Archives of Toxicology

, Volume 89, Issue 6, pp 949–960 | Cite as

In vitro glucuronidation kinetics of deoxynivalenol by human and animal microsomes and recombinant human UGT enzymes

  • Ronald Maul
  • Benedikt Warth
  • Nils Helge Schebb
  • Rudolf Krska
  • Matthias Koch
  • Michael Sulyok
Toxicokinetics and Metabolism


The mycotoxin deoxynivalenol (DON), formed by Fusarium species, is one of the most abundant mycotoxins contaminating food and feed worldwide. Upon ingestion, the majority of the toxin is excreted by humans and animal species as glucuronide conjugate. First in vitro data indicated that DON phase II metabolism is strongly species dependent. However, kinetic data on the in vitro metabolism as well as investigations on the specific enzymes responsible for DON glucuronidation in human are lacking. In the present study, the DON metabolism was investigated using human microsomal fractions and uridine-diphosphoglucuronyltransferases (UGTs) as well as liver microsomes from five animal species. Only two of the twelve tested human recombinant UGTs led to the formation of DON glucuronides with a different regiospecificity. UGT2B4 predominantly catalyzed the formation of DON-15-O-glucuronide (DON-15GlcA), while for UGT2B7 the DON-3-O-glucuronide (DON-3GlcA) metabolite prevailed. For human UGTs, liver, and intestinal microsomes, the glucuronidation activities were low. The estimated apparent intrinsic clearance (Clapp,int) for all human UGT as well as tissue homogenates was <1 mL/min mg protein. For the animal liver microsomes, moderate Clapp,int between 1.5 and 10 mL/min mg protein were calculated for carp, trout, and porcine liver. An elevated glucuronidation activity was detected for rat and bovine liver microsomes leading to Clapp,int between 20 and 80 mL/min mg protein. The obtained in vitro data points out that none of the animal models is suitable for estimating the human DON metabolism with respect to the metabolite pattern and formation rate.


Deoxynivalenol Glucuronidation Uridine-diphosphoglucuronyltransferases (UGT) Human recombinant UGT Trichothecene Phase II metabolism 



The authors thank the EC (KBBE-2007-22269-2 MYCORED), the Lower Austrian Government, the FWF (project L255-B11), and the graduate school program Applied Bioscience Technology (AB-Tec) of the Vienna Universities of Technology (TU-Wien) and Natural Resources and Life Sciences (BOKU Wien) for financial support. Furthermore, the authors would like to express their gratitude toward Dr. Silvio Uhlig (Norwegian Veterinary Institute, Oslo) for providing DON-8GlcA reference standard. Jill-Sandra Kant is acknowledged for assistance with the in vitro glucuronidation assays.


  1. Abia WA, Warth B, Sulyok M et al (2013) Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. Food Chem Toxicol 62:927–934. doi: 10.1016/j.fct.2013.10.003 CrossRefPubMedGoogle Scholar
  2. Barre L, Fournel-Gigleux S, Finel M, Netter P, Magdalou J, Ouzzine M (2007) Substrate specificity of the human UDP-glucuronosyltransferase UGT2B4 and UGT2B7. FEBS J 274(5):1256–1264. doi: 10.1111/j.1742-4658.2007.05670.x CrossRefPubMedGoogle Scholar
  3. Berthiller F, Crews C, Dall'Asta C et al (2013) Masked mycotoxins: a review. Mol Nutr Food Res 57(1):165–186. doi: 10.1002/mnfr.201100764 CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bocquet-Appel J-P, Naji S, Vander Linden M, Kozlowski J (2012) Understanding the rates of expansion of the farming system in Europe. J Archaeol Sci 39(2):531–546. doi: 10.1016/j.jas.2011.10.010 CrossRefGoogle Scholar
  5. Coffman BL, Rios GR, King CD, Tephly TR (1997) Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos 25(1):1–4PubMedGoogle Scholar
  6. De Boevre M, Di Mavungu JD, Landschoot S et al (2012) Natural occurrence of mycotoxins and their masked forms in food and feed products. World Mycotox J 5(3):207–219. doi: 10.3920/wmj2012.1410 CrossRefGoogle Scholar
  7. EC (2007) Commission Regulation (EC) No 1126/2007. Off J L 255:14–17Google Scholar
  8. Fruhmann P, Warth B, Hametner C et al (2012) Synthesis of deoxynivalenol-3-β-D-O-glucuronide for its use as biomarker for dietary deoxynivalenol exposure. World Mycotox J 5(2):127–132. doi: 10.3920/WMJ2011.1366 CrossRefGoogle Scholar
  9. King CD, Rios GR, Green MD, Tephly TR (2000) UDP-glucuronosyltransferases. Curr Drug Metab 1(2):143–161CrossRefPubMedGoogle Scholar
  10. Lake BG (1987) Preparation and characterization of microsomal fractions for studies on xenobiotic metabolism. In: Snell K, Mullock B, Biochemical toxicology: a practical approach, pp 183–215Google Scholar
  11. Luo C-F, Cai B, Hou N et al (2012) UDP-glucuronosyltransferase 1A1 is the principal enzyme responsible for puerarin metabolism in human liver microsomes. Arch Toxicol 86(11):1681–1690. doi: 10.1007/s00204-012-0874-7 CrossRefPubMedGoogle Scholar
  12. Ma YY, Guo HW (2008) Mini-review of studies on the carcinogenicity of deoxynivalenol. Environ Toxicol Pharmacol 25(1):1–9. doi: 10.1016/j.etap.2007.09.007 CrossRefPubMedGoogle Scholar
  13. Maul R, Müller C, Rieß S, Koch M, Methner FJ, Nehls I (2012a) Germination induces the glucosylation of the Fusarium mycotoxin deoxynivalenol in various grains. Food Chem 131(1):274–279CrossRefGoogle Scholar
  14. Maul R, Warth B, Kant J-S et al (2012b) Investigation of the hepatic glucuronidation pattern of the fusarium mycotoxin deoxynivalenol in various species. Chem Res Toxicol 25(12):2715–2717. doi: 10.1021/tx300348x CrossRefPubMedGoogle Scholar
  15. Nagl V, Schwartz H, Krska R et al (2012) Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in rats. Toxicol Lett 213(3):367–373CrossRefPubMedCentralPubMedGoogle Scholar
  16. Nakamura A, Nakajima M, Yamanaka H, Fujiwara R, Yokoi T (2008) Expression of UGT1A and UGT2B mRNA in human normal tissues and various cell lines. Drug Metab Dispos 36(8):1461–1464. doi: 10.1124/dmd.108.021428 CrossRefPubMedGoogle Scholar
  17. Ohno S, Nakajin S (2009) Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos 37(1):32–40. doi: 10.1124/dmd.108.023598 CrossRefPubMedGoogle Scholar
  18. Pestka JJ (2007) Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim Feed Sci Technol 137(3–4):283–298CrossRefGoogle Scholar
  19. Pestka J (2010) Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 84(9):663–679. doi: 10.1007/s00204-010-0579-8 CrossRefPubMedGoogle Scholar
  20. Ritter JK (2000) Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem Biol Interact 129(1–2):171–193. doi: 10.1016/S0009-2797(00)00198-8 CrossRefPubMedGoogle Scholar
  21. Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22(4):369–378. doi: 10.1080/02652030500058403 CrossRefPubMedGoogle Scholar
  22. Šarkanj B, Warth B, Uhlig S et al (2013) Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia. Food Chem Toxicol 62:231–237. doi: 10.1016/j.fct.2013.08.043 CrossRefPubMedGoogle Scholar
  23. SCF (2002) Opinion of the Scientific Committee on Food on Fusarium Toxins. Part 6: Group evaluation of T-2 toxin, HT-2 toxin, nivalenol and deoxynivalenol (adopted by the SCF on 26 February 2002).
  24. Shephard GS, Burger H-M, Gambacorta L et al (2013) Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food Chem Toxicol 62:217–225. doi: 10.1016/j.fct.2013.08.040 CrossRefPubMedGoogle Scholar
  25. Sneitz N, Vahermo M, Mosorin J, Laakkonen L, Poirier D, Finel M (2013) Regiospecificity and stereospecificity of human UDP-glucuronosyltransferases in the glucuronidation of estriol, 16-epiestriol, 17-epiestriol, and 13-epiestradiol. Drug Metab Dispos 41(3):582–591. doi: 10.1124/dmd.112.049072 CrossRefPubMedGoogle Scholar
  26. Stone AN, Mackenzie PI, Galetin A, Houston JB, Miners JO (2003) Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human UDP-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab Dispos 31(9):1086–1089. doi: 10.1124/dmd.31.9.1086 CrossRefPubMedGoogle Scholar
  27. Turner PC, Hopton RP, White KLM, Fisher J, Cade JE, Wild CP (2011) Assessment of deoxynivalenol metabolite profiles in UK adults. Food Chem Toxicol 49(1):132–135. doi: 10.1016/j.fct.2010.10.007 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Uhlig S, Ivanova L, Fæste CK (2013) Enzyme-assisted synthesis and structural characterization of the 3-, 8-, and 15-glucuronides of deoxynivalenol. J Agric Food Chem 61(8):2006–2012. doi: 10.1021/jf304655d CrossRefPubMedGoogle Scholar
  29. Varga E, Malachova A, Schwartz H, Krska R, Berthiller F (2012) Survey of deoxynivalenol and its conjugates deoxynivalenol-3-glucoside and 3-acetyl-deoxynivalenol in 374 beer samples. Food Addit Contam Part A:1–10. doi: 10.1080/19440049.2012.726745
  30. Veršilovskis A, Geys J, Huybrechts B, Goossens E, De Saeger S, Callebaut A (2012) Simultaneous determination of masked forms of deoxynivalenol and zearalenone after oral dosing in rats by LC-MS/MS. World Mycotox J 5(3):303–318. doi: 10.3920/wmj2012.1411 CrossRefGoogle Scholar
  31. Warth B, Sulyok M, Fruhmann P et al (2012a) Assessment of human deoxynivalenol exposure using an LC–MS/MS based biomarker method. Toxicol Lett 211(1):85–90. doi: 10.1016/j.toxlet.2012.02.023 CrossRefPubMedGoogle Scholar
  32. Warth B, Sulyok M, Fruhmann P et al (2012b) Development and validation of a rapid multi-biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins. Rapid Commun Mass Spectrom 26(13):1533–1540. doi: 10.1002/rcm.6255 CrossRefPubMedGoogle Scholar
  33. Warth B, Sulyok M, Berthiller F, Schuhmacher R, Krska R (2013) New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol Lett 220(1):88–94. doi: 10.1016/j.toxlet.2013.04.012 CrossRefPubMedGoogle Scholar
  34. Yang W, Yu M, Fu J et al (2014) Deoxynivalenol induced oxidative stress and genotoxicity in human peripheral blood lymphocytes. Food Chem Toxicol 64:383–396. doi: 10.1016/j.fct.2013.12.012 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ronald Maul
    • 1
    • 2
  • Benedikt Warth
    • 3
  • Nils Helge Schebb
    • 4
  • Rudolf Krska
    • 3
  • Matthias Koch
    • 1
  • Michael Sulyok
    • 3
  1. 1.Division of Food AnalysisBAM - Federal Institute for Materials Research and TestingBerlinGermany
  2. 2.Department of QualityLeibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.GroßbeerenGermany
  3. 3.Department for Agrobiotechnology (IFA-Tulln), Center for Analytical ChemistryUniversity of Natural Resources and Life Sciences, Vienna (BOKU)TullnAustria
  4. 4.Institute for Food Toxicology and Analytical ChemistryUniversity of Veterinary Medicine HannoverHannoverGermany

Personalised recommendations