Archives of Toxicology

, Volume 89, Issue 5, pp 757–771 | Cite as

Raising awareness of new psychoactive substances: chemical analysis and in vitro toxicity screening of ‘legal high’ packages containing synthetic cathinones

  • Ana Margarida Araújo
  • Maria João Valente
  • Márcia Carvalho
  • Diana Dias da Silva
  • Helena Gaspar
  • Félix Carvalho
  • Maria de Lourdes Bastos
  • Paula Guedes de Pinho
Organ Toxicity and Mechanisms

Abstract

The world’s status quo on recreational drugs has dramatically changed in recent years due to the rapid emergence of new psychoactive substances (NPS), represented by new narcotic or psychotropic drugs, in pure form or in preparation, which are not controlled by international conventions, but that may pose a public health threat comparable with that posed by substances listed in these conventions. These NPS, also known as ‘legal highs’ or ‘smart drugs’, are typically sold via Internet or ‘smartshops’ as legal alternatives to controlled substances, being announced as ‘bath salts’ and ‘plant feeders’ and is often sought after for consumption especially among young people. Although NPS have the biased reputation of being safe, the vast majority has hitherto not been tested and several fatal cases have been reported, namely for synthetic cathinones, with pathological patterns comparable with amphetamines. Additionally, the unprecedented speed of appearance and distribution of the NPS worldwide brings technical difficulties in the development of analytical procedures and risk assessment in real time. In this study, 27 products commercialized as ‘plant feeders’ were chemically characterized by gas chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy. It was also evaluated, for the first time, the in vitro hepatotoxic effects of individual synthetic cathinones, namely methylone, pentedrone, 4-methylethcathinone (4-MEC) and 3,4-methylenedioxypyrovalerone (MDPV). Two commercial mixtures (‘Bloom’ and ‘Blow’) containing mainly cathinone derivatives were also tested, and 3,4-methylenedioxymethamphetamine (MDMA) was used as the reference drug. The study allowed the identification of 19 compounds, showing that synthetic cathinones are the main active compounds present in these products. Qualitative and quantitative variability was found in products sold with the same trade name in matching or different ‘smartshops’. In the toxicity studies performed in primary cultured rat hepatocytes, pentedrone and MDPV proved to be the most potent individual agents, with EC50 values of 0.664 and 0.742 mM, respectively, followed by MDMA (EC50 = 0.754 mM). 4-MEC and methylone were the least potent substances, with EC50 values significantly higher (1.29 and 1.18 mM, respectively; p < 0.05 vs. MDMA). ‘Bloom’ and ‘Blow’ showed hepatotoxic effects similar to MDMA (EC50 = 0.788 and 0.870 mM, respectively), with cathinones present in these mixtures contributing additively to the overall toxicological effect. Our results show a miscellany of psychoactive compounds present in ‘legal high’ products with evident hepatotoxic effects. These data contribute to increase the awareness on the real composition of ‘legal high’ packages and unveil the health risks posed by NPS.

Keywords

Synthetic cathinones Chemical characterization GC–MS NMR Primary rat hepatocyte cultures Hepatotoxicity 

Supplementary material

204_2014_1278_MOESM1_ESM.docx (174 kb)
Supplementary material 1 (DOCX 174 kb)
204_2014_1278_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 21 kb)
204_2014_1278_MOESM3_ESM.docx (94 kb)
Supplementary material 3 (DOCX 94 kb)

References

  1. Archer RP (2009) Fluoromethcathinone, a new substance of abuse. Forensic Sci Int 185(1–3):10–20. doi:10.1016/j.forsciint.2008.11.013 CrossRefPubMedGoogle Scholar
  2. Arunotayanun W, Gibbons S (2012) Natural product ‘legal highs’. Nat Prod Rep 29(11):1304–1316. doi:10.1039/c2np20068f CrossRefPubMedGoogle Scholar
  3. Baron M, Elie M, Elie L (2011) An analysis of legal highs: do they contain what it says on the tin? Drug Test Anal 3(9):576–581. doi:10.1002/dta.274 CrossRefPubMedGoogle Scholar
  4. Baumann MH, Partilla JS, Lehner KR (2013) Psychoactive “bath salts”: not so soothing. Eur J Pharmacol 698(1–3):1–5. doi:10.1016/j.ejphar.2012.11.020 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Borek HA, Holstege CP (2012) Hyperthermia and multiorgan failure after abuse of “bath salts” containing 3,4-methylenedioxypyrovalerone. Ann Emerg Med 60(1):103–105. doi:10.1016/j.annemergmed.2012.01.005 CrossRefPubMedGoogle Scholar
  6. Boulanger-Gobeil C, St-Onge M, Laliberté M, Auger PL (2012) Seizures and hyponatremia related to ethcathinone and methylone poisoning. J Med Toxicol 8:59–61. doi:10.1007/s13181-01-0159-1 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Brandt SD, Sumnall HR, Measham F, Cole J (2010) Analyses of second-generation ‘legal highs’ in the UK: initial findings. Drug Test Anal 2(8):377–382. doi:10.1002/dta.155 CrossRefPubMedGoogle Scholar
  8. Brandt SD, Freeman S, Sumnall HR, Measham F, Cole J (2011) Analysis of NRG ‘legal highs’ in the UK: identification and formation of novel cathinones. Drug Test Anal 3:569–575. doi:10.1002/dta.204 CrossRefPubMedGoogle Scholar
  9. Camilleri A, Johnston MR, Brennan M, Davis S, Caldicott DGE (2010) Chemical analysis of four capsules containing the controlled substance analogues 4-methylmethcathinone, 2-fluoromethamphetamine, α-phthalimidopropiophenone and N-ethylcathinone. Forensic Sci Int 197(1–3):59–66. doi:10.1016/j.forsciint.2009.12.048 CrossRefPubMedGoogle Scholar
  10. Carbone PN, Carbone DL, Carstairs SD, Luzi SA (2013) Sudden cardiac death associated with methylone use. Am J Forensic Med Pathol 34(1):26–28. doi:10.1097/PAF.0b013e31827ab5da CrossRefPubMedGoogle Scholar
  11. Carvalho M, Milhazes N, Remiao F, Borges F, Fernandes E, Amado F, Monks T, Carvalho F, Bastos ML (2004) Hepatotoxicity of 3,4-methylenedioxyamphetamine and alpha-methyldopamine in isolated rat hepatocytes: formation of glutathione conjugates. Arch Toxicol 78(1):16–24. doi:10.1007/s00204-003-0510-7 CrossRefPubMedGoogle Scholar
  12. Carvalho M, Pontes H, Remiao F, Bastos ML, Carvalho F (2010) Mechanisms underlying the hepatotoxic effects of ecstasy. Curr Pharm Biotechnol 11(5):476–495CrossRefPubMedGoogle Scholar
  13. Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, Carvalho F, Bastos ML (2012) Toxicity of amphetamines: an update. Arch Toxicol 86(8):1167–1231. doi:10.1007/s00204-012-0815-5 CrossRefPubMedGoogle Scholar
  14. Casale JF, Hays PA (2011) The characterization of 5- and 6-(2-Aminopropyl)benzofuran-2,3-dihydrobenzofuran. Microgram J8(2):62–74Google Scholar
  15. Casale JF, Hays PA (2012) The characterization of 6-(2-Aminopropyl)benzofuran differentiation from its 4-, 5-, and 7-positional analogues. Microgram J9(2):61–74Google Scholar
  16. Coppola M, Mondola R (2012a) Synthetic cathinones: chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as “bath salts” or “plant food”. Toxicol Lett 211(2):144–149. doi:10.1016/j.toxlet.2012.03.009 CrossRefPubMedGoogle Scholar
  17. Coppola M, Mondola R (2012b) 3,4-Methylenedioxypyrovalerone (MDPV): chemistry, pharmacology and toxicology of a new designer drug of abuse marketed online. Toxicol Lett 208(1):12–15. doi:10.1016/j.toxlet.2011.10.002 CrossRefPubMedGoogle Scholar
  18. Daeid NN, Savage KA, Ramsay D, Holland C, Sutcliffe OB (2014) Development of gas chromatography–mass spectrometry (GC–MS) and other rapid screening methods for the analysis of 16 ‘legal highs’ cathinone derivatives. Sci Justice 54(1):22–31. doi:10.1016/j.scijus.2013.08.004 CrossRefGoogle Scholar
  19. Davies S, Wood D, Smith G, Button J, Ramsey J, Archer R, Holt DW, Dargan PI (2010) Purchasing ‘legal highs’ on the internet—is there consistency in what you get? QJM 103(7):489–493. doi:10.1093/qjmed/hcq056 CrossRefPubMedGoogle Scholar
  20. Davies S, Lee T, Ramsey J, Dargan PI, Wood DM (2012) Risk of caffeine toxicity associated with the use of ‘legal highs’ (novel psychoactive substances). Eur J Clin Pharmacol 68(4):435–439. doi:10.1007/s00228-011-1144-y CrossRefPubMedGoogle Scholar
  21. Davis S, Rands-Trevor K, Boyd S, Edirisinghe M (2012) The characterisation of two halogenated cathinone analogues: 3,5-difluoromethcathinone and 3,5-dichloromethcathinone. Forensic Sci Int 217(1–3):139–145. doi:10.1016/j.forsciint.2011.10.042 CrossRefPubMedGoogle Scholar
  22. De Letter EA, Piette MH, Lambert WE, Cordonnier JA (2006) Amphetamines as potential inducers of fatalities: a review in the district of Ghent from 1976–2004. Med Sci Law 46(1):37–65CrossRefPubMedGoogle Scholar
  23. Dias da Silva D, Carmo H, Silva E (2013a) The risky cocktail: what combination effects can we expect between ecstasy and other amphetamines? Arch Toxicol 87(1):111–122. doi:10.1007/s00204-012-0929-9 CrossRefPubMedGoogle Scholar
  24. Dias da Silva D, Silva E, Carmo H (2013b) Cytotoxic effects of amphetamine mixtures in primary hepatocytes are severely aggravated under hyperthermic conditions. Toxicol In Vitro 27(6):1670–1678. doi:10.1016/j.tiv.2013.04.010 CrossRefPubMedGoogle Scholar
  25. Elie M, Elie L, Baron M (2013) Keeping pace with NPS releases: fast GC–MS screening of legal highs products. Drug Test Anal 5(5):281–290. doi:10.1002/dta.1434 CrossRefPubMedGoogle Scholar
  26. Elliott SP, Brandt SD, Freeman S, Archer RP (2012) AMT (3-(2-aminopropyl)indole) and 5-IT (5-/2-aminopropyl)indole): an analytical challenge and implications for forensic analysis. Drug Test Anal 5(3):196–202. doi:10.1002/dta.1420 CrossRefPubMedGoogle Scholar
  27. EMCDDA (2012) The EMCDDA annual report 2012: the state of the drugs problem in Europe. Eur Surveill. doi:10.2810/64775. http://www.emcdda.europa.eu/
  28. EMCDDA (2013) European drug report 2013: trends and developments. Eur Surveill. http://www.emcdda.europa.eu/edr2013
  29. Fröhlich S, Lambe E, O’Dea J (2011) Acute liver failure following recreational use of psychotropic “head shops” compounds. Ir J Med Sci 180(1):263–264. doi:10.1007/s11845-010-0636-6 CrossRefPubMedGoogle Scholar
  30. Garcia-Repetto R, Moreno E, Soriano T, Jurado C, Giménez MP, Menéndez M (2003) Tissue concentrations of MDMA and its metabolites MDA in three fatal cases of overdose. Forensic Sci Int 135(2):110–114CrossRefPubMedGoogle Scholar
  31. Garrett G, Sweeney M (2010) The serotonin syndrome as a result of mephedrone toxicity. BMJ Case Rep 2010:1–5. doi:10.1136/bcr.04.2010.2925 Google Scholar
  32. James D, Adams RD, Spears R, Cooper G, Lupton DJ, Thompson JP, Thomas SH (2011) Clinical characteristics of mephedrone toxicity reported to the U.K. National Poisons Information Service. Emerg Med J 28(8):686–689. doi:10.1136/emj.2010.096636 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Jankovics P, Váradi A, Tölgyes L, Lohner S, Németh-Palotás J, Kőszegi-Szalai H (2011) Identification and characterization of the new designer drug 4′-methylethcathinone (4-MEC) and elaboration of a novel liquid chromatography–tandem mass spectrometry (LC–MS/MS) screening method for seven different methcathinone analogs. Forensic Sci Int 210(1–3):213–220. doi:10.1016/j.forsciint.2011.03.019 CrossRefPubMedGoogle Scholar
  34. Kamata HT, Shima N, Zaitsu K, Kamata T, Miki A, Nishikawa M, Katagi M, Tsuchihashi H (2006) Metabolism of the recently encountered designer drug, methylone, in humans and rats. Xenobiotica Fate Foreign Compd Biol Syst 36(8):709–723. doi:10.1080/00498250600780191 CrossRefGoogle Scholar
  35. Kavanagh P, O´Brien J, Fox J, O´Donnell C, Christie R, Power JD, McDermott SD (2012) The analysis of cathinones. Part 3. Synthesis and characterization of 2,3-methylenedioxy substituted cathinones. Forensic Sci Int 216(1–3):19–28. doi:10.1016/j.forscint.2011.08.011 CrossRefPubMedGoogle Scholar
  36. Kelly JP (2011) Cathinone derivatives: a review of their chemistry, pharmacology and toxicology. Drug Test Anal 3(7–8):439–453. doi:10.1002/dta.313 CrossRefPubMedGoogle Scholar
  37. Khreit OI, Grant MH, Zhang T, Henderson C, Watson DG, Sutcliffe OB (2013) Elucidation of the phase I and phase II metabolic pathways of (±)-4′-methylmethcathinone (4-MMC) and (±)-4′-(trifluoromethyl)methcathinone (4-TFMMC) in rat liver hepatocytes using LC–MS and LC–MS(2). J Pharm Biomed Anal 72:177–185. doi:10.1016/j.jpba.2012.08.015 CrossRefPubMedGoogle Scholar
  38. Kortenkamp A (2007) Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect 115(Suppl 1):98–105. doi:10.1289/ehp.9357 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Kovacs K, Toth AR, Kereszty EM (2012) A new designer drug: methylone related death. Orv Hetil 153(7):271–276. doi:10.1556/OH.2012.29310 CrossRefPubMedGoogle Scholar
  40. Leffler AM, Smith PB, Armas A, Dorman F (2014) The analytical investigation of synthetic street drugs containing cathinone analogs. Forensic Sci Int 234:50–56. doi:10.1016/j.forsciint.2013.08.021 CrossRefPubMedGoogle Scholar
  41. Levine M, Levitan R, Skolnik A (2013) Compartment syndrome after “bath salts” use: a case series. Ann Emerg Med 61(4):480–483. doi:10.1016/j.annemergmed.2012.11.021 CrossRefPubMedGoogle Scholar
  42. Locos O, Reynolds D (2012) The characterization of 3,4-dimethylmethacahinone (3,4-DMMC). J Forensic Sci 57(5):1303–1306. doi:10.1111/j.556-4029.2012.02142 CrossRefPubMedGoogle Scholar
  43. Lusthof KJ, Oosting R, Maes A, Verschraagen M, Dijkhuizen A, Sprong AG (2011) A case of extreme agitation and death after the use of mephedrone in The Netherlands. Forensic Sci Int 206(1–3):e93–e95. doi:10.1016/j.forsciint.2010.12.014 CrossRefPubMedGoogle Scholar
  44. Maheux CR, Copeland CR (2011) Chemical analysis of two new designer drugs: buphedrone and pentedrone. Drug Test Anal 4(1):17–23. doi:10.1002/dta.385 CrossRefPubMedGoogle Scholar
  45. McDermott SD, Power JD, Kavaganagh P, O’Brien J (2011) The analysis of substituted cathinones. Part 2: an investigation into the phenylacetone based isomers of 4-methylmethcathinone and N-ethylcathinone. Forensic Sci Int 212(1–3):13–21. doi:10.1016/j.forscint.2011.06.030M CrossRefPubMedGoogle Scholar
  46. Meyer MR, Du P, Schuster F, Maurer HH (2010) Studies on the metabolism of the alpha-pyrrolidinophenone designer drug methylenedioxy-pyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC–MS and LC–high-resolution MS and its detectability in urine by GC–MS. J Mass Spectrom JMS 45(12):1426–1442. doi:10.1002/jms.1859 CrossRefGoogle Scholar
  47. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63CrossRefPubMedGoogle Scholar
  48. Murray BL, Murphy CM, Beuhler MC (2012) Death following recreational use of designer drug “bath salts” containing 3,4-methylenedioxypyrovalerone (MDPV). J Med Toxicol 8(1):69–75. doi:10.1007/s13181-011-0196-9 CrossRefPubMedCentralPubMedGoogle Scholar
  49. Payne J, Rajapakse N, Wilkins M, Kortenkamp A (2000) Prediction and assessment of the effects of mixtures of four xenoestrogens. Environ Health Perspect 108(10):983–987CrossRefPubMedCentralPubMedGoogle Scholar
  50. Payne J, Scholze M, Kortenkamp A (2001) Mixtures of four organochlorines enhance human breast cancer cell proliferation. Environ Health Perspect 109(4):391–397CrossRefPubMedCentralPubMedGoogle Scholar
  51. Pearson J, Hargraves T, Hair L, Massucci C, Frazee C, Garg U, Pietak B (2012) Three fatal intoxications due to methylone. J Anal Toxicol 36(6):444–451. doi:10.1093/jat/bks043 CrossRefPubMedGoogle Scholar
  52. Penders TM, Gestring RE, Vilensky DA (2012) Excited delirium following use of synthetic cathinones (bath salts). Gen Hosp Psychiatry 34(6):647–650. doi:10.1016/j.genhosppsych.2012.06.005 CrossRefPubMedGoogle Scholar
  53. Portuguese Government (2013) Decreto-Lei n.º 54/2013. Diário da República 75Google Scholar
  54. Prosser JM, Nelson LS (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8(1):33–42. doi:10.1007/s13181-011-0193-z CrossRefPubMedCentralPubMedGoogle Scholar
  55. Regunath H, Ariyamuthu VK, Dalal P, Misra M (2012) Bath salt intoxication causing acute kidney injury requiring hemodialysis. Hemodial Int Int Sympos Home Hemodial 16(Suppl 1):S47–S49. doi:10.1111/j.1542-4758.2012.00750.x CrossRefGoogle Scholar
  56. Research IFLA (1996) Guide for the care and use of laboratory animals. National Academy Press, WashingtonGoogle Scholar
  57. Rojek S, Klys M, Strona M, Maciów M, Kula K (2012) “Legal highs”—toxicity in the clinical and medico-legal aspect as exemplified by suicide with bk-MBDB administration. Forensic Sci Int 222(1–3):e1–e6. doi:10.1016/j.forsciint.2012.04.034 CrossRefPubMedGoogle Scholar
  58. Rösner P, Quednow B, Girreser U, Junge T (2005) Isomeric fluoro-methoxy-phenylalkylamines: a new series of controlled-substances analogues (designer drugs). Forensic Sci Int 148(2–3):143–146CrossRefPubMedGoogle Scholar
  59. Schifano F, Corkery J, Ghodse AH (2012) Suspected and confirmed fatalities associated with mephedrone (4-methylmethcathinone, “meow meow”) in the United Kingdom. J Clin Psychopharmacol 32(5):710–714. doi:10.1097/JCP.0b013e318266c70c CrossRefPubMedGoogle Scholar
  60. Scholze M, Boedeker W, Faust M, Backhaus T, Altenburger R, Grimme LH (2001) A general best-fit method for concentration–response curves and the estimation of low-effect concentrations. Environ Toxicol Chem 20(2):448–457CrossRefPubMedGoogle Scholar
  61. Silva E, Rajapakse N, Kortenkamp A (2002) Something from “nothing”-eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36(8):1751–1756CrossRefPubMedGoogle Scholar
  62. Silva DG, de Pinho PG, Pontes H, Ferreira L, Branco P, Remião F, Carvalho F, Bastos ML, Carmo H (2010) Gas chromatography–ion trap mass spectrometry method for the simultaneous measurement of MDMA (ecstasy) and its metabolites, MDA, HMA, and HMMA in plasma and urine. J Chromatogr B Analyt Technol Biomed Life Sci 878(9–10):815–822. doi:10.1016/j.jchromb.2010.01.042 PubMedGoogle Scholar
  63. Silva DD, Silva E, Carvalho F, Carmo H (2013a) Mixtures of 3,4-methylenedioxymethamphetamine (ecstasy) and its major human metabolites act additively to induce significant toxicity to liver cells when combined at low, non-cytotoxic concentrations. J Appl Toxicol. doi:10.1002/jat.2885 Google Scholar
  64. Silva DD, Silva E, Carmo H (2013b) Combination effects of amphetamines under hyperthermia—the role played by oxidative stress. J Appl Toxicol. doi:10.1002/jat.2889 Google Scholar
  65. Spiller HA, Ryan ML, Weston RG, Jansen J (2011) Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in United States. Clin Toxicol 49(6):499–505. doi:10.3109/15563650.2011.590812 CrossRefGoogle Scholar
  66. Valente MJ, Guedes de Pinho P, Bastos ML, Carvalho F, Carvalho M (2014) Khat and synthetic cathinones: a review. Arch Toxicol 88(1):15–45. doi:10.1007/s00204-013-1163-9 CrossRefPubMedGoogle Scholar
  67. Warrick BJ, Wilson J, Hedge M, Freeman S, Leonard K, Aaron C (2012) Lethal serotonin syndrome after methylone and butylone ingestion. J Med Toxicol 8(1):65–68. doi:10.1007/s13181-011-0199-6 CrossRefPubMedCentralPubMedGoogle Scholar
  68. Westphal F, Junge T, Girreser U, Greibl W, Doering C (2012) Mass, NMR and IR spectroscopic characterization of pentedrone and pentylone and identification of their isocathinone by-products. Forensic Sci Int 217(1–3):157–167. doi:10.1016/j.forsciint.2011.10.45 CrossRefPubMedGoogle Scholar
  69. Wikstrom M, Thelander G, Nystrom I, Kronstrand R (2010) Two fatal intoxications with the new designer drug methedrone (4-methoxymethcathinone). J Anal Toxicol 34(9):594–598. doi:10.1093/jat/34.9.594 CrossRefPubMedGoogle Scholar
  70. Wood DM, Davies S, Greene SL, Button J, Holt DW, Ramsey J, Dargan PI (2010) Case series of individuals with analytically confirmed acute mephedrone toxicity. Clin Toxicol 48(9):924–927. doi:10.3109/15563650.2010.531021 CrossRefGoogle Scholar
  71. Zaitsu K, Katagi M, Kamata HT, Kamata T, Shima N, Miki A, Tsuchihashi H, Mori Y (2009) Determination of the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. Forensic Sci Int 188(1–3):131–139. doi:10.1016/j.forsciint.2009.04.001 CrossRefPubMedGoogle Scholar
  72. Zuba D, Byrska B (2013) Prevalence and co-existence of active components of ‘legal highs’. Drug Test Anal 5(6):420–429. doi:10.1002/dta.1365 CrossRefPubMedGoogle Scholar
  73. Zukiewicz-Sobczak W, Zwolinski J, Chmielewska-Badora J, Krasowska E, Piatek J, Sobczak P, Wojtyła A, Fornal E, Kuczumow A, Biliński P (2012) Analysis of psychoactive and intoxicating substances in legal highs. Ann Agric Environ Med 19(2):309–314PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ana Margarida Araújo
    • 1
  • Maria João Valente
    • 1
  • Márcia Carvalho
    • 1
    • 2
  • Diana Dias da Silva
    • 1
  • Helena Gaspar
    • 3
  • Félix Carvalho
    • 1
  • Maria de Lourdes Bastos
    • 1
  • Paula Guedes de Pinho
    • 1
  1. 1.REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
  2. 2.CEBIMED, Faculdade de Ciências da SaúdeUniversidade Fernando PessoaPortoPortugal
  3. 3.Centro de Química e Bioquímica (CQB), Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations