Archives of Toxicology

, Volume 89, Issue 7, pp 1119–1134 | Cite as

Potassium currents inhibition by gambierol analogs prevents human T lymphocyte activation

  • J. A. Rubiolo
  • C. ValeEmail author
  • V. Martín
  • H. Fuwa
  • M. Sasaki
  • L. M. BotanaEmail author


Gambierol is a marine polycyclic ether toxin, produced along with ciguatoxin congeners by the dinoflagellate Gambierdiscus toxicus. We have recently reported that two truncated skeletal analogs of gambierol comprising the EFGH- and BCDEFGH-rings of the parent compound showed similar potency to gambierol on voltage-gated potassium channels (Kv) inhibition in neurons. Gambierol and its truncated analogs share the main crucial elements for biological activity, which are the C28=C29 double bond within the H-ring and the unsaturated side chain. Since Kv channels are critical for the regulation of calcium signaling, proliferation, secretion and migration in human T lymphocytes, we evaluated the activity of both the tetracyclic and heptacyclic analogs of gambierol on potassium currents in resting T lymphocyte and their effects on interleukin-2 (IL-2) release and gene expression in activated T lymphocytes. The results presented in this work clearly demonstrate that both truncated analogs of gambierol inhibit Kv channels present in resting T lymphocytes (Kv1.3) and prevented lymphocyte activation by concanavalin A. The main effects of the heptacyclic and tetracyclic analogs of gambierol in human T cells are: (1) inhibition of potassium channels in resting and concanavalin-activated T cells in the nanomolar range, (2) inhibition of IL-2 release from concanavalin-activated T cells and (3) negatively affect the expression of genes involved in cell proliferation and immune response observed in concanavalin-activated lymphocytes. These results together with the lack of toxicity in this cellular model, indicates that both analogs of gambierol have additional potential for the development of therapeutic tools in autoimmune diseases.


Gambierol Heptacyclic analog of gambierol Tetracyclic analog of gambierol Voltage-gated potassium channels Human T lymphocytes Ciguatoxin Autoimmune diseases 







Voltage-gated potassium channel


Calcium-activated potassium channels


Ethylenediaminetetraacetic acid


Fetal bovine serum


Human interleukin 2




Concanavalin A


3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide



The research leading to these results has received funding from the following FEDER co-funded grants. From CDTI and Technological Funds, supported by Ministerio de Economía y Competitividad, AGL2012-40185-CO2-01 and Consellería de Cultura, Educación e Ordenación Universitaria, GRC2013-016, and through Axencia Galega de Innovación, Spain, ITC-20133020 SINTOX, IN852A 2013/16-3 MYTIGAL. From CDTI under ISIP Programme, Spain, IDI-20130304 APTAFOOD. From the European Union’s Seventh Framework Programme managed by REA – Research Executive Agency (FP7/2007-2013) under grant agreement Nos. 265409 µAQUA, 315285 CIGUATOOLS and 312184 PHARMASEA. Grants-in-Aid for Scientific Research on Priority Areas “Chemical Biology of Natural Products”: (Nos. 24102507 and 23102016) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Supplementary material

204_2014_1299_MOESM1_ESM.pdf (121 kb)
Supplementary material 1 (PDF 122 kb)
204_2014_1299_MOESM2_ESM.tif (88 kb)
Supplementary material 2 (TIFF 88 kb)
204_2014_1299_MOESM3_ESM.docx (31 kb)
Supplementary material 3 (DOCX 31 kb)
204_2014_1299_MOESM4_ESM.xlsx (36 kb)
Supplementary material 4 (XLSX 35 kb)
204_2014_1299_MOESM5_ESM.xlsx (17 kb)
Supplementary material 5 (XLSX 16 kb)
204_2014_1299_MOESM6_ESM.xlsx (18 kb)
Supplementary material 6 (XLSX 19 kb)


  1. Alfonso A, Roman Y, Vieytes MR et al (2005) Azaspiracid-4 inhibits Ca2+ entry by stored operated channels in human T lymphocytes. Biochem Pharmacol 69(11):1627–1636PubMedCrossRefGoogle Scholar
  2. Alonso E, Fuwa H, Vale C et al (2012) Design and synthesis of skeletal analogues of gambierol: attenuation of amyloid-β and tau pathology with voltage-gated potassium channel and N-methyl-D-aspartate receptor implications. J Am Chem Soc 134(17):7467–7479PubMedCrossRefGoogle Scholar
  3. Beeton C, Wulff H, Singh S et al (2003) A novel fluorescent toxin to detect and investigate Kv1.3 channel up-regulation in chronically activated T lymphocytes. J Biol Chem 278(11):9928–9937PubMedCrossRefGoogle Scholar
  4. Beeton C, Wulff H, Standifer NE et al (2006) Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci USA 103(46):17414–17419PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bird JJ, Brown DR, Mullen AC et al (1998) Helper T cell differentiation is controlled by the cell cycle. Immunity 9(2):229–237PubMedCrossRefGoogle Scholar
  6. Bodendiek SB, Mahieux C, Hansel W, Wulff H (2009) 4-Phenoxybutoxy-substituted heterocycles: a structure–activity relationship study of blockers of the lymphocyte potassium channel Kv1.3. Eur J Med Chem 44(5):1838–1852PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bradding P, Wulff H (2009) The K+ channels K(Ca)3.1 and K(v)1.3 as novel targets for asthma therapy. Br J Pharmacol 157(8):1330–1339PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231(1):59–87PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cahalan MD, Chandy KG, DeCoursey TE, Gupta S (1985) A voltage-gated potassium channel in human T lymphocytes. J Physiol 358:197–237PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chandy KG, Cahalan M, Pennington M, Norton RS, Wulff H, Gutman GA (2001) Potassium channels in T lymphocytes: toxins to therapeutic immunosuppressants. Toxicon 39(9):1269–1276PubMedCrossRefGoogle Scholar
  11. Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD (2004) K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci 25(5):280–289PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cuypers E, Abdel-Mottaleb Y, Kopljar I et al (2008) Gambierol, a toxin produced by the dinoflagellate Gambierdiscus toxicus, is a potent blocker of voltage-gated potassium channels. Toxicon 51(6):974–983PubMedCentralPubMedCrossRefGoogle Scholar
  13. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57CrossRefGoogle Scholar
  14. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1984) Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307(5950):465–468PubMedCrossRefGoogle Scholar
  15. Ellisen LW, Palmer RE, Maki RG et al (2001) Cascades of transcriptional induction during human lymphocyte activation. Eur J Cell Biol 80(5):321–328PubMedCrossRefGoogle Scholar
  16. Fanger CM, Rauer H, Neben AL et al (2001) Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J Biol Chem 276(15):12249–12256PubMedCrossRefGoogle Scholar
  17. Frazer KA, Ueda Y, Zhu Y et al (1997) Computational and biological analysis of 680 kb of DNA sequence from the human 5q31 cytokine gene cluster region. Genome Res 7(5):495–512PubMedGoogle Scholar
  18. Fuwa H, Kainuma N, Tachibana K, Sasaki M (2002) Total synthesis of (−)-gambierol. J Am Chem Soc 124(50):14983–14992PubMedCrossRefGoogle Scholar
  19. Fuwa H, Kainuma N, Satake M, Sasaki M (2003) Synthesis and biological evaluation of gambierol analogues. Bioorg Med Chem Lett 13(15):2519–2522PubMedCrossRefGoogle Scholar
  20. Fuwa H, Kainuma N, Tachibana K, Tsukano C, Satake M, Sasaki M (2004) Diverted total synthesis and biological evaluation of gambierol analogues: elucidation of crucial structural elements for potent toxicity. Chemistry 10(19):4894–4909PubMedCrossRefGoogle Scholar
  21. Ghanshani S, Wulff H, Miller MJ et al (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 275(47):37137–37149PubMedCrossRefGoogle Scholar
  22. Glimcher LH, Murphy KM (2000) Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev 14(14):1693–1711PubMedGoogle Scholar
  23. Hu L, Gocke AR, Knapp E et al (2012) Functional blockade of the voltage-gated potassium channel Kv1.3 mediates reversion of T effector to central memory lymphocytes through SMAD3/p21cip1 signaling. J Biol Chem 287(2):1261–1268PubMedCentralPubMedCrossRefGoogle Scholar
  24. Hu L, Wang T, Gocke AR et al (2013) Blockade of Kv1.3 potassium channels inhibits differentiation and granzyme B secretion of human CD8+ T effector memory lymphocytes. PLoS One 8(1):e54267PubMedCentralPubMedCrossRefGoogle Scholar
  25. Huang da W, Sherman BT, Zheng X, et al. (2009b) Extracting biological meaning from large gene lists with DAVID. Curr Protoc Bioinform Chapter 13:Unit 13 11Google Scholar
  26. Huang SK, Xiao HQ, Kleine-Tebbe J et al (1995) IL-13 expression at the sites of allergen challenge in patients with asthma. J Immunol 155(5):2688–2694PubMedGoogle Scholar
  27. June CH, Jackson KM, Ledbetter JA, Leiden JM, Lindsten T, Thompson CB (1989) Two distinct mechanisms of interleukin-2 gene expression in human T lymphocytes. J Autoimmun 2(Suppl):55–65PubMedCrossRefGoogle Scholar
  28. Kopljar I, Labro AJ, Cuypers E et al (2009) A polyether biotoxin binding site on the lipid-exposed face of the pore domain of Kv channels revealed by the marine toxin gambierol. Proc Natl Acad Sci USA 106(24):9896–9901PubMedCentralPubMedCrossRefGoogle Scholar
  29. Kopljar I, Labro AJ, de Block T, Rainier JD, Tytgat J, Snyders DJ (2013) The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state. J Gen Physiol 141(3):359–369PubMedCentralPubMedCrossRefGoogle Scholar
  30. Lam J, Wulff H (2011) The lymphocyte potassium channels Kv1.3 and KCa3.1 as targets for immunosuppression. Drug Dev Res 72(7):573–584PubMedCentralPubMedCrossRefGoogle Scholar
  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  32. Maes T, Joos GF, Brusselle GG (2012) Targeting interleukin-4 in asthma: lost in translation? Am J Respir Cell Mol Biol 47(3):261–270PubMedCrossRefGoogle Scholar
  33. Naseer T, Minshall EM, Leung DY et al (1997) Expression of IL-12 and IL-13 mRNA in asthma and their modulation in response to steroid therapy. Am J Respir Crit Care Med 155(3):845–851PubMedCrossRefGoogle Scholar
  34. Nicolaou SA, Neumeier L, Steckly A, Kucher V, Takimoto K, Conforti L (2009) Localization of Kv1.3 channels in the immunological synapse modulates the calcium response to antigen stimulation in T lymphocytes. J Immunol 183(10):6296–6302PubMedCentralPubMedCrossRefGoogle Scholar
  35. O’Garra A (1998) Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8(3):275–283PubMedCrossRefGoogle Scholar
  36. Panyi G, Varga Z, Gaspar R (2004) Ion channels and lymphocyte activation. Immunol Lett 92(1–2):55–66PubMedCrossRefGoogle Scholar
  37. Perez S, Vale C, Alonso E et al (2012) Effect of gambierol and its tetracyclic and heptacyclic analogues in cultured cerebellar neurons: a structure–activity relationships study. Chem Res Toxicol 25(9):1929–1937PubMedCrossRefGoogle Scholar
  38. Rael EL, Lockey RF (2011) Interleukin-13 signaling and its role in asthma. World Allergy Organ J 4(3):54–64PubMedCentralPubMedCrossRefGoogle Scholar
  39. Rudd CE (1999) Adaptors and molecular scaffolds in immune cell signaling. Cell 96(1):5–8PubMedCrossRefGoogle Scholar
  40. Saeed AI, Sharov V, White J et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34(2):374–378PubMedGoogle Scholar
  41. Saeed AI, Bhagabati NK, Braisted JC et al (2006) TM4 microarray software suite. Methods Enzymol 411:134–193PubMedGoogle Scholar
  42. Satake M, Murata M, Yasumoto T (1993) Gambierol: a new toxic polyether compound isolated from the marine dinoflagellate Gambierdiscus toxicus. J Am Chem Soc 115(1):361–362CrossRefGoogle Scholar
  43. Varga Z, Hajdu P, Panyi G (2010) Ion channels in T lymphocytes: an update on facts, mechanisms and therapeutic targeting in autoimmune diseases. Immunol Lett 130(1–2):19–25PubMedCrossRefGoogle Scholar
  44. Varga Z, Gurrola-Briones G, Papp F et al (2012) Vm24, a natural immunosuppressive peptide, potently and selectively blocks Kv1.3 potassium channels of human T cells. Mol Pharmacol 82(3):372–382PubMedCentralPubMedCrossRefGoogle Scholar
  45. Wills-Karp M (2004) Interleukin-13 in asthma pathogenesis. Immunol Rev 202:175–190PubMedCrossRefGoogle Scholar
  46. Wiskocil R, Weiss A, Imboden J, Kamin-Lewis R, Stobo J (1985) Activation of a human T cell line: a two-stimulus requirement in the pretranslational events involved in the coordinate expression of interleukin 2 and gamma-interferon genes. J Immunol 134(3):1599–1603PubMedGoogle Scholar
  47. Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci USA 97(14):8151–8156PubMedCentralPubMedCrossRefGoogle Scholar
  48. Wulff H, Beeton C, Chandy KG (2003) Potassium channels as therapeutic targets for autoimmune disorders. Curr Opin Drug Discov Devel 6(5):640–647PubMedGoogle Scholar
  49. Ying S, Meng Q, Barata LT, Robinson DS, Durham SR, Kay AB (1997) Associations between IL-13 and IL-4 (mRNA and protein), vascular cell adhesion molecule-1 expression, and the infiltration of eosinophils, macrophages, and T cells in allergen-induced late-phase cutaneous reactions in atopic subjects. J Immunol 158(10):5050–5057PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departamento de Farmacología, Facultad de VeterinariaUniversidad de Santiago de CompostelaLugoSpain
  2. 2.Graduate School of Life SciencesTohoku UniversitySendaiJapan

Personalised recommendations