
  84. Turnlund JR (1999) Copper. In: Shils ME, Olson JA, Shike M, Ross AC (eds) Modern nutrition in health and disease. Lippincott Williams and Wilkins, BaltimoreGoogle Scholar
  85. Turnlund J, Scott K, Peiffer G, Jang A, Keyes W, Keen C, Sakanashi T (1997) Copper status of young men consuming a low-copper diet. Am J Clin Nutr 65:72–78PubMedGoogle Scholar
  86. Turnlund JR, Keyes WR, Peiffer GL, Scott KC (1998) Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am J Clin Nutr 67:1219–1225PubMedGoogle Scholar
  87. Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952S–959SPubMedGoogle Scholar
  88. Uauy R, Maass A, Araya M (2008) Estimating risk from copper excess in human populations. Am J Clin Nutr 88:867S–871SPubMedGoogle Scholar
  89. United States Environmental Protection Agency. 2013. Basic Information about Copper in Drinking Water. http://water.epa.gov/drink/contaminants/basicinformation/copper.cfm. Updated December 19, 2013
  90. Vilaplana J, Romaguera C, Grimalt F, Cornellana F (1991) New trends in the use of metals in jewelry. Contact Dermatitis 25:145–148PubMedCrossRefGoogle Scholar
  91. Wang X, Moualla D, Wright JA, Brown DR (2010) Copper binding regulates intracellular alpha-synuclein localisation, aggregation and toxicity. J Neurochem 113:704–714PubMedCrossRefGoogle Scholar
  92. Wee NKY, Weinstein DC, Fraser ST, Assinder SJ (2013) The mammalian copper transporters CTR1 and CTR2 and their roles in development and disease. Int J Biochem Cell Biol 45:960–963PubMedCrossRefGoogle Scholar
  93. White AR, Huang X, Jobling MF, Barrow CJ, Beyreuther K, Masters CL, Bush AI, Cappai R (2001) Homocysteine potentiates copper- and amyloid beta peptide-mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer’s-type neurodegenerative pathways. J Neurochem 76:1509–1520PubMedCrossRefGoogle Scholar
  94. Wijmenga C, Müller T, Murli IS, Brunt T, Feichtinger H, Schönitzer D, Houwen RH, Müller W, Sandkuijl LA, Pearson PL (1998) Endemic Tyrolean infantile cirrhosis is not an allelic variant of Wilson’s disease. Eur J Hum Genet 6:624–628PubMedCrossRefGoogle Scholar
  95. Winge DR, Mehra RK (1990) Host defenses against copper toxicity. Int Rev Exp Pathol 31:47–83PubMedCrossRefGoogle Scholar
  96. Wright LM, Huster D, Lutsenko S, Wrba F, Ferenci P, Fimmel CJ (2009) Hepatocyte GP73 expression in Wilson disease. J Hepatol 51:557–564PubMedCrossRefPubMedCentralGoogle Scholar
  97. Yang CA, Chen YH, Ke SC, Chen YR, Huang HB, Lin TH, Chen YC (2011) Correlation of copper interaction, copper-driven aggregation, and copper-driven H2O2 formation with Aβ40 conformation. Int J Alzheimers Dis. doi: 10.4061/2011/607861 Google Scholar
  98. Zatta P, Drago D, Zambenedetti P, Bolognin S, Nogara E, Peruffo A, Cozzi B (2008) Accumulation of copper and other metal ions, and metallothionein I/II expression in the bovine brain as a function of aging. J Chem Neuroanat 36:1–5PubMedCrossRefGoogle Scholar
  99. Zhang SSZ, Noordin MM, Rahman SOA, Haron MJ (2000) Effects of copper overload on hepatic lipid peroxidation and antioxidant defense in rats. Vet Hum Toxicol 42:261–264PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lisa M. Gaetke
    • 1
  • Hannah S. Chow-Johnson
    • 2
  • Ching K. Chow
    • 1
    • 3
  1. 1.Department of Dietetics and Human NutritionUniversity of KentuckyLexingtonUSA
  2. 2.Department of PediatricsLoyola University Medical CenterNorth RiversideUSA
  3. 3.Graduate Center for ToxicologyUniversity of KentuckyLexingtonUSA

Personalised recommendations