Advertisement

Archives of Toxicology

, Volume 88, Issue 9, pp 1645–1650 | Cite as

Toxicogenomic effect of nickel and beyond

  • Yixin Yao
  • Max Costa
Review Article

Abstract

Nickel is widely applied in industrial settings and Ni(II) compounds have been classified as group one human carcinogens. The molecular basis of Ni(II) carcinogenicity has proved complex, for many stress response pathways are activated and yield unexpected Ni(II)-specific toxicology profile. Ni(II)-induced toxicogenomic change has been associated with altered activity of HIF, p53, c-MYC, NFκB and iron and 2-oxoglutarate-dependent dioxygenases. Advancing high-throughput technology has indicated the toxicogenome of Ni(II) involves crosstalk between HIF, p53, c-MYC, NFκB and dioxygenases. This paper is intended to review the network of Ni(II)-induced common transcription-factor-governed pathways by discussing transcriptome alteration, its governing transcription factors and the underlying mechanism. Finally, we propose a putative target network of Ni(II) as a human carcinogen.

Keywords

Nickel Gene expression profile Microarray Next generation sequencing p53 HIF Dioxygenase 

Notes

Acknowledgments

We thank colleagues in the lab for their valuable discussion. This work is supported by NIEHS ES000260 and NIEHS ES023174.

References

  1. Achison M, Hupp TR (2003) Hypoxia attenuates the p53 response to cellular damage. Oncogene 22(22):3431–3440. doi: 10.1038/sj.onc.1206434 PubMedCrossRefGoogle Scholar
  2. Arita A, Niu J, Qu Q et al (2012a) Global levels of histone modifications in peripheral blood mononuclear cells of subjects with exposure to nickel. Environ Health Perspect 120(2):198–203. doi: 10.1289/ehp.1104140 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arita A, Shamy MY, Chervona Y et al (2012b) The effect of exposure to carcinogenic metals on histone tail modifications and gene expression in human subjects. J Trace Elem Med Biol 26(2–3):174–178. doi: 10.1016/j.jtemb.2012.03.012 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. doi: 10.1016/j.cell.2007.05.009 PubMedCrossRefGoogle Scholar
  5. Cantone L, Nordio F, Hou L et al (2011) Inhalable metal-rich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers. Environ Health Perspect 119(7):964–969. doi: 10.1289/ehp.1002955 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chen H, Costa M (2009) Iron- and 2-oxoglutarate-dependent dioxygenases: an emerging group of molecular targets for nickel toxicity and carcinogenicity. Biometals 22(1):191–196. doi: 10.1007/s10534-008-9190-3 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen H, Ke Q, Kluz T, Yan Y, Costa M (2006) Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol 26(10):3728–3737. doi: 10.1128/MCB.26.10.3728-3737.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen H, Giri NC, Zhang R et al (2010a) Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J Biol Chem 285(10):7374–7383. doi: 10.1074/jbc.M109.058503 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chen H, Kluz T, Zhang R, Costa M (2010b) Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells. Carcinogenesis 31(12):2136–2144. doi: 10.1093/carcin/bgq197 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Crowder SW, Horton LW, Lee SH et al (2013) Passage-dependent cancerous transformation of human mesenchymal stem cells under carcinogenic hypoxia. FASEB Journal 27(7):2788–2798. doi: 10.1096/fj.13-228288 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Davidson T, Salnikow K, Costa M (2003) Hypoxia inducible factor-1 alpha-independent suppression of aryl hydrocarbon receptor-regulated genes by nickel. Mol Pharmacol 64(6):1485–1493. doi: 10.1124/mol.64.6.1485 PubMedCrossRefGoogle Scholar
  12. Davidson T, Chen H, Garrick MD, D’Angelo G, Costa M (2005) Soluble nickel interferes with cellular iron homeostasis. Mol Cell Biochem 279(1–2):157–162. doi: 10.1007/s11010-005-8288-y PubMedCrossRefGoogle Scholar
  13. Ding J, He G, Gong W et al (2009) Effects of nickel on cyclin expression, cell cycle progression and cell proliferation in human pulmonary cells. Cancer Epidemiol Biomarkers Prev 18(6):1720–1729. doi: 10.1158/1055-9965.EPI-09-0115 PubMedCrossRefGoogle Scholar
  14. Gorres KL, Pua KH, Raines RT (2009) Stringency of the 2-His–1-Asp active-site motif in prolyl 4-hydroxylase. PLoS One 4(11):e7635. doi: 10.1371/journal.pone.0007635 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Green SE, Luczak MW, Morse JL, DeLoughery Z, Zhitkovich A (2013) Uptake, p53 pathway activation, and cytotoxic responses for Co(II) and Ni(II) in human lung cells: implications for carcinogenicity. Toxicol Sci 136(2):467–477. doi: 10.1093/toxsci/kft214 PubMedCrossRefGoogle Scholar
  16. Huang C, Li J, Costa M et al (2001) Hydrogen peroxide mediates activation of nuclear factor of activated T cells (NFAT) by nickel subsulfide. Cancer Res 61(22):8051–8057PubMedGoogle Scholar
  17. IARC (1990) Chromium, nickel and welding. IARC monographs on the evaluation of carcinogenic risks to humans, vol 49. World Health Organization LyonGoogle Scholar
  18. Jennings P, Limonciel A, Felice L, Leonard MO (2013) An overview of transcriptional regulation in response to toxicological insult. Arch Toxicol 87(1):49–72. doi: 10.1007/s00204-012-0919-y PubMedCrossRefGoogle Scholar
  19. Koumenis C, Alarcon R, Hammond E et al (2001) Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21(4):1297–1310. doi: 10.1128/MCB.21.4.1297-1310.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Labbe RM, Holowatyj A, Yang ZQ (2013) Histone lysine demethylase (KDM) subfamily 4: structures, functions and therapeutic potential. Am J Transl Res 6(1):1–15PubMedCentralPubMedGoogle Scholar
  21. Li Q, Kluz T, Sun H, Costa M (2009a) Mechanisms of c-myc degradation by nickel compounds and hypoxia. PLoS One 4(12):e8531. doi: 10.1371/journal.pone.0008531 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Li Q, Suen TC, Sun H, Arita A, Costa M (2009b) Nickel compounds induce apoptosis in human bronchial epithelial Beas-2B cells by activation of c-Myc through ERK pathway. Toxicol Appl Pharmacol 235(2):191–198. doi: 10.1016/j.taap.2008.12.005 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Nadadur SS, Srirama K, Mudipalli A (2008) Iron transport & homeostasis mechanisms: their role in health & disease. Indian J Med Res 128(4):533–544PubMedGoogle Scholar
  24. Pan J, Chang Q, Wang X et al (2010) Reactive oxygen species-activated Akt/ASK1/p38 signaling pathway in nickel compound-induced apoptosis in BEAS 2B cells. Chem Res Toxicol 23(3):568–577. doi: 10.1021/tx9003193 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Pollenz RS (1996) The aryl-hydrocarbon receptor, but not the aryl-hydrocarbon receptor nuclear translocator protein, is rapidly depleted in hepatic and nonhepatic culture cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Mol Pharmacol 49(3):391–398PubMedGoogle Scholar
  26. Pollenz RS, Davarinos NA, Shearer TP (1999) Analysis of aryl hydrocarbon receptor-mediated signaling during physiological hypoxia reveals lack of competition for the aryl hydrocarbon nuclear translocator transcription factor. Mol Pharmacol 56(6):1127–1137PubMedGoogle Scholar
  27. Salnikow K, Gao M, Voitkun V, Huang X, Costa M (1994) Altered oxidative stress responses in nickel-resistant mammalian cells. Cancer Res 54(24):6407–6412PubMedGoogle Scholar
  28. Salnikow K, Davidson T, Costa M (2002) The role of hypoxia-inducible signaling pathway in nickel carcinogenesis. Environ Health Perspect 110(Suppl 5):831–834PubMedCentralPubMedCrossRefGoogle Scholar
  29. Salnikow K, Davidson T, Kluz T, Chen H, Zhou D, Costa M (2003) GeneChip analysis of signaling pathways effected by nickel. J Environ Monit (JEM) 5(2):206–209CrossRefGoogle Scholar
  30. Schmid T, Zhou J, Kohl R, Brune B (2004) p300 relieves p53-evoked transcriptional repression of hypoxia-inducible factor-1 (HIF-1). Biochem J 380(Pt 1):289–295. doi: 10.1042/BJ20031299 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Tchou-Wong KM, Kiok K, Tang Z et al (2011) Effects of nickel treatment on H3K4 trimethylation and gene expression. PLoS One 6(3):e17728. doi: 10.1371/journal.pone.0017728 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Tran DD, Corsa CA, Biswas H, Aft RL, Longmore GD (2011) Temporal and spatial cooperation of Snail1 and Twist1 during epithelial-mesenchymal transition predicts for human breast cancer recurrence. Mol Cancer Res (MCR) 9(12):1644–1657. doi: 10.1158/1541-7786.MCR-11-0371 CrossRefGoogle Scholar
  33. Wasylishen AR, Chan-Seng-Yue M, Bros C et al (2013) MYC phosphorylation at novel regulatory regions suppresses transforming activity. Cancer Res 73(21):6504–6515. doi: 10.1158/0008-5472.CAN-12-4063 PubMedCrossRefGoogle Scholar
  34. Wojcieszynska D, Hupert-Kocurek K, Guzik U (2012) Flavin-dependent enzymes in cancer prevention. Int J Mol Sci 13(12):16751–16768. doi: 10.3390/ijms131216751 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Wong VC, Morse JL, Zhitkovich A (2013) p53 activation by Ni(II) is a HIF-1alpha independent response causing caspases 9/3-mediated apoptosis in human lung cells. Toxicol Appl Pharmacol 269(3):233–239. doi: 10.1016/j.taap.2013.03.023 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Affimetrix. Technical Note:Design and Performance of the GeneChip® Human Genome U133 Plus 2.0 and Human Genome U133A 2.0 ArraysGoogle Scholar
  37. Yao Y, Lu Y, Chen WC et al (2014) Cobalt and nickel stabilize stem cell transcription factor OCT4 through modulating its sumoylation and ubiquitination. PLoS One 9(1):e86620. doi: 10.1371/journal.pone.0086620 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Zhang Z, Li W, Cheng S et al (2011) Nickel-induced down-regulation of DeltaNp63 and its role in the proliferation of keratinocytes. Toxicol Appl Pharmacol 253(3):235–243. doi: 10.1016/j.taap.2011.03.024 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Zhou X, Li Q, Arita A, Sun H, Costa M (2009) Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol 236(1):78–84. doi: 10.1016/j.taap.2009.01.009 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Environmental MedicineNew York University Langone Medical CenterTuxedoUSA
  2. 2.Department of Biochemistry and Molecular PharmacologyNew York University Langone Medical CenterTuxedoUSA

Personalised recommendations