Advertisement

Archives of Toxicology

, Volume 88, Issue 7, pp 1351–1389 | Cite as

Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update

  • Christine E. StaatzEmail author
  • Susan E. Tett
Review Article

Abstract

This review aims to provide an update of the literature on the pharmacology and toxicology of mycophenolate in solid organ transplant recipients. Mycophenolate is now the antimetabolite of choice in immunosuppressant regimens in transplant recipients. The active drug moiety mycophenolic acid (MPA) is available as an ester pro-drug and an enteric-coated sodium salt. MPA is a competitive, selective and reversible inhibitor of inosine-5′-monophosphate dehydrogenase (IMPDH), an important rate-limiting enzyme in purine synthesis. MPA suppresses T and B lymphocyte proliferation; it also decreases expression of glycoproteins and adhesion molecules responsible for recruiting monocytes and lymphocytes to sites of inflammation and graft rejection; and may destroy activated lymphocytes by induction of a necrotic signal. Improved long-term allograft survival has been demonstrated for MPA and may be due to inhibition of monocyte chemoattractant protein 1 or fibroblast proliferation. Recent research also suggested a differential effect of mycophenolate on the regulatory T cell/helper T cell balance which could potentially encourage immune tolerance. Lower exposure to calcineurin inhibitors (renal sparing) appears to be possible with concomitant use of MPA in renal transplant recipients without undue risk of rejection. MPA displays large between- and within-subject pharmacokinetic variability. At least three studies have now reported that MPA exhibits nonlinear pharmacokinetics, with bioavailability decreasing significantly with increasing doses, perhaps due to saturable absorption processes or saturable enterohepatic recirculation. The role of therapeutic drug monitoring (TDM) is still controversial and the ability of routine MPA TDM to improve long-term graft survival and patient outcomes is largely unknown. MPA monitoring may be more important in high-immunological recipients, those on calcineurin-inhibitor-sparing regimens and in whom unexpected rejection or infections have occurred. The majority of pharmacodynamic data on MPA has been obtained in patients receiving MMF therapy in the first year after kidney transplantation. Low MPA area under the concentration time from 0 to 12 h post-dose (AUC0–12) is associated with increased incidence of biopsy-proven acute rejection although AUC0–12 optimal cut-off values vary across study populations. IMPDH monitoring to identify individuals at increased risk of rejection shows some promise but is still in the experimental stage. A relationship between MPA exposure and adverse events was identified in some but not all studies. Genetic variants within genes involved in MPA metabolism (UGT1A9, UGT1A8, UGT2B7), cellular transportation (SLCOB1, SLCO1B3, ABCC2) and targets (IMPDH) have been reported to effect MPA pharmacokinetics and/or response in some studies; however, larger studies across different ethnic groups that take into account genetic linkage and drug interactions that can alter a patient's phenotype are needed before any clinical recommendations based on patient genotype can be formulated. There is little data on the pharmacology and toxicology of MPA in older and paediatric transplant recipients.

Keywords

Mycophenolic acid Mycophenolate Pharmacology Toxicology Transplantation 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abadja F, Videcoq C, Alamartine E, Berthoux F, Mariat C (2009) Differential effect of cyclosporine and mycophenolic acid on the human regulatory T cells and TH-17 cells balance. Transplant Proc 41(8):3367–3370. doi: 10.1016/j.transproceed.2009.08.031 PubMedGoogle Scholar
  2. Al-Absi AI, Cooke CR, Wall BM, Sylvestre P, Ismail MK, Mya M (2010) Patterns of injury in mycophenolate mofetil-related colitis. Transplant Proc 42(9):3591–3593. doi: 10.1016/j.transproceed.2010.08.066 PubMedGoogle Scholar
  3. Allison AC, Eugui EM (1993) Immunosuppressive and other anti-rheumatic activities of mycophenolate mofetil. Agents Actions Suppl 44:165–188PubMedGoogle Scholar
  4. Allison AC, Eugui EM (2005) Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation 80(Supplement):S181–S190. doi: 10.1097/01.tp.0000186390.10150.66 PubMedGoogle Scholar
  5. Andrade Vila JH, da Silva JP, Guilhen CJ, Baumgratz JF, da Fonseca L (2008) Even low dose of mycophenolate mofetil in a mother recipient of heart transplant can seriously damage the fetus. Transplantation 86(2):369–370. doi: 10.1097/TP.0b013e31817cf28a PubMedGoogle Scholar
  6. Annapandian VM, Basu G, Mathew BS, Fleming DH, Jacob CK, John GT (2010) Can mycophenolic acid dose requirement during the first transplant help predict dosing for the second transplant? Nephrol Dial Transplant 25(10):3449–3452. doi: 10.1093/ndt/gfq436 PubMedGoogle Scholar
  7. Arichi N, Kishikawa H, Mitsui Y et al (2009) Cluster outbreak of Pneumocystis pneumonia among kidney transplant patients within a single center. Transplant Proc 41(1):170–172. doi: 10.1016/j.transproceed.2008.10.027 PubMedGoogle Scholar
  8. Arns W (2007) Noninfectious gastrointestinal (GI) complications of mycophenolic acid therapy: a consequence of local GI toxicity? Transplant Proc 39(1):88–93. doi: 10.1016/j.transproceed.2006.10.189 PubMedGoogle Scholar
  9. Arns W, Sommerer C, Glander P et al (2013) A randomized trial of intensified versus standard dosing for enteric-coated mycophenolate sodium in de novo kidney transplant recipients: results at 1 year. Clin Nephrol 79(6):421–431. doi: 10.5414/CN107908 PubMedGoogle Scholar
  10. Arslan H, Inci EK, Azap OK, Karakayali H, Torgay A, Haberal M (2007) Etiologic agents of diarrhea in solid organ recipients. Transpl Infect Dis 9(4):270–275. doi: 10.1111/j.1399-3062.2007.00237.x PubMedGoogle Scholar
  11. Asberg A, Jardine AG, Bignamini AA et al (2010) Effects of the intensity of immunosuppressive therapy on outcome of treatment for CMV disease in organ transplant recipients. Am J Transplant 10(8):1881–1888. doi: 10.1111/j.1600-6143.2010.03114.x PubMedGoogle Scholar
  12. Ashton-Chess J, Giral M, Soulillou JP, Brouard S (2009) Can immune monitoring help to minimize immunosuppression in kidney transplantation? Transpl Int 22(1):110–119. doi: 10.1111/j.1432-2277.2008.00748.x PubMedGoogle Scholar
  13. Atcheson BA, Taylor PJ, Mudge DW et al (2005) Mycophenolic acid pharmacokinetics and related outcomes early after renal transplant. Br J Clin Pharmacol 59(3):271–280. doi: 10.1111/j.1365-2125.2004.02235.x PubMedCentralPubMedGoogle Scholar
  14. Baczkowska T, Sadowska A, Perkowska-Ptasinska A et al (2009) Optimal mycophenolic acid and mycophenolic acid glucuronide levels at the early period after kidney transplantation are the key contributors to improving long-term outcomes. Transplant Proc 41(8):3019–3023. doi: 10.1016/j.transproceed.2009.08.009 PubMedGoogle Scholar
  15. Badowski M, Gurk-Turner C, Cangro C et al (2009) The impact of reduced immunosuppression on graft outcomes in elderly renal transplant recipients. Clin Transplant 23(6):930–937. doi: 10.1111/j.1399-0012.2009.01028.x PubMedGoogle Scholar
  16. Baraldo M, Cojutti PG, Isola M et al (2009) Validation of limited sampling strategy for estimation of mycophenolic acid exposure during the first year after heart transplantation. Transplant Proc 41(10):4277–4284. doi: 10.1016/j.transproceed.2009.08.077 PubMedGoogle Scholar
  17. Barau C, Barrail-Tran A, Hemerziu B et al (2011) Optimization of the dosing regimen of mycophenolate mofetil in pediatric liver transplant recipients. Liver Transpl 17(10):1152–1158. doi: 10.1002/lt.22364 PubMedGoogle Scholar
  18. Barau C, Furlan V, Debray D, Taburet AM, Barrail-Tran A (2012) Population pharmacokinetics of mycophenolic acid and dose optimization with limited sampling strategy in liver transplant children. Br J Clin Pharmacol 74(3):515–524. doi: 10.1111/j.1365-2125.2012.04213.x PubMedCentralPubMedGoogle Scholar
  19. Barraclough KA, Staatz CE, Isbel NM, Johnson DW (2009) Therapeutic monitoring of mycophenolate in transplantation: is it justified? Curr Drug Metab 10(2):179–187PubMedGoogle Scholar
  20. Barraclough KA, Isbel NM, Staatz CE (2010a) Evaluation of the mycophenolic acid exposure estimation methods used in the APOMYGERE, FDCC, and Opticept trials. Transplantation 90(1):44–51. doi: 10.1097/TP.0b013e3181e06584 PubMedGoogle Scholar
  21. Barraclough KA, Lee KJ, Staatz CE (2010b) Pharmacogenetic influences on mycophenolate therapy. Pharmacogenomics 11(3):369–390. doi: 10.2217/pgs.10.9 PubMedGoogle Scholar
  22. Barraclough KA, Isbel NM, Johnson DW et al (2012a) A limited sampling strategy for the simultaneous estimation of tacrolimus, mycophenolic acid and unbound prednisolone exposure in adult kidney transplant recipients. Nephrology (Carlton) 17(3):294–299. doi: 10.1111/j.1440-1797.2011.01560.x Google Scholar
  23. Barraclough KA, Staatz CE, Johnson DW et al (2012b) Kidney transplant outcomes are related to tacrolimus, mycophenolic acid and prednisolone exposure in the first week. Transpl Int 25(11):1182–1193. doi: 10.1111/j.1432-2277.2012.01553.x PubMedGoogle Scholar
  24. Barrera-Pulido L, Alamo-Martínez JM, Marín-Gómez LM et al (2009) Switching from mycophenolate mofetil to enteric-coated mycophenolate sodium in liver transplant patients with gastrointestinal complications. Transplant Proc 41(6):2192–2194. doi: 10.1016/j.transproceed.2009.06.004 PubMedGoogle Scholar
  25. Barrera-Pulido L, Espinosa-Aguilar MD, Marín D et al (2010) Influence of mycophenolate mofetil on preservation of kidney function in liver transplant patients. Transplant Proc 42(2):651–655. doi: 10.1016/j.transproceed.2010.02.016 PubMedGoogle Scholar
  26. Beckebaum S, Armstrong VW, Cicinnati VR et al (2009) Pharmacokinetics of mycophenolic acid and its glucuronide metabolites in stable adult liver transplant recipients with renal dysfunction on a low-dose calcineurin inhibitor regimen and mycophenolate mofetil. Ther Drug Monit 31(2):205–210. doi: 10.1097/FTD.0b013e31819743d9 PubMedGoogle Scholar
  27. Becker T, Foltys D, Bilbao I et al (2008) Patient outcomes in two steroid-free regimens using tacrolimus monotherapy after daclizumab induction and tacrolimus with mycophenolate mofetil in liver transplantation. Transplantation 86(12):1689–1694. doi: 10.1097/TP.0b013e31818fff64 PubMedGoogle Scholar
  28. Behling KC, Foster DM, Edmonston TB, Witkiewicz AK (2009) Graft-versus-host disease-like pattern in mycophenolate mofetil related colon mucosal injury: role of fish in establishing the diagnosis. Case Rep Gastroenterol 3(3):418–423. doi: 10.1159/000260903 PubMedCentralPubMedGoogle Scholar
  29. Bemelman FJ, de Maar EF, Press RR et al (2009) Minimization of maintenance immunosuppression early after renal transplantation: an interim analysis. Transplantation 88(3):421–428. doi: 10.1097/TP.0b013e3181af1df6 PubMedGoogle Scholar
  30. Benichou AS, Blanchet B, Conti F et al (2010) Variability in free mycophenolic acid exposure in adult liver transplant recipients during the early posttransplantation period. J Clin Pharmacol 50(10):1202–1210. doi: 10.1177/0091270009358084 PubMedGoogle Scholar
  31. Bererhi L, Pallet N, Zuber J et al (2012) Clinical and immunological features of very long-term survivors with a single renal transplant. Transpl Int 25(5):545–554. doi: 10.1111/j.1432-2277.2012.01451.x PubMedGoogle Scholar
  32. Betonico GN, Abbud M, Goloni-Bertollo EM, Pavarino-Bertelli E (2008) Pharmacogenetics of mycophenolate mofetil: a promising different approach to tailoring immunosuppression? J Nephrol 21(4):503–509PubMedGoogle Scholar
  33. Betônico GN, Abbud-Filho M, Goloni-Bertollo EM et al (2008) Influence of UDP-glucuronosyltransferase polymorphisms on mycophenolate mofetil-induced side effects in kidney transplant patients. Transplant Proc 40(3):708–710. doi: 10.1016/j.transproceed.2008.03.007 PubMedGoogle Scholar
  34. Bichari W, Bartiromo M, Mohey H et al (2009) Significant risk factors for occurrence of cancer after renal transplantation: a single center cohort study of 1265 cases. Transplant Proc 41(2):672–673. doi: 10.1016/j.transproceed.2008.12.013 PubMedGoogle Scholar
  35. Bilodeau JF, Montambault P, Wolff JL, Lemire J, Masse M (2009) Evaluation of tolerability and ability to increase immunosuppression in renal transplant patients converted from mycophenolate mofetil to enteric-coated mycophenolate sodium. Transplant Proc 41(9):3683–3689. doi: 10.1016/j.transproceed.2009.06.183 PubMedGoogle Scholar
  36. Bittner HB, Barten MJ, Binner C et al (2010) Preoperative introduction and maintenance immunosuppression therapy of oral-only tacrolimus, mycophenolate mofetil and steroids reduce acute rejection episodes after lung transplantation. Eur J Cardiothorac Surg 38(3):268–276. doi: 10.1016/j.ejcts.2010.01.066 PubMedGoogle Scholar
  37. Blydt-Hansen TD, Gibson IW, Birk PE (2010) Histological progression of chronic renal allograft injury comparing sirolimus and mycophenolate mofetil-based protocols. A single-center, prospective, randomized, controlled study. Pediatr Transplant 14(7):909–918. doi: 10.1111/j.1399-3046.2010.01374.x PubMedGoogle Scholar
  38. Boddana P, Webb LH, Unsworth J, Brealey M, Bingham C, Harper SJ (2011) Hypogammaglobulinemia and bronchiectasis in mycophenolate mofetil-treated renal transplant recipients: an emerging clinical phenomenon? Clin Transplant 25(3):417–419. doi: 10.1111/j.1399-0012.2010.01255.x PubMedGoogle Scholar
  39. Böhler T, Canivet C, Galvani S et al (2008) Pharmacodynamic monitoring of the conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in stable kidney-allograft recipients. Int Immunopharmacol 8(5):769–773. doi: 10.1016/j.intimp.2008.01.023 PubMedGoogle Scholar
  40. Bolin P, Tanriover B, Zibari GB et al (2007) Improvement in 3-month patient-reported gastrointestinal symptoms after conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in renal transplant patients. Transplantation 84(11):1443–1451. doi: 10.1097/01.tp.0000290678.06523.95 PubMedGoogle Scholar
  41. Bolin P, Gohh R, Kandaswamy R et al (2011) Mycophenolic acid in kidney transplant patients with diabetes mellitus: does the formulation matter? Transplant Rev (Orlando) 25(3):117–123. doi: 10.1016/j.trre.2010.12.003 Google Scholar
  42. Bouamar R, Hesselink DA, van Schaik RHN et al (2012) Mycophenolic acid-related diarrhea is not associated with polymorphisms in SLCO1B nor with ABCB1 in renal transplant recipients. Pharmacogenet Genom 22(6):399–407. doi: 10.1097/FPC.0b013e32834a8650 Google Scholar
  43. Bremer S, Mandla R, Vethe NT et al (2008) Expression of IMPDH1 and IMPDH2 after transplantation and initiation of immunosuppression. Transplantation 85(1):55–61. doi: 10.1097/01.tp.0000296854.68123.03 PubMedGoogle Scholar
  44. Brewer JD, Colegio OR, Phillips PK et al (2009) Incidence of and risk factors for skin cancer after heart transplant. Arch Dermatol 145(12):1391–1396. doi: 10.1001/archdermatol.2009.276 PubMedGoogle Scholar
  45. Brister K, Yau CL, Slakey D (2009) Enteric coating of mycophenolate reduces dosage adjustments. Transplant Proc 41(5):1657–1659. doi: 10.1016/j.transproceed.2009.02.071 PubMedGoogle Scholar
  46. Bruchet NK, Ensom MH (2009) Limited sampling strategies for mycophenolic acid in solid organ transplantation: a systematic review. Expert Opin Drug Metab Toxicol 5(9):1079–1097. doi: 10.1517/17425250903114182 PubMedGoogle Scholar
  47. Brum S, Nolasco F, Sousa J et al (2008) Leukopenia in kidney transplant patients with the association of valganciclovir and mycophenolate mofetil. Transplant Proc 40(3):752–754. doi: 10.1016/j.transproceed.2008.02.048 PubMedGoogle Scholar
  48. Brunet M, Crespo M, Millán O et al (2007) Pharmacokinetics and pharmacodynamics in renal transplant recipients under treatment with cyclosporine and Myfortic. Transplant Proc 39(7):2160–2162. doi: 10.1016/j.transproceed.2007.07.003 PubMedGoogle Scholar
  49. Budde K, Bauer S, Hambach P et al (2007a) Pharmacokinetic and pharmacodynamic comparison of enteric-coated mycophenolate sodium and mycophenolate mofetil in maintenance renal transplant patients. Am J Transplant 7(4):888–898. doi: 10.1111/j.1600-6143.2006.01693.x PubMedGoogle Scholar
  50. Budde K, Glander P, Krämer BK et al (2007b) Conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in maintenance renal transplant recipients receiving tacrolimus: clinical, pharmacokinetic, and pharmacodynamic outcomes. Transplantation 83(4):417–424. doi: 10.1097/01.tp.0000251969.72691.ea PubMedGoogle Scholar
  51. Budde K, Tedesco-Silva H, Pestana JM et al (2007c) Enteric-coated mycophenolate sodium provides higher mycophenolic acid predose levels compared with mycophenolate mofetil: implications for therapeutic drug monitoring. Ther Drug Monit 29(3):381–384. doi: 10.1097/FTD.0b013e318068619d PubMedGoogle Scholar
  52. Bunnapradist S, Ambühl PM (2008) Impact of gastrointestinal-related side effects on mycophenolate mofetil dosing and potential therapeutic strategies. Clin Transplant 22(6):815–821. doi: 10.1111/j.1399-0012.2008.00892.x PubMedGoogle Scholar
  53. Bunnapradist S, Neri L, Wong W et al (2008) Incidence and risk factors for diarrhea following kidney transplantation and association with graft loss and mortality. Am J Kidney Dis 51(3):478–486. doi: 10.1053/j.ajkd.2007.11.013 PubMedGoogle Scholar
  54. Burg M, Säemann MD, Wieser C, Kramer S, Fischer W, Lhotta K (2009) Enteric-coated mycophenolate sodium reduces gastrointestinal symptoms in renal transplant patients. Transplant Proc 41(10):4159–4164. doi: 10.1016/j.transproceed.2009.08.078 PubMedGoogle Scholar
  55. Byrne R, Yost SE, Kaplan B (2011) Mycophenolate mofetil monitoring: is there evidence that it can improve outcomes? Clin Pharmacol Ther 90(2):204–206. doi: 10.1038/clpt.2011.95 PubMedGoogle Scholar
  56. Campos SV, Strabelli TM, Amato Neto V et al (2008) Risk factors for Chagas’ disease reactivation after heart transplantation. J Heart Lung Transplant 27(6):597–602. doi: 10.1016/j.healun.2008.02.017 PubMedGoogle Scholar
  57. Chaigne-Delalande B, Guidicelli G, Couzi L et al (2008) The immunosuppressor mycophenolic acid kills activated lymphocytes by inducing a nonclassical actin-dependent necrotic signal. J Immunol 181(11):7630–7638PubMedGoogle Scholar
  58. Chen B, Gu Z, Chen H et al (2010) Establishment of high-performance liquid chromatography and enzyme multiplied immunoassay technology methods for determination of free mycophenolic acid and its application in Chinese liver transplant recipients. Ther Drug Monit 32(5):653–660. doi: 10.1097/FTD.0b013e3181f01397 PubMedGoogle Scholar
  59. Chiarelli LR, Molinaro M, Libetta C et al (2010) Inosine monophosphate dehydrogenase variability in renal transplant patients on long-term mycophenolate mofetil therapy. Br J Clin Pharmacol 69(1):38–50. doi: 10.1111/j.1365-2125.2009.03542.x PubMedCentralPubMedGoogle Scholar
  60. Ciancio G, Burke GW, Gaynor JJ et al (2008) Randomized trial of mycophenolate mofetil versus enteric-coated mycophenolate sodium in primary renal transplant recipients given tacrolimus and daclizumab/thymoglobulin: one year follow-up. Transplantation 86(1):67–74. doi: 10.1097/TP.0b013e3181734b4a PubMedGoogle Scholar
  61. Cicinnati VR, Yu Z, Klein CG et al (2007) Clinical trial: switch to combined mycophenolate mofetil and minimal dose calcineurin inhibitor in stable liver transplant patients–assessment of renal and allograft function, cardiovascular risk factors and immune monitoring. Aliment Pharmacol Ther 26(9):1195–1208. doi: 10.1111/j.1365-2036.2007.03466.x PubMedGoogle Scholar
  62. Cicinnati VR, Hou J, Lindemann M et al (2009) Mycophenolic acid impedes the antigen presenting and lymph node homing capacities of human blood myeloid dendritic cells. Transplantation 88(4):504–513. doi: 10.1097/TP.0b013e3181b0e608 PubMedGoogle Scholar
  63. Cofan F, Rosich E, Arias M, Torregrosa V, Oppenheimer F, Campistol JM (2007) Quality of life in renal transplant recipients following conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium. Transplant Proc 39(7):2179–2181. doi: 10.1016/j.transproceed.2007.07.012 PubMedGoogle Scholar
  64. Cooper M, Deering KL, Slakey DP et al (2009) Comparing outcomes associated with dose manipulations of enteric-coated mycophenolate sodium versus mycophenolate mofetil in renal transplant recipients. Transplantation 88(4):514–520. doi: 10.1097/TP.0b013e3181b0e65e PubMedGoogle Scholar
  65. Copeland JW, Beaumont BW, Merrilees MJ, Pilmore HL (2007) Epithelial-to-mesenchymal transition of human proximal tubular epithelial cells: effects of rapamycin, mycophenolate, cyclosporin, azathioprine, and methylprednisolone. Transplantation 83(6):809–814. doi: 10.1097/01.tp.0000255680.71816.aa PubMedGoogle Scholar
  66. Craig JC, Webster AC, McDonald SP (2009) The case of azathioprine versus mycophenolate. Do different drugs really cause different transplant outcomes? Transplantation 87(6):803–804. doi: 10.1097/TP.0b013e31819e86cd PubMedGoogle Scholar
  67. Cransberg K, Cornelissen M, Lilien M, Van Hoeck K, Davin JC, Nauta J (2007) Maintenance immunosuppression with mycophenolate mofetil and corticosteroids in pediatric kidney transplantation: temporary benefit but not without risk. Transplantation 83(8):1041–1047. doi: 10.1097/01.tp.0000260146.57898.9c PubMedGoogle Scholar
  68. Cravedi P, Perna A, Ruggenenti P, Remuzzi G (2009) Mycophenolate mofetil versus azathioprine in organ transplantation. Am J Transplant 9(12):2856–2857. doi: 10.1111/j.1600-6143.2009.02853.x PubMedGoogle Scholar
  69. Daher Abdi Z, Essig M, Rizopoulos D et al (2013) Impact of longitudinal exposure to mycophenolic acid on acute rejection in renal-transplant recipients using a joint modeling approach. Pharmacol Res 72:52–60. doi: 10.1016/j.phrs.2013.03.009 PubMedGoogle Scholar
  70. Dalal P, Grafals M, Chhabra D, Gallon L (2009) Mycophenolate mofetil: safety and efficacy in the prophylaxis of acute kidney transplantation rejection. Ther Clin Risk Manag 5(1):139–149PubMedCentralPubMedGoogle Scholar
  71. Dandel M, Jasaityte R, Lehmkuhl H, Knosalla C, Hetzer R (2009) Maintenance immunosuppression with mycophenolate mofetil: long-term efficacy and safety after heart transplantation. Transplant Proc 41(6):2585–2588. doi: 10.1016/j.transproceed.2009.06.031 PubMedGoogle Scholar
  72. Dantal J, Pohanka E (2007) Malignancies in renal transplantation: an unmet medical need. Nephrol Dial Transplant 22(Suppl 1):i4–i10. doi: 10.1093/ndt/gfm085 PubMedGoogle Scholar
  73. Darji P, Vijayaraghavan R, Thiagarajan CM et al (2008) Conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in renal transplant recipients with gastrointestinal tract disorders. Transplant Proc 40(7):2262–2267. doi: 10.1016/j.transproceed.2008.07.041 PubMedGoogle Scholar
  74. Davies NM, Grinyó J, Heading R, Maes B, Meier-Kriesche HU, Oellerich M (2007) Gastrointestinal side effects of mycophenolic acid in renal transplant patients: a reappraisal. Nephrol Dial Transplant 22(9):2440–2448. doi: 10.1093/ndt/gfm308 PubMedGoogle Scholar
  75. De Serres SA, Sayegh MH, Najafian N (2009) Immunosuppressive drugs and Tregs: a critical evaluation! Clin J Am Soc Nephrol 4(10):1661–1669. doi: 10.2215/CJN.03180509 PubMedGoogle Scholar
  76. de Winter BC, Mathot RA, van Hest RM, van Gelder T (2007) Therapeutic drug monitoring of mycophenolic acid: does it improve patient outcome? Expert Opin Drug Metab Toxicol 3(2):251–261. doi: 10.1517/17425255.3.2.251 PubMedGoogle Scholar
  77. de Winter BC, van Gelder T, Sombogaard F, Shaw LM, van Hest RM, Mathot RA (2009) Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J Pharmacokinet Pharmacodyn. doi: 10.1007/s10928-009-9136-6 PubMedCentralPubMedGoogle Scholar
  78. de Winter BC, Mathot RA, Sombogaard F, Vulto AG, van Gelder T (2011) Nonlinear relationship between mycophenolate mofetil dose and mycophenolic acid exposure: implications for therapeutic drug monitoring. Clin J Am Soc Nephrol 6(3):656–663. doi: 10.2215/CJN.05440610 PubMedCentralPubMedGoogle Scholar
  79. Demirkiran A, Hendrikx TK, Baan CC, van der Laan LJ (2008) Impact of immunosuppressive drugs on CD4+ CD25+ FOXP3+ regulatory T cells: does in vitro evidence translate to the clinical setting? Transplantation 85(6):783–789. doi: 10.1097/TP.0b013e318166910b PubMedGoogle Scholar
  80. Demirkiran A, Sewgobind VD, van der Weijde J et al (2009) Conversion from calcineurin inhibitor to mycophenolate mofetil-based immunosuppression changes the frequency and phenotype of CD4+ FOXP3+ regulatory T cells. Transplantation 87(7):1062–1068. doi: 10.1097/TP.0b013e31819d2032 PubMedGoogle Scholar
  81. Devyatko E, Dunkler D, Bohdjalian A et al (2008) Lymphocyte activation and correlation with IMPDH activity under therapy with mycophenolate mofetil. Clin Chim Acta 394(1–2):67–71. doi: 10.1016/j.cca.2008.04.006 PubMedGoogle Scholar
  82. Díaz B, González Vilchez F, Almenar L et al (2007) Gastrointestinal complications in heart transplant patients: MITOS study. Transplant Proc 39(7):2397–2400. doi: 10.1016/j.transproceed.2007.07.061 PubMedGoogle Scholar
  83. Doesch AO, Konstandin M, Celik S et al (2008) Epstein-Barr virus load in whole blood is associated with immunosuppression, but not with post-transplant lymphoproliferative disease in stable adult heart transplant patients. Transpl Int 21(10):963–971. doi: 10.1111/j.1432-2277.2008.00709.x PubMedGoogle Scholar
  84. Doesch AO, Müller S, Konstandin M et al (2010) Malignancies after heart transplantation: incidence, risk factors, and effects of calcineurin inhibitor withdrawal. Transplant Proc 42(9):3694–3699. doi: 10.1016/j.transproceed.2010.07.107 PubMedGoogle Scholar
  85. Domhan S, Muschal S, Schwager C et al (2008) Molecular mechanisms of the antiangiogenic and antitumor effects of mycophenolic acid. Mol Cancer Ther 7(6):1656–1668. doi: 10.1158/1535-7163.MCT-08-0193 PubMedGoogle Scholar
  86. Domhan S, Zeier M, Abdollahi A (2009) Immunosuppressive therapy and post-transplant malignancy. Nephrol Dial Transplant 24(4):1097–1103. doi: 10.1093/ndt/gfn605 PubMedGoogle Scholar
  87. Doria C, Ramirez CB, Frank AM, Vaccino S, Fraser N, Marino IR (2009) Use of enteric-coated mycophenolate sodium in liver transplant patients with intestinal intolerance caused by mycophenolate mofetil. Clin Transplant 23(6):882–886. doi: 10.1111/j.1399-0012.2009.01019.x PubMedGoogle Scholar
  88. Dost D, van Leerdam ME, van Dekken H et al (2008) Crohn’s-like enterocolitis associated with mycophenolic acid treatment. Gut 57(9):1330. doi: 10.1136/gut.2007.139972 PubMedGoogle Scholar
  89. Dostalek M, Court MH, Hazarika S, Akhlaghi F (2011) Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite. Drug Metab Dispos 39(3):448–455. doi: 10.1124/dmd.110.036608 PubMedCentralPubMedGoogle Scholar
  90. Dostalek M, Gohh RY, Akhlaghi F (2013) Inosine monophosphate dehydrogenase expression and activity are significantly lower in kidney transplant recipients with diabetes mellitus. Ther Drug Monit 35(3):374–383. doi: 10.1097/FTD.0b013e3182852697 PubMedGoogle Scholar
  91. Duncan FJ, Wulff BC, Tober KL et al (2007) Clinically relevant immunosuppressants influence UVB-induced tumor size through effects on inflammation and angiogenesis. Am J Transplant 7(12):2693–2703. doi: 10.1111/j.1600-6143.2007.02004.x PubMedGoogle Scholar
  92. Dupuis R, Yuen A, Innocenti F (2012) The influence of UGT polymorphisms as biomarkers in solid organ transplantation. Clin Chim Acta 413(17–18):1318–1325. doi: 10.1016/j.cca.2012.01.031 PubMedCentralPubMedGoogle Scholar
  93. Egli A, Köhli S, Dickenmann M, Hirsch HH (2009) Inhibition of polyomavirus BK-specific T-Cell responses by immunosuppressive drugs. Transplantation 88(10):1161–1168. doi: 10.1097/TP.0b013e3181bca422 PubMedGoogle Scholar
  94. Elens L, Hesselink DA, van Schaik RHN, van Gelder T (2012) Pharmacogenetics in Kidney Transplantation Recent Updates and Potential Clinical Applications. Mol Diag Ther 16(6):331–345. doi: 10.1007/s40291-012-0012-5 Google Scholar
  95. Feichtiger H, Wieland E, Armstrong VW, Shipkova M (2010) The acyl glucuronide metabolite of mycophenolic acid induces tubulin polymerization in vitro. Clin Biochem 43(1–2):208–213. doi: 10.1016/j.clinbiochem.2009.08.023 PubMedGoogle Scholar
  96. Fernández A, Villafruela J, Amezquita Y et al (2009) Mycophenolate mofetil absorption quotient: interest to clinical practice. Transplant Proc 41(6):2317–2319. doi: 10.1016/j.transproceed.2009.06.108 PubMedGoogle Scholar
  97. Filler G, Buffo I (2007) Safety considerations with mycophenolate sodium. Expert Opin Drug Saf 6(4):445–449. doi: 10.1517/14740338.6.4.445 PubMedGoogle Scholar
  98. Fleming DH, Mathew BS, Prasanna S, Annapandian VM, John GT (2011) A possible simplification for the estimation of area under the curve (AUC) of enteric-coated mycophenolate sodium in renal transplant patients receiving tacrolimus. Ther Drug Monit 33(2):165–170. doi: 10.1097/FTD.0b013e31820c16f8 PubMedGoogle Scholar
  99. Fourtounas C, Dousdampanis P, Sakellaraki P et al (2010) Different immunosuppressive combinations on T-cell regulation in renal transplant recipients. Am J Nephrol 32(1):1–9. doi: 10.1159/000313940 PubMedGoogle Scholar
  100. Frimat L, Cassuto-Viguier E, Provôt F et al (2010) Long-Term impact of cyclosporin reduction with mmf treatment in chronic allograft dysfunction: Referenece study 3-year follow up. J Transplant. doi: 10.1155/2010/402750 PubMedCentralPubMedGoogle Scholar
  101. Fujiyama N, Miura M, Satoh S et al (2009) Influence of carboxylesterase 2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Xenobiotica 39(5):407–414. doi: 10.1080/00498250902807338 PubMedGoogle Scholar
  102. Fukuda T, Goebel J, Thogersen H et al (2011) Inosine Monophosphate Dehydrogenase (IMPDH) Activity as a Pharmacodynamic Biomarker of Mycophenolic Acid Effects in Pediatric Kidney Transplant Recipients. J Clinic Pharmacol 51(3):309–320. doi: 10.1177/0091270010368542 Google Scholar
  103. Galiwango PJ, Delgado DH, Yan R et al (2008) Mycophenolate mofetil dose reduction for gastrointestinal intolerance is associated with increased rates of rejection in heart transplant patients. J Heart Lung Transplant 27(1):72–77. doi: 10.1016/j.healun.2007.10.012 PubMedGoogle Scholar
  104. Garat A, Cardenas CL, Lionet A et al (2011) Inter-ethnic variability of three functional polymorphisms affecting the IMPDH2 gene. Mol Biol Rep 38(8):5185–5188. doi: 10.1007/s11033-010-0668-z PubMedGoogle Scholar
  105. Gaston RS, Kaplan B, Shah T et al (2009) Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the opticept trial. Am J Transplant 9(7):1607–1619. doi: 10.1111/j.1600-6143.2009.02668.x PubMedGoogle Scholar
  106. Geng F, Jiao Z, Dao YJ et al (2012) The association of the UGT1A8, SLCO1B3 and ABCC2/ABCG2 genetic polymorphisms with the pharmacokinetics of mycophenolic acid and its phenolic glucuronide metabolite in Chinese individuals. Clin Chim Acta 413(7–8):683–690. doi: 10.1016/j.cca.2011.12.003 PubMedGoogle Scholar
  107. Gensburger O, Picard N, Marquet P (2009) Effect of mycophenolate acyl-glucuronide on human recombinant type 2 inosine monophosphate dehydrogenase. Clin Chem 55(5):986–993. doi: 10.1373/clinchem.2008.113936 PubMedGoogle Scholar
  108. Gensburger O, Van Schaik RH, Picard N et al (2010) Polymorphisms in type I and II inosine monophosphate dehydrogenase genes and association with clinical outcome in patients on mycophenolate mofetil. Pharmacogenet Genomics 20(9):537–543. doi: 10.1097/FPC.0b013e32833d8cf5 PubMedCentralPubMedGoogle Scholar
  109. Germani G, Pleguezuelo M, Villamil F et al (2009) Azathioprine in liver transplantation: a reevaluation of its use and a comparison with mycophenolate mofetil. Am J Transplant 9(8):1725–1731. doi: 10.1111/j.1600-6143.2009.02705.x PubMedGoogle Scholar
  110. Ghafari A, Noori-Majelan N (2008) Anemia among long-term renal transplant recipients. Transplant Proc 40(1):186–188. doi: 10.1016/j.transproceed.2007.12.004 PubMedGoogle Scholar
  111. Ghio L, Ferraresso M, Zacchello G et al (2009) Longitudinal evaluation of mycophenolic acid pharmacokinetics in pediatric kidney transplant recipients. The role of post-transplant clinical and therapeutic variables. Clin Transplant 23(2):264–270. doi: 10.1111/j.1399-0012.2008.00932.x PubMedGoogle Scholar
  112. Glander P, Sommerer C, Arns W et al (2010) Pharmacokinetics and pharmacodynamics of intensified versus standard dosing of mycophenolate sodium in renal transplant patients. Clin J Am Soc Nephrol 5(3):503–511. doi: 10.2215/cjn.06050809 PubMedCentralPubMedGoogle Scholar
  113. Golshayan D, Pascual M, Vogt B (2009) Mycophenolic acid formulations in adult renal transplantation—update on efficacy and tolerability. Ther Clin Risk Manag 5(4):341–351PubMedCentralPubMedGoogle Scholar
  114. Gourishankar S, Houde I, Keown PA et al (2010) The clear study: a 5-day, 3-g loading dose of mycophenolate mofetil versus standard 2-g dosing in renal transplantation. Clin J Am Soc Nephrol 5(7):1282–1289. doi: 10.2215/CJN.09091209 PubMedCentralPubMedGoogle Scholar
  115. Grenda R, Prokurat S, Ciechanowicz A, Piatosa B, Kaliciński P (2009) Evaluation of the genetic background of standard-immunosuppressant-related toxicity in a cohort of 200 paediatric renal allograft recipients–a retrospective study. Ann Transplant 14(3):18–24PubMedGoogle Scholar
  116. Grinyó JM, Cruzado JM (2009) Mycophenolate mofetil and calcineurin-inhibitor reduction: recent progress. Am J Transplant 9(11):2447–2452. doi: 10.1111/j.1600-6143.2009.02812.x PubMedGoogle Scholar
  117. Grinyo J, Vanrenterghem Y, Nashan B et al (2008) Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transpl Int 21(9):879–891. doi: 10.1111/j.1432-2277.2008.00679.x PubMedGoogle Scholar
  118. Groetzner J, Kaczmarek I, Schirmer J et al (2008) Calcineurin inhibitor withdrawal and conversion to mycophenolate mofetil and steroids in cardiac transplant recipients with chronic renal failure: a word of caution. Clin Transplant 22(5):587–593. doi: 10.1111/j.1399-0012.2008.00828.x PubMedGoogle Scholar
  119. Gu Z, Chen B, Song Y et al (2012) Pharmacokinetics of free mycophenolic acid and limited sampling strategy for the estimation of area under the curve in liver transplant patients. Eur J Pharm Sci 47(4):636–641. doi: 10.1016/j.ejps.2012.08.001 PubMedGoogle Scholar
  120. Guba M, Rentsch M, Wimmer CD et al (2008) Calcineurin-inhibitor avoidance in elderly renal allograft recipients using ATG and basiliximab combined with mycophenolate mofetil. Transpl Int 21(7):637–645. doi: 10.1111/j.1432-2277.2008.00658.x PubMedGoogle Scholar
  121. Guillet BA, Simon NS, Purgus R et al (2010) Population pharmacokinetics analysis of mycophenolic acid in adult kidney transplant patients with chronic graft dysfunction. Ther Drug Monit 32(4):427–432. doi: 10.1097/FTD.0b013e3181e6b54d PubMedGoogle Scholar
  122. Hamour IM, Lyster HS, Burke MM, Rose ML, Banner NR (2007) Mycophenolate mofetil may allow cyclosporine and steroid sparing in de novo heart transplant patients. Transplantation 83(5):570–576. doi: 10.1097/01.tp.0000253883.52525.7c PubMedGoogle Scholar
  123. Hanvesakul R, Kubal C, Jham S et al (2008) Increased incidence of infections following the late introduction of mycophenolate mofetil in renal transplant recipients. Nephrol Dial Transplant 23(12):4049–4053. doi: 10.1093/ndt/gfn387 PubMedGoogle Scholar
  124. Hao C, Anwei M, Bing C et al (2008) Monitoring mycophenolic acid pharmacokinetic parameters in liver transplant recipients: prediction of occurrence of leukopenia. Liver Transpl 14(8):1165–1173. doi: 10.1002/lt.21600 PubMedGoogle Scholar
  125. Hauser G, Bubic I, Vlahovic-Palcevski V, Spanjol J, Stimac D (2013) Mycophenolate mofetil induced severe, life threatening lower gastrointestinal bleeding—case report. Nefrologia 33(1):146–147. doi: 10.3265/Nefrologia.pre2012.Jun.11512 PubMedGoogle Scholar
  126. Haywood S, Abecassis M, Levitsky J (2011) The renal benefit of mycophenolate mofetil after liver transplantation. Clin Transplant 25(1):E88–E95. doi: 10.1111/j.1399-0012.2010.01339.x PubMedGoogle Scholar
  127. Heidt S, Roelen DL, Eijsink C, van Kooten C, Claas FH, Mulder A (2008) Effects of immunosuppressive drugs on purified human B cells: evidence supporting the use of MMF and rapamycin. Transplantation 86(9):1292–1300. doi: 10.1097/TP.0b013e3181874a36 PubMedGoogle Scholar
  128. Heller T, van Gelder T, Budde K et al (2007) Plasma concentrations of mycophenolic acid acyl glucuronide are not associated with diarrhea in renal transplant recipients. Am J Transplant 7(7):1822–1831. doi: 10.1111/j.1600-6143.2007.01859.x PubMedGoogle Scholar
  129. Herlenius G, Felldin M, Nordén G et al (2010) Conversion from calcineurin inhibitor to either mycophenolate mofetil or sirolimus improves renal function in liver transplant recipients with chronic kidney disease: results of a prospective randomized trial. Transplant Proc 42(10):4441–4448. doi: 10.1016/j.transproceed.2010.09.113 PubMedGoogle Scholar
  130. Herrero JI, Benlloch S, Bernardos A et al (2007) Gastrointestinal complications in liver transplant recipients: MITOS study. Transplant Proc 39(7):2311–2313. doi: 10.1016/j.transproceed.2007.06.012 PubMedGoogle Scholar
  131. Holmes MV, Caplin B, Atkinson C et al (2009) Prospective monitoring of Epstein-Barr virus DNA in adult renal transplant recipients during the early posttransplant period: role of mycophenolate mofetil. Transplantation 87(6):852–856. doi: 10.1097/TP.0b013e318199f983 PubMedGoogle Scholar
  132. Iacob S, Cicinnati VR, Hilgard P et al (2007) Predictors of graft and patient survival in hepatitis C virus (HCV) recipients: model to predict HCV cirrhosis after liver transplantation. Transplantation 84(1):56–63. doi: 10.1097/01.tp.0000267916.36343.ca PubMedGoogle Scholar
  133. Irish W, Arcona S, Gifford RJ, Baillie GM, Cooper M (2010) Enteric-coated mycophenolate sodium versus mycophenolate mofetil maintenance immunosuppression: outcomes analysis of the United Network for Organ Sharing/Organ Procurement and Transplantation Network database. Transplantation 90(1):23–30. doi: 10.1097/TP.0b013e3181de9193 PubMedGoogle Scholar
  134. Jacobson PA, Schladt D, Oetting WS et al (2011) Genetic determinants of mycophenolate-related anemia and leukopenia after transplantation. Transplantation 91(3):309–316. doi: 10.1097/TP.0b013e318200e971 PubMedCentralPubMedGoogle Scholar
  135. Jakes AD, Roy A, Veerasamy M, Bhandari S (2013) Case report: crohn’s-like mycophenolate-induced colitis, a fallout in steroid-free regimens. Transplant Proc 45(2):842–844. doi: 10.1016/j.transproceed.2012.11.003 PubMedGoogle Scholar
  136. Jensen CJ, Shrivastava S, Taber DJ et al (2011) A critical analysis of racial difference with mycophenolate mofetil (MMF) dosing, clinical outcomes and adverse effects in pediatric kidney transplant patients. Clin Transplant 25(4):534–540. doi: 10.1111/j.1399-0012.2010.01304.x PubMedGoogle Scholar
  137. Johnson LA, Oetting WS, Basu S, Prausa S, Matas A, Jacobson PA (2008) Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. Eur J Clin Pharmacol 64(11):1047–1056. doi: 10.1007/s00228-008-0501-y PubMedGoogle Scholar
  138. Kaczmarek I, Bigdeli AK, Vogeser M et al (2008) Defining algorithms for efficient therapeutic drug monitoring of mycophenolate mofetil in heart transplant recipients. Ther Drug Monit 30(4):419–427. doi: 10.1097/FTD.0b013e31817d7064 PubMedGoogle Scholar
  139. Kagaya H, Miura M, Satoh S et al (2008) No pharmacokinetic interactions between mycophenolic acid and tacrolimus in renal transplant recipients. J Clin Pharm Ther 33(2):193–201. doi: 10.1111/j.1365-2710.2008.00906.x PubMedGoogle Scholar
  140. Kagaya H, Miura M, Saito M, Habuchi T, Satoh S (2010) Correlation of IMPDH1 gene polymorphisms with subclinical acute rejection and mycophenolic acid exposure parameters on Day 28 after renal transplantation. Basic Clin Pharmacol Toxicol 107(2):631–636. doi: 10.1111/j.1742-7843.2010.00542.x PubMedGoogle Scholar
  141. Kamar N, Rostaing L (2008) Negative impact of one-year anemia on long-term patient and graft survival in kidney transplant patients receiving calcineurin inhibitors and mycophenolate mofetil. Transplantation 85(8):1120–1124. doi: 10.1097/TP.0b013e31816a8a1f PubMedGoogle Scholar
  142. Kamar N, Glander P, Nolting J et al (2009a) Pharmacodynamic evaluation of the first dose of mycophenolate mofetil before kidney transplantation. Clin J Am Soc Nephrol 4(5):936–942. doi: 10.2215/CJN.04860908 PubMedCentralPubMedGoogle Scholar
  143. Kamar N, Marquet P, Gandia P et al (2009b) Mycophenolic acid 12-hour area under the curve in de novo liver transplant patients given mycophenolate mofetil at fixed versus concentration-controlled doses. Ther Drug Monit 31(4):451–456. doi: 10.1097/FTD.0b013e3181aa776e PubMedGoogle Scholar
  144. Kaplan B, Gaston RS, Meier-Kriesche HU, Bloom RD, Shaw LM (2010) Mycophenolic acid exposure in high- and low-weight renal transplant patients after dosing with mycophenolate mofetil in the Opticept trial. Ther Drug Monit 32(2):224–227. doi: 10.1097/FTD.0b013e3181d18baa PubMedGoogle Scholar
  145. Keshtkar-Jahromi M, Argani H, Rahnavardi M et al (2008) Antibody response to influenza immunization in kidney transplant recipients receiving either azathioprine or mycophenolate: a controlled trial. Am J Nephrol 28(4):654–660. doi: 10.1159/000119742 PubMedGoogle Scholar
  146. Khalkhali HR, Ghafari A, Hajizadeh E, Kazemnejad A (2010) Risk factors of long-term graft loss in renal transplant recipients with chronic allograft dysfunction. Exp Clin Transplant 8(4):277–282PubMedGoogle Scholar
  147. Kiberd BA, Wrobel M, Dandavino R, Keown P, Gourishankar S (2011) The role of proton pump inhibitors on early mycophenolic acid exposure in kidney transplantation: evidence from the CLEAR study. Ther Drug Monit 33(1):120–123. doi: 10.1097/FTD.0b013e318206a1b1 PubMedGoogle Scholar
  148. Knight SR, Morris PJ (2008) Does the evidence support the use of mycophenolate mofetil therapeutic drug monitoring in clinical practice? A systematic review. Transplantation 85(12):1675–1685. doi: 10.1097/TP.0b013e3181744199 PubMedGoogle Scholar
  149. Knight SR, Russell NK, Barcena L, Morris PJ (2009) Mycophenolate mofetil decreases acute rejection and may improve graft survival in renal transplant recipients when compared with azathioprine: a systematic review. Transplantation 87(6):785–794. doi: 10.1097/TP.0b013e3181952623 PubMedGoogle Scholar
  150. Kofler S, Deutsch MA, Bigdeli AK et al (2009a) Proton pump inhibitor co-medication reduces mycophenolate acid drug exposure in heart transplant recipients. J Heart Lung Transplant 28(6):605–611. doi: 10.1016/j.healun.2009.03.006 PubMedGoogle Scholar
  151. Kofler S, Shvets N, Bigdeli AK et al (2009b) Proton pump inhibitors reduce mycophenolate exposure in heart transplant recipients-a prospective case-controlled study. Am J Transplant 9(7):1650–1656. doi: 10.1111/j.1600-6143.2009.02682.x PubMedGoogle Scholar
  152. Kornberg A, Küpper B, Wilberg J et al (2007) Conversion to mycophenolate mofetil for modulating recurrent hepatitis C in liver transplant recipients. Transpl Infect Dis 9(4):295–301. doi: 10.1111/j.1399-3062.2007.00228.x PubMedGoogle Scholar
  153. Kornberg A, Küpper B, Thrum K et al (2011) Sustained renal response to mycophenolate mofetil and CNI taper promotes survival in liver transplant patients with CNI-related renal dysfunction. Dig Dis Sci 56(1):244–251. doi: 10.1007/s10620-010-1386-z PubMedGoogle Scholar
  154. Kurata Y, Kato M, Kuzuya T et al (2009) Pretransplant pharmacodynamic analysis of immunosuppressive agents using CFSE-based T-cell proliferation assay. Clin Pharmacol Ther 86(3):285–289. doi: 10.1038/clpt.2009.61 PubMedGoogle Scholar
  155. Kuypers DR, de Jonge H, Naesens M et al (2008) Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin Ther 30(4):673–683PubMedGoogle Scholar
  156. Kuypers DR, Ekberg H, Grinyo J et al (2009) Mycophenolic acid exposure after administration of mycophenolate mofetil in the presence and absence of cyclosporin in renal transplant recipients. Clin Pharmacokinet 48(5):329–341. doi: 10.2165/00003088-200948050-00005 PubMedGoogle Scholar
  157. Kuypers DR, Bammens B, Claes K, Evenepoel P, Vanrenterghem Y (2010) Maintenance immunosuppressive agents as risk factors for BK virus nephropathy: the need for true drug exposure measurements. Transplantation 89(10):1296–1297; author reply 1297–1298 doi: 10.1097/TP.0b013e3181d84c66
  158. Langone A, Doria C, Greenstein S et al (2013) Does reduction in mycophenolic acid dose compromise efficacy regardless of tacrolimus exposure level? An analysis of prospective data from the Mycophenolic Renal Transplant (MORE) Registry. Clin Transplant 27(1):15–24. doi: 10.1111/j.1399-0012.2012.01694.x PubMedCentralPubMedGoogle Scholar
  159. Le Meur Y, Buchler M, Thierry A et al (2007) Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 7(11):2496–2503. doi: 10.1111/j.1600-6143.2007.01983.x PubMedGoogle Scholar
  160. Le Meur Y, Thierry A, Glowacki F et al (2011) Early steroid withdrawal and optimization of mycophenolic acid exposure in kidney transplant recipients receiving mycophenolate mofetil. Transplantation 92(11):1244–1251. doi: 10.1097/TP.0b013e318234e134 PubMedGoogle Scholar
  161. Lee S, Shin M, Kim E et al (2010a) Mycophenolic acid trough level measurements and clinical outcomes in kidney transplantation recipients on a fixed dose (1.5 g/d) of mycophenolate mofetil in Korea. Transplant Proc 42(3):793–796. doi: 10.1016/j.transproceed.2010.02.061 PubMedGoogle Scholar
  162. Lee YH, Woo JH, Choi SJ, Ji JD, Song GG (2010b) Induction and maintenance therapy for lupus nephritis: a systematic review and meta-analysis. Lupus 19(6):703–710. doi: 10.1177/0961203309357763 PubMedGoogle Scholar
  163. Lee S, de Boer WB, Subramaniam K, Kumarasinghe MP (2013) Pointers and pitfalls of mycophenolate-associated colitis. J Clin Pathol 66(1):8–11. doi: 10.1136/jclinpath-2012-200888 PubMedGoogle Scholar
  164. Lim DG, Joe IY, Park YH et al (2007) Effect of immunosuppressants on the expansion and function of naturally occurring regulatory T cells. Transpl Immunol 18(2):94–100. doi: 10.1016/j.trim.2007.05.005 PubMedGoogle Scholar
  165. Luan FL, Schaubel DE, Zhang H et al (2008) Impact of immunosuppressive regimen on survival of kidney transplant recipients with hepatitis C. Transplantation 85(11):1601–1606. doi: 10.1097/TP.0b013e3181722f3a PubMedGoogle Scholar
  166. Machnicki G, Ricci JF, Brennan DC, Schnitzler MA (2008) Economic impact and long-term graft outcomes of mycophenolate mofetil dosage modifications following gastrointestinal complications in renal transplant recipients. Pharmacoecon 26(11):951–967Google Scholar
  167. Mak A, Cheak AA, Tan JY, Su HC, Ho RC, Lau CS (2009) Mycophenolate mofetil is as efficacious as, but safer than, cyclophosphamide in the treatment of proliferative lupus nephritis: a meta-analysis and meta-regression. Rheumatol 48(8):944–952. doi: 10.1093/rheumatology/kep120 Google Scholar
  168. Manitpisitkul W, Drachenberg C, Ramos E et al (2009) Maintenance immunosuppressive agents as risk factors for BK virus nephropathy: a case-control study. Transplantation 88(1):83–88. doi: 10.1097/TP.0b013e3181aa8d93 PubMedGoogle Scholar
  169. Manitpisitkul W, Wilson NS, Haririan A (2010) Immunosuppressive agents as risk factors for BK virus nephropathy: an overview and update. Expert Opin Drug Saf 9(6):959–969. doi: 10.1517/14740338.2010.495714 PubMedGoogle Scholar
  170. Maripuri S, Kasiske BL (2014) The role of mycophenolate mofetil in kidney transplantation revisited. Transplant Rev (Orlando) 28(1):26–31. doi: 10.1016/j.trre.2013.10.005 Google Scholar
  171. Michelon H, Konig J, Durrbach A et al (2010) SLCO1B1 genetic polymorphism influences mycophenolic acid tolerance in renal transplant recipients. Pharmacogenom 11(12):1703–1713. doi: 10.2217/pgs.10.132 Google Scholar
  172. Millán O, Rafael-Valdivia L, Torrademé E et al (2013) Intracellular IFN-γ and IL-2 expression monitoring as surrogate markers of the risk of acute rejection and personal drug response in de novo liver transplant recipients. Cytokine 61(2):556–564. doi: 10.1016/j.cyto.2012.10.026 PubMedGoogle Scholar
  173. Minmin S, Zhidong G, Hao C et al (2010) Correlation between pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients. J Clin Pharmacol 50(12):1388–1396. doi: 10.1177/0091270009359526 PubMedGoogle Scholar
  174. Mino Y, Naito T, Otsuka A et al (2009) Cyclosporine concentration-dependent increase in concentration ratio of mycophenolic acid acyl and phenol glucuronides to mycophenolic acid in stable kidney transplant recipients. Clin Biochem 42(7–8):595–601. doi: 10.1016/j.clinbiochem.2008.11.013 PubMedGoogle Scholar
  175. Mino Y, Naito T, Otsuka A et al (2011) Cyclosporine alters correlation between free and total mycophenolic acid in kidney transplant recipients in the initial phase. J Clin Pharm Ther 36(2):217–224. doi: 10.1111/j.1365-2710.2010.01168.x PubMedGoogle Scholar
  176. Miura M, Satoh S, Inoue K et al (2007) Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol 63(12):1161–1169. doi: 10.1007/s00228-007-0380-7 PubMedGoogle Scholar
  177. Miura M, Kagaya H, Satoh S et al (2008) Influence of drug transporters and UGT polymorphisms on pharmacokinetics of phenolic glucuronide metabolite of mycophenolic acid in Japanese renal transplant recipients. Ther Drug Monit 30(5):559–564. doi: 10.1097/FTD.0b013e3181838063 PubMedGoogle Scholar
  178. Molina BD, Leiro MG, Pulpón LA et al (2010) Incidence and risk factors for nonmelanoma skin cancer after heart transplantation. Transplant Proc 42(8):3001–3005. doi: 10.1016/j.transproceed.2010.08.003 PubMedGoogle Scholar
  179. Molinaro M, Chiarelli LR, Biancone L et al (2013) Monitoring of inosine monophosphate dehydrogenase activity and expression during the early period of mycophenolate mofetil therapy in de novo renal transplant patients. Drug Metab Pharmacokinet 28(2):109–117PubMedGoogle Scholar
  180. Moore J, Middleton L, Cockwell P et al (2009) Calcineurin inhibitor sparing with mycophenolate in kidney transplantation: a systematic review and meta-analysis. Transplantation 87(4):591–605. doi: 10.1097/TP.0b013e318195a421 PubMedGoogle Scholar
  181. Morath C, Reuter H, Simon V et al (2008) Effects of mycophenolic acid on human fibroblast proliferation, migration and adhesion in vitro and in vivo. Am J Transplant 8(9):1786–1797. doi: 10.1111/j.1600-6143.2008.02322.x PubMedGoogle Scholar
  182. Mourer JS, Ewe SH, Mallat MJ et al (2012a) Late calcineurin inhibitor withdrawal prevents progressive left ventricular diastolic dysfunction in renal transplant recipients. Transplantation 94(7):721–728. doi: 10.1097/TP.0b013e3182603297 PubMedGoogle Scholar
  183. Mourer JS, Hartigh J, van Zwet EW, Mallat MJ, Dubbeld J, de Fijter JW (2012b) Randomized trial comparing late concentration-controlled calcineurin inhibitor or mycophenolate mofetil withdrawal. Transplantation 93(9):887–894. doi: 10.1097/TP.0b013e31824ad60a PubMedGoogle Scholar
  184. Mudge DW, Atcheson BA, Taylor PJ, Pillans PI, Johnson DW (2004) Severe toxicity associated with a markedly elevated mycophenolic acid free fraction in a renal transplant recipient. Ther Drug Monitor 26(4):453–455Google Scholar
  185. Musuamba FT, Mourad M, Haufroid V et al (2012) A simultaneous d-optimal designed study for population pharmacokinetic analyses of mycophenolic Acid and tacrolimus early after renal transplantation. J Clin Pharmacol 52(12):1833–1843. doi: 10.1177/0091270011423661 PubMedGoogle Scholar
  186. Musuamba FT, Mourad M, Haufroid V et al (2013) Statistical tools for dose individualization of mycophenolic acid and tacrolimus co-administered during the first month after renal transplantation. Br J Clin Pharmacol 75(5):1277–1288. doi: 10.1111/bcp.12007 PubMedCentralPubMedGoogle Scholar
  187. Naesens M, de Loor H, Vanrenterghem Y, Kuypers DR (2007a) The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. Transplantation 84(3):362–373. doi: 10.1097/01.tp.0000276936.14041.6c PubMedGoogle Scholar
  188. Naesens M, Verbeke K, Vanrenterghem Y, Kuypers D (2007b) Effects of gastric emptying on oral mycophenolic acid pharmacokinetics in stable renal allograft recipients. Br J Clin Pharmacol 63(5):541–547. doi: 10.1111/j.1365-2125.2006.02813.x PubMedCentralPubMedGoogle Scholar
  189. Naito T, Mino Y, Otsuka A et al (2009) Impact of calcineurin inhibitors on urinary excretion of mycophenolic acid and its glucuronide in kidney transplant recipients. J Clin Pharmacol 49(6):710–718. doi: 10.1177/0091270009335003 PubMedGoogle Scholar
  190. Nankivell BJ, Wavamunno MD, Borrows RJ et al (2007) Mycophenolate mofetil is associated with altered expression of chronic renal transplant histology. Am J Transplant 7(2):366–376PubMedGoogle Scholar
  191. Nashan B, Saliba F, Durand F et al (2009) Pharmacokinetics, efficacy, and safety of mycophenolate mofetil in combination with standard-dose or reduced-dose tacrolimus in liver transplant recipients. Liver Transpl 15(2):136–147. doi: 10.1002/lt.21657 PubMedGoogle Scholar
  192. Neff RT, Hurst FP, Falta EM et al (2008) Progressive multifocal leukoencephalopathy and use of mycophenolate mofetil after kidney transplantation. Transplantation 86(10):1474–1478. doi: 10.1097/TP.0b013e31818b62c8 PubMedGoogle Scholar
  193. Ohmann EL, Burckart GJ, Brooks MM et al (2010) Genetic polymorphisms influence mycophenolate mofetil-related adverse events in pediatric heart transplant patients. J Heart Lung Transplant 29(5):509–516. doi: 10.1016/j.healun.2009.11.602 PubMedGoogle Scholar
  194. Opelz G, Döhler B, Study CT (2009) Influence of immunosuppressive regimens on graft survival and secondary outcomes after kidney transplantation. Transplantation 87(6):795–802. doi: 10.1097/TP.0b013e318199c1c7 PubMedGoogle Scholar
  195. Oremus M, Zeidler J, Ensom MH et al (2008) Utility of monitoring mycophenolic acid in solid organ transplant patients. Evid Rep Technol Assess (Full Rep) 164:1–131Google Scholar
  196. Orlando G, Baiocchi L, Cardillo A et al (2007) Switch to 1.5 grams MMF monotherapy for CNI-related toxicity in liver transplantation is safe and improves renal function, dyslipidemia, and hypertension. Liver Transpl 13(1):46–54. doi: 10.1002/lt.20926 PubMedGoogle Scholar
  197. Pape L, Ahlenstiel T (2009) Is EC-MPS effective in reducing GI toxicity of MPA? At what price? Pediatr Transplant 13(6):659–660. doi: 10.1111/j.1399-3046.2009.01207.x PubMedGoogle Scholar
  198. Pape L, Ahlenstiel T, Kreuzer M, Ehrich JH (2008) Improved gastrointestinal symptom burden after conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in kidney transplanted children. Pediatr Transplant 12(6):640–642PubMedGoogle Scholar
  199. Parant F, Rivet C, Boulieu R et al (2009) Age-related variability of mycophenolate mofetil exposure in stable pediatric liver transplant recipients and influences of donor characteristics. Ther Drug Monit 31(6):727–733. doi: 10.1097/FTD.0b013e3181c01d07 PubMedGoogle Scholar
  200. Parfitt JR, Jayakumar S, Driman DK (2008) Mycophenolate mofetil-related gastrointestinal mucosal injury: variable injury patterns, including graft-versus-host disease-like changes. Am J Surg Pathol 32(9):1367–1372PubMedGoogle Scholar
  201. Patel CG, Ogasawara K, Akhlaghi F (2013) Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus. Xenobiotica 43(3):229–235. doi: 10.3109/00498254.2012.713531 PubMedGoogle Scholar
  202. Picard N (2013) The pharmacokinetic interaction between mycophenolic acid and cyclosporine revisited: a commentary on “Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus”. Xenobiotica 43(9):836–838. doi: 10.3109/00498254.2012.761742 PubMedGoogle Scholar
  203. Picard N, Marquet P (2011) The influence of pharmacogenetics and cofactors on clinical outcomes in kidney transplantation. Expert Opin Drug Metab Toxicol 7(6):731–743. doi: 10.1517/17425255.2011.570260 PubMedCentralPubMedGoogle Scholar
  204. Picard N, Yee SW, Woillard JB et al (2010) The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther 87(1):100–108. doi: 10.1038/clpt.2009.205 PubMedCentralPubMedGoogle Scholar
  205. Prausa SE, Fukuda T, Maseck D et al (2009) UGT genotype may contribute to adverse events following medication with mycophenolate mofetil in pediatric kidney transplant recipients. Clin Pharmacol Ther 85(5):495–500. doi: 10.1038/clpt.2009.3 PubMedGoogle Scholar
  206. Premaud A, Rousseau A, Le Meur Y et al (2010) Feasibility of, and critical paths for mycophenolate mofetil Bayesian dose adjustment: pharmacological re-appraisal of a concentration-controlled versus fixed-dose trial in renal transplant recipients. Pharmacol Res 61(2):167–174. doi: 10.1016/j.phrs.2009.09.006 PubMedGoogle Scholar
  207. Prémaud A, Rousseau A, Johnson G et al (2011) Inhibition of T-cell activation and proliferation by mycophenolic acid in patients awaiting liver transplantation: PK/PD relationships. Pharmacol Res 63(5):432–438. doi: 10.1016/j.phrs.2011.01.005 PubMedGoogle Scholar
  208. Rath T, Küpper M (2009) Comparison of inosine-monophosphate-dehydrogenase activity in patients with enteric-coated mycophenolate sodium or mycophenolate mofetil after renal transplantation. Transplant Proc 41(6):2524–2528. doi: 10.1016/j.transproceed.2009.06.124 PubMedGoogle Scholar
  209. Reine PA, Vethe NT, Kongsgaard UE et al (2013) Mycophenolate pharmacokinetics and inosine monophosphate dehydrogenase activity in liver transplant recipients with an emphasis on therapeutic drug monitoring. Scand J Clin Lab Invest 73(2):117–124. doi: 10.3109/00365513.2012.745947 PubMedGoogle Scholar
  210. Remuzzi G, Cravedi P, Costantini M et al (2007) Mycophenolate mofetil versus azathioprine for prevention of chronic allograft dysfunction in renal transplantation: the MYSS follow-up randomized, controlled clinical trial. J Am Soc Nephrol 18(6):1973–1985. doi: 10.1681/ASN.2006101153 PubMedGoogle Scholar
  211. Rerolle JP, Szelag JC, Le Meur Y (2007) Unexpected rate of severe leucopenia with the association of mycophenolate mofetil and valganciclovir in kidney transplant recipients. Nephrol Dial Transplant 22(2):671–672. doi: 10.1093/ndt/gfl539 PubMedGoogle Scholar
  212. Reyes H, Hernandez AM, Valverde S et al (2010) Efficacy and safety of conversion of mycophenolate mofetil to enteric-coated mycophenolate sodium in Mexican renal transplant children. Pediatr Transplant 14(6):746–752. doi: 10.1111/j.1399-3046.2010.01326.x PubMedGoogle Scholar
  213. Sabbatini M, Capone D, Gallo R et al (2009) EC-MPS permits lower gastrointestinal symptom burden despite higher MPA exposure in patients with severe MMF-related gastrointestinal side-effects. Fundam Clin Pharmacol 23(5):617–624. doi: 10.1111/j.1472-8206.2009.00711.x PubMedGoogle Scholar
  214. Saint-Marcoux F, Vandierdonck S, Premaud A, Debord J, Rousseau A, Marquet P (2011) Large scale analysis of routine dose adjustments of mycophenolate mofetil based on global exposure in renal transplant patients. Ther Drug Monit 33(3):285–294PubMedCentralPubMedGoogle Scholar
  215. Salifu MO, Jindal RM (2009) Mycophenolate mofetil dosage modifications following gastrointestinal complications in renal transplant patients. Expert Rev Pharmacoecon Outcomes Res 9(1):29–32. doi: 10.1586/14737167.9.1.29 PubMedGoogle Scholar
  216. Sánchez-Fructuoso AI, de la Higuera MA, Giorgi M et al (2009a) Inadequate mycophenolic acid exposure and acute rejection in kidney transplantation. Transplant Proc 41(6):2104–2105. doi: 10.1016/j.transproceed.2009.05.015 PubMedGoogle Scholar
  217. Sánchez-Fructuoso AI, Maestro ML, Calvo N et al (2009b) The prevalence of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients. Transplant Proc 41(6):2313–2316. doi: 10.1016/j.transproceed.2009.06.038 PubMedGoogle Scholar
  218. Sankatsing SU, Prins JM, Yong SL et al (2008) Mycophenolate mofetil inhibits T-cell proliferation in kidney transplant recipients without lowering intracellular dGTP and GTP. Transpl Int 21(11):1066–1071. doi: 10.1111/j.1432-2277.2008.00739.x PubMedGoogle Scholar
  219. Sanquer S, Maison P, Tomkiewicz C et al (2008) Expression of inosine monophosphate dehydrogenase type I and type II after mycophenolate mofetil treatment: a 2-year follow-up in kidney transplantation. Clin Pharmacol Ther 83(2):328–335. doi: 10.1038/sj.clpt.6100300 PubMedGoogle Scholar
  220. Selbst MK, Ahrens WA, Robert ME, Friedman A, Proctor DD, Jain D (2009) Spectrum of histologic changes in colonic biopsies in patients treated with mycophenolate mofetil. Mod Pathol 22(6):737–743. doi: 10.1038/modpathol.2009.44 PubMedGoogle Scholar
  221. Shah T, Tellez-Corrales E, Yang JW et al (2011) The pharmacokinetics of enteric-coated mycophenolate sodium and its gastrointestinal side effects in de novo renal transplant recipients of Hispanic ethnicity. Ther Drug Monit 33(1):45–49. doi: 10.1097/FTD.0b013e31820271c3 PubMedGoogle Scholar
  222. Shin M, Moon JI, Kim JM et al (2010) Pharmacokinetics of mycophenolic acid in living donor liver transplantation. Transplant Proc 42(3):846–853. doi: 10.1016/j.transproceed.2010.03.004 PubMedGoogle Scholar
  223. Shui H, Gao P, Si X, Ding G (2010) Mycophenolic acid inhibits albumin-induced MCP-1 expression in renal tubular epithelial cells through the p38 MAPK pathway. Mol Biol Rep 37(4):1749–1754. doi: 10.1007/s11033-009-9599-y PubMedGoogle Scholar
  224. Sobiak J, Kaminska J, Glyda M, Duda G, Chrzanowska M (2013) Effect of mycophenolate mofetil on hematological side effects incidence in renal transplant recipients. Clin Transpl 27(4):E407–E414. doi: 10.1111/ctr.12164 Google Scholar
  225. Sollinger HW, Sundberg AK, Leverson G, Voss BJ, Pirsch JD (2010) Mycophenolate mofetil versus enteric-coated mycophenolate sodium: a large, single-center comparison of dose adjustments and outcomes in kidney transplant recipients. Transplantation 89(4):446–451. doi: 10.1097/TP.0b013e3181ca860d PubMedGoogle Scholar
  226. Sombogaard F, Peeters AM, Baan CC et al (2009a) Inosine monophosphate dehydrogenase messenger RNA expression is correlated to clinical outcomes in mycophenolate mofetil-treated kidney transplant patients, whereas inosine monophosphate dehydrogenase activity is not. Ther Drug Monit 31(5):549–556. doi: 10.1097/FTD.0b013e3181b7a9d0 PubMedGoogle Scholar
  227. Sombogaard F, van Schaik RH, Mathot RA et al (2009b) Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757T>C polymorphism. Pharmacogenet Genomics 19(8):626–634. doi: 10.1097/FPC.0b013e32832f5f1b PubMedGoogle Scholar
  228. Sommerer C, Müller-Krebs S, Schaier M et al (2010) Pharmacokinetic and pharmacodynamic analysis of enteric-coated mycophenolate sodium: limited sampling strategies and clinical outcome in renal transplant patients. Br J Clin Pharmacol 69(4):346–357. doi: 10.1111/j.1365-2125.2009.03612.x PubMedCentralPubMedGoogle Scholar
  229. Sommerer C, Glander P, Arns W et al (2011) Safety and Efficacy of Intensified Versus Standard Dosing Regimens of Enteric-Coated Mycophenolate Sodium in De Novo Renal Transplant Patients. Transplantation 91(7):779–785. doi: 10.1097/TP.0b013e31820d3b9b PubMedGoogle Scholar
  230. Staatz C, Tett S (2007) Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 46(1):13–58PubMedGoogle Scholar
  231. Staatz CE, Tett SE (2011) Maximum A Posteriori Bayesian Estimation of Mycophenolic Acid Area Under the Concentration-Time Curve: is This Clinically Useful for Dosage Prediction Yet? Clin Pharmacokinet 50(12):759–772PubMedGoogle Scholar
  232. Stingl J, Bartels H, Viviani R, Lehmann M, Brockmoller J (2014) Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: a quantitative systematic review. Pharmacol Ther 141(1):92–116. doi: 10.1016/j.pharmthera.2013.09.002 PubMedGoogle Scholar
  233. Stracke S, Shipkova M, Mayer J et al (2012) Pharmacokinetics and pharmacodynamics of mycophenolate sodium (EC-MPS) co-administered with cyclosporine in the early-phase post-kidney transplantation. Clin Transplant 26(1):57–66. doi: 10.1111/j.1399-0012.2011.01403.x PubMedGoogle Scholar
  234. Takemoto SK, Pinsky BW, Schnitzler MA et al (2007) A retrospective analysis of immunosuppression compliance, dose reduction and discontinuation in kidney transplant recipients. Am J Transplant 7(12):2704–2711. doi: 10.1111/j.1600-6143.2007.01966.x PubMedGoogle Scholar
  235. Tedesco-Silva H, Felipe CR, Park SI et al (2010) Randomized crossover study to assess the inter- and intrasubject variability of morning mycophenolic acid concentrations from enteric-coated mycophenolate sodium and mycophenolate mofetil in stable renal transplant recipients. Clin Transplant 24(4):E116–E123. doi: 10.1111/j.1399-0012.2009.01183.x PubMedGoogle Scholar
  236. Teperman L, Moonka D, Sebastian A et al (2013) Calcineurin inhibitor-free mycophenolate mofetil/sirolimus maintenance in liver transplantation: the randomized spare-the-nephron trial. Liver Transpl 19(7):675–689. doi: 10.1002/lt.23658 PubMedGoogle Scholar
  237. Tett SE, Saint-Marcoux F, Staatz CE et al (2011) Mycophenolate, clinical pharmacokinetics, formulations, and methods for assessing drug exposure. Transplant Rev (Orlando) 25(2):47–57. doi: 10.1016/j.trre.2010.06.001 Google Scholar
  238. Ting LSL, Benoit-Biancamano MO, Bernard O, Riggs KW, Guillemette C, Ensom MHH (2010) Pharmacogenetic impact of UDP-glucuronosyltransferase metabolic pathway and multidrug resistance-associated protein 2 transport pathway on mycophenolic acid in thoracic transplant recipients: an exploratory study. Pharmacother 30(11):1097–1108Google Scholar
  239. Tornatore KM, Sudchada P, Dole K et al (2011) Mycophenolic acid pharmacokinetics during maintenance immunosuppression in African American and caucasian renal transplant recipients. J Clin Pharmacol 51(8):1213–1222. doi: 10.1177/0091270010382909 PubMedGoogle Scholar
  240. Tornatore KM, Sudchada P, Attwood K et al (2013) Race and drug formulation influence on mycophenolic acid pharmacokinetics in stable renal transplant recipients. J Clin Pharmacol 53(3):285–293. doi: 10.1177/0091270012447814 PubMedGoogle Scholar
  241. van Agteren M, Armstrong VW, van Schaik RH et al (2008) AcylMPAG plasma concentrations and mycophenolic acid-related side effects in patients undergoing renal transplantation are not related to the UGT2B7-840G>A gene polymorphism. Ther Drug Monit 30(4):439–444. doi: 10.1097/FTD.0b013e318180c709 PubMedGoogle Scholar
  242. van Gelder T (2011) Therapeutic drug monitoring for mycophenolic acid is value for (little) money. Clin Pharmacol Ther 90(2):203–204. doi: 10.1038/clpt.2011.96 PubMedGoogle Scholar
  243. van Gelder T, Hilbrands LB, Vanrenterghem Y et al (1999) A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation 68(2):261–266PubMedGoogle Scholar
  244. van Gelder T, Silva HT, de Fijter JW et al (2008) Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation 86(8):1043–1051. doi: 10.1097/TP.0b013e318186f98a PubMedGoogle Scholar
  245. van Gelder T, Tedesco Silva H, de Fijter JW et al (2010) Renal transplant patients at high risk of acute rejection benefit from adequate exposure to mycophenolic acid. Transplantation 89(5):595–599. doi: 10.1097/TP.0b013e3181ca7d84 PubMedGoogle Scholar
  246. van Gelder T, Silva HT, de Fijter H et al (2011) How delayed graft function impacts exposure to mycophenolic acid in patients after renal transplantation. Ther Drug Monit 33(2):155–164. doi: 10.1097/FTD.0b013e31820c0a96 PubMedGoogle Scholar
  247. van Schaik RH, van Agteren M, de Fijter JW et al (2009) UGT1A9 -275T>A/-2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin Pharmacol Ther 86(3):319–327. doi: 10.1038/clpt.2009.83 PubMedGoogle Scholar
  248. Vanhove T, Kuypers D, Claes KJ et al (2013) Reasons for dose reduction of mycophenolate mofetil during the first year after renal transplantation and its impact on graft outcome. Transpl Int 26(8):813–821. doi: 10.1111/tri.12133 PubMedGoogle Scholar
  249. Vethe NT, Bremer S, Rootwelt H, Bergan S (2008) Pharmacodynamics of mycophenolic acid in CD4(+) Cells: a single-dose study of IMPDH and purine nucleotide responses in healthy individuals. TherDrug Monit 30(6):647–655. doi: 10.1097/FTD.0b013e31818955c3 Google Scholar
  250. Wang J, Yang JW, Zeevi A et al (2008) IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin Pharmacol Ther 83(5):711–717. doi: 10.1038/sj.clpt.6100347 PubMedGoogle Scholar
  251. Woillard JB, Rerolle JP, Picard N et al (2010) Risk of diarrhoea in a long-term cohort of renal transplant patients given mycophenolate mofetil: the significant role of the UGT1A8 2 variant allele. Br J Clin Pharmacol 69(6):675–683. doi: 10.1111/j.1365-2125.2010.03625.x PubMedCentralPubMedGoogle Scholar
  252. Xia ZW, Jun CY, Hao C, Bing C, Min SM, Jie XJ (2010) The occurrence of diarrhea not related to the pharmacokinetics of MPA and its metabolites in liver transplant patients. Eur J Clin Pharmacol 66(7):671–679. doi: 10.1007/s00228-010-0833-2 PubMedGoogle Scholar
  253. Yang JW, Lee PH, Hutchinson IV, Pravica V, Shah T, Min DI (2009) Genetic Polymorphisms of MRP2 and UGT2B7 and Gastrointestinal Symptoms in Renal Transplant Recipients Taking Mycophenolic Acid. Ther Drug Monit 31(5):542–548PubMedGoogle Scholar
  254. Zhao W, Fakhoury M, Deschenes G et al (2010) Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol 50(11):1280–1291. doi: 10.1177/0091270009357429 PubMedGoogle Scholar
  255. Zhu B, Chen N, Lin Y et al (2007) Mycophenolate mofetil in induction and maintenance therapy of severe lupus nephritis: a meta-analysis of randomized controlled trials. Nephrol Dial Transplant 22(7):1933–1942. doi: 10.1093/ndt/gfm066 PubMedGoogle Scholar
  256. Zuk DM, Pearson GJ (2009) Monitoring of mycophenolate mofetil in orthotopic heart transplant recipients–a systematic review. Transplant Rev (Orlando) 23(3):171–177. doi: 10.1016/j.trre.2009.02.002 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of PharmacyThe University of QueenslandBrisbaneAustralia

Personalised recommendations