Archives of Toxicology

, Volume 88, Issue 7, pp 1327–1350 | Cite as

Canonical and new generation anticancer drugs also target energy metabolism

  • Sara Rodríguez-EnríquezEmail author
  • Juan Carlos Gallardo-Pérez
  • Ileana Hernández-Reséndiz
  • Alvaro Marín-Hernández
  • Silvia C. Pacheco-Velázquez
  • Sayra Y. López-Ramírez
  • Franklin D. Rumjanek
  • Rafael Moreno-SánchezEmail author
Review Article


Significant efforts have been made for the development of new anticancer drugs (protein kinase or proteasome inhibitors, monoclonal humanized antibodies) with presumably low or negligible side effects and high specificity. However, an in-depth analysis of the side effects of several currently used canonical (platin-based drugs, taxanes, anthracyclines, etoposides, antimetabolites) and new generation anticancer drugs as the first line of clinical treatment reveals significant perturbation of glycolysis and oxidative phosphorylation. Canonical and new generation drug side effects include decreased (1) intracellular ATP levels, (2) glycolytic/mitochondrial enzyme/transporter activities and/or (3) mitochondrial electrical membrane potentials. Furthermore, the anti-proliferative effects of these drugs are markedly attenuated in tumor rho (0) cells, in which functional mitochondria are absent; in addition, several anticancer drugs directly interact with isolated mitochondria affecting their functions. Therefore, several anticancer drugs also target the energy metabolism, and hence, the documented inhibitory effect of anticancer drugs on cancer growth should also be linked to the blocking of ATP supply pathways. These often overlooked effects of canonical and new generation anticancer drugs emphasize the role of energy metabolism in maintaining cancer cells viable and its targeting as a complementary and successful strategy for cancer treatment.


Energy metabolism Humanized monoclonal antibodies Metabolic therapy Protein kinase inhibitors Tumor cells 



Electron transport chain


Oxidative phosphorylation


2-Oxoglutarate dehydrogenase complex



The present work was partially supported by CONACyT-México Grant Nos. 107183 to SRE, 180322 to AMH and 80534 and 123636 to RMS; and Instituto de Ciencia y Tecnología del Distrito Federal Grant No. PICS08.

Conflict of interest

The authors declare there is no conflict of interest.


  1. Abdel-aleem S, el-Merzabani MM, Sayed-Ahmed M, Taylor DA, Lowe JE (1997) Acute and chronic effects of adriamycin on fatty acid oxidation in isolated cardiac myocytes. J Mol Cell Cardiol 29:789–797. doi: 10.1006/jmcc.1996.0323 PubMedGoogle Scholar
  2. Aggarwal SK (1993) A histochemical approach to the mechanism of action of cisplatin and its analogues. J Histochem Cytochem 41:1053–1073. doi: 10.1177/41.7.8515048 PubMedGoogle Scholar
  3. Alas S, Ng CP, Bonavida B (2002) Rituximab modifies the cisplatin-mitochondrial signaling pathway, resulting in apoptosis in cisplatin-resistant non-Hodgkin’s lymphoma. Clin Cancer Res 8:836–845.
  4. Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, Tempel W, Dimov S, Shen M, Jha A et al (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8:839–847. doi: 10.1038/nchembio.1060 PubMedCentralPubMedGoogle Scholar
  5. André N, Braguer D, Brasseur G, Gonçalves A, Lemesle-Meunier D, Guise S, Jordan MA, Briand C (2000) Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells. Cancer Res 60:5349–5353.
  6. Angelucci A, Valentini A, Millimaggi D, Gravina GL, Miano R, Dolo V, Vicentini C, Bologna M, Federici G, Bernardini S (2006) Valproic acid induces apoptosis in prostate carcinoma cell lines by activation of multiple death pathways. Anticancer Drugs 17:1141–1150. doi: 10.1097/01.cad.0000236302.89843.fc PubMedGoogle Scholar
  7. Arce C, Pérez-Plasencia C, González-Fierro A, de la Cruz-Hernández E, Revilla-Vázquez A, Chávez-Blanco A, Trejo-Becerril C, Pérez-Cárdenas E, Taja-Chayeb L, Bargallo E et al (2006) A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer. PLoS One 1:e98. doi: 10.1371/journal.pone.0000098 PubMedCentralPubMedGoogle Scholar
  8. Ardizzoni A, Addamo GF, Baldini E, Borghini U, Portalone L, De Marinis F, Lionetto R, Conte PF, Bruzzi P, Pennucci MC et al (1995) Mitomycin-ifosfamide-cisplatinum (MIP) vs MIP-interferon vs cisplatinum-carboplatin in metastatic non-small-cell lung cancer: a FONICAP randomised phase II study. Ital Lung Cancer Task Force Br J Cancer 71:115–119. doi: 10.1038/bjc.1995.23 Google Scholar
  9. Arora A, Scholar EM (2005) Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther 315:971–979. doi: 10.1124/jpet.105.084145 PubMedGoogle Scholar
  10. Bai S, Nasse MW, Wang SH, Datta J, Kutay H, Yadav A, Nuovo G, Kumar P, Ghoshal K (2009) MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem 284(46):32015–32027. doi: 10.1074/jbc.M109.016774 PubMedCentralPubMedGoogle Scholar
  11. Baldo BA (2013) Adverse events to monoclonal antibodies used for cancer therapy: focus on hypersensitivity responses. Oncoimmunology 2:e26333. doi: 10.4161/onci.26333 PubMedCentralPubMedGoogle Scholar
  12. Barbone D, Cheung P, Battula S, Busacca S, Gray SG, Longley DB, Bueno R, Sugarbaker DJ, Fennell DA, Broaddus VC (2012) Vorinostat eliminates multicellular resistance of mesothelioma 3D spheroids via restoration of Noxa expression. PLoS One 7:e52753. doi: 10.1371/journal.pone.0052753 PubMedCentralPubMedGoogle Scholar
  13. Barnes K, McIntosh E, Whetton AD, Daley GQ, Bentley J, Baldwin SA (2005) Chronic myeloid leukaemia: an investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation. Oncogene 24:3257–3267. doi: 10.1038/sj.onc.1208461 PubMedGoogle Scholar
  14. Bilbro J, Mart M, Kyprianou M (2013) Therapeutic value of quinazoline-based compounds in prostate cancer. Anticancer Res 33:4695–4700PubMedGoogle Scholar
  15. Blackburn C, Gigstad KM, Hales P, Garcia K, Jones M, Bruzzese FJ, Barrett C, Liu JX, Soucy TA, Sappal DS et al (2010) Characterization of a new series of non-covalent proteasome inhibitors with exquisite potency and selectivity for the 20S beta5-subunit. Biochem J 430:461–476. doi: 10.1042/BJ20100383 PubMedCentralPubMedGoogle Scholar
  16. Blaheta RA, Michaelis M, Driever PH, Cinatl J Jr (2005) Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies. Med Res Rev 25:383–397. doi: 10.1002/med.20027 PubMedGoogle Scholar
  17. Blandino G, Valerio M, Cioce M, Mori F, Casadei L, Pulito C, Sacconi A, Biagioni F, Cortese G, Galanti S et al (2012) Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun 29:865. doi: 10.1038/ncomms1859 Google Scholar
  18. Boren J, Cascante M, Marin S, Comín-Anduix B, Centelles JJ, Lim S, Bassilian S, Ahmed S, Lee WN, Boros LG (2001) Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. J Biol Chem 276:37747–37753. doi: 10.1074/jbc.M105796200 PubMedGoogle Scholar
  19. Boros LG, Lee WN, Cascante M (2002) Imatinib and chronic-phase leukemias. N Engl J Med 347:67–68. doi: 10.1056/NEJM200207043470116 PubMedGoogle Scholar
  20. Braiteh F, Soriano AO, Garcia-Manero G, Hong D, Johnson MM, Silva LDP, Yang H, Alexander S, Wolff J, Kurzrock R (2008) Phase I study of epigenetic modulation with 5-azacytidine and valproic acid in patients with advanced cancers. Clin Cancer Res 14:6296–62301. doi: 10.1158/1078-0432.CCR-08-1247 PubMedCentralPubMedGoogle Scholar
  21. Brower JV, Lim CH, Han C, Hankowski KE, Hamazaki T, Terada N (2009) Differential CpG island methylation of murine adenine nucleotide translocase genes. Biochim Biophys Acta 1789:198–203. doi: 10.1016/j.bbagrm.2008.12.005 PubMedCentralPubMedGoogle Scholar
  22. Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhäusl W, Fürnsinn C (2004) Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53:1052–1059. doi: 10.2337/diabetes.53.4.1052 PubMedGoogle Scholar
  23. Bugger H, Guzman C, Zechner C, Palmeri M, Russell KS, Russell RR 3rd (2011) Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation. Cancer Chemother Pharmacol 67:1381–1388. doi: 10.1007/s00280-010-1441-7 PubMedCentralPubMedGoogle Scholar
  24. Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F, Viollet B, Thompson CB (2007) Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 67:6745–6752. doi: 10.1158/0008-5472.CAN-06-4447 PubMedGoogle Scholar
  25. Byczkowski JZ, Zychlinski L, Porter CW (1982) Potentiation of the antimitochondrial and antiproliferative effects of bis(guanylhydrazones) by phenethylbiguanide. Cancer Res 42:3592–3595.
  26. Cairns RA, Papandreou I, Sutphin PD, Denko NC (2007) Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci USA 104:9445–9450. doi: 10.1073/pnas.0611662104 PubMedCentralPubMedGoogle Scholar
  27. Candi E, Agostini M, Melino M, Bernassola F (2014) How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat doi: 10.1002/humu.22523
  28. Carvalho C, Correia S, Santos MS, Seiça R, Oliveira CR, Moreira PI (2008) Metformin promotes isolated rat liver mitochondria impairment. Mol Cell Biochem 308:75–83. doi: 10.1007/s11010-007-9614-3 PubMedGoogle Scholar
  29. Cecconi D, Donadelli M, Dalla Pozza E, Rinalducci S, Zolla L, Scupoli MT, Righetti PG, Scarpa A, Palmieri M (2009) Synergistic effect of trichostatin A and 5-aza-2′-deoxycytidine on growth inhibition of pancreatic endocrine tumour cell lines: a proteomic study. Proteomics 9:1952–1966. doi: 10.1002/pmic.200701089 PubMedGoogle Scholar
  30. Chan A (2007) A review of the use of trastuzumab (Herceptin) plus vinorelbine in metastatic breast cancer. Ann Oncol 18:1152–1158. doi: 10.1093/annonc/mdl476 PubMedGoogle Scholar
  31. Chan CL, Wu Z, Ciardelli T, Eastman A, Bresnick E (1993) Kinetic and DNA-binding properties of recombinant human O 6-methylguanine-DNA methyltransferase. Arch Biochem Biophys 300:193–200. doi: 10.1006/abbi.1993.1027 PubMedGoogle Scholar
  32. Chen Z, Li Y, Zhang H, Huang P, Luthra R (2010) Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29:4362–4368. doi: 10.1038/onc.2010.193 PubMedGoogle Scholar
  33. Cherepanova NA, Minero AS, Rakhimova AR, Gromova ES (2011) Mechanism of CpG DNA methyltransferases M. SssI and Dnmt3a studied by DNA containing 2-aminopurine. Nucleosides, Nucleotides Nucleic Acids 30:619–631. doi: 10.1080/15257770.2011.583973 PubMedGoogle Scholar
  34. Chesney J, Telang S (2013) Regulation of glycolytic and mitochondrial metabolism by ras. Curr Pharm Biotechnol 14:251–260. doi: 10.2174/1389201011314030002 PubMedGoogle Scholar
  35. Cheung KJ, Gabrielson E, Werb Z, Ewald A (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155:1639–1651. doi: 10.1016/j.cell.2013.11.029 PubMedGoogle Scholar
  36. Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, Woulfe K, Pravda E, Cassiola F, Desai J et al (2007) Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370:2011–2019. doi: 10.1016/S0140-6736(07)61865-0 PubMedCentralPubMedGoogle Scholar
  37. Clark SJ, Melki J (2002) DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene 21:5380–5387. doi: 10.1038/sj.onc.1205598 PubMedGoogle Scholar
  38. Coronel J, Cetina L, Pacheco I, Trejo-Becerril C, González-Fierro A, de la Cruz-Hernandez E, Perez-Cardenas E, Taja-Chayeb L, Arias-Bofill D, Candelaria M et al (2011) A double-blind, placebo-controlled, randomized phase III trial of chemotherapy plus epigenetic therapy with hydralazine valproate for advanced cervical cancer. Preliminary results. Med Oncol 28:S540–S546. doi: 10.1007/s12032-010-9700-3 PubMedGoogle Scholar
  39. Cuéllar A, Escamilla E, Ramírez J, Chávez E (1984) Adriamycin as an inhibitor of 11 beta-hydroxylase activity in adrenal cortex mitochondria. Arch Biochem Biophys 235:538–543. doi: 10.1016/0003-9861(84)90227-3 PubMedGoogle Scholar
  40. Cummings J, Spanswick VJ, Smyth JF (1995) Re-evaluation of the molecular pharmacology of mitomycin C. Eur J Cancer 31A:1928–1933. doi: 10.1016/0959-8049(95)00364-9 PubMedGoogle Scholar
  41. Custódio JB, Cardoso CM, Almeida LM (2002) Thiol protecting agents and antioxidants inhibit the mitochondrial permeability transition promoted by etoposide: implications in the prevention of etoposide-induced apoptosis. Chem Biol Interact 140:169–184. doi: 10.1016/S0009-2797(2)00020-0 PubMedGoogle Scholar
  42. Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15:6479–6483PubMedCentralPubMedGoogle Scholar
  43. Dao T, Yan S, Veomett N, Pankov D, Zhou L, Korontsvit T, Scott A, Whitten J, Maslak P, Casey E, et al (2013) Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med 5:176ra33. doi: 10.1126/scitranslmed.3005661
  44. den Hollander P, Savage MI, Brown PH (2013) Targeted Therapy for Breast Cancer Prevention. Front Oncol 3:250. doi: 10.1158/1078-0432.CCR-09-0889 Google Scholar
  45. Ding Y, Liu Z, Desai S, Zhao Y, Liu H, Pannell LK, Yi H, Wright ER, Owen LB, Dean-Colomb W et al (2012) Receptor tyrosine kinase ErbB2 translocates into mitochondria and regulates cellular metabolism. Nat Commun 3:1271. doi: 10.1038/ncomms2236 PubMedCentralPubMedGoogle Scholar
  46. Diotte NM, Xiong Y, Gao J, Chua BH, Ho YS (2009) Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. Biochim Biophys Acta 1793:427–438. doi: 10.1016/j.bbamcr.2008.10.014 PubMedGoogle Scholar
  47. Drahota Z, Palenickova E, Endlicher R, Milerova M, Brejchova J, Vosahlikova M, Svoboda P, Kazdova L, Kalous M, Cervinkova Z, Cahova M (2013) Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties. Physiol Res 63:1–11Google Scholar
  48. Dykens JA, Jamieson J, Marroquin L, Nadanaciva S, Billis PA, Will Y (2008) Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol Appl Pharmacol 233:203–210. doi: 10.1016/j.taap.2008.08.013 PubMedGoogle Scholar
  49. Eeva J, Nuutinen U, Ropponen A, Mättö M, Eray M, Pellinen R, Wahlfors J, Pelkonen J (2009) The involvement of mitochondria and the caspase-9 activation pathway in rituximab-induced apoptosis in FL cells. Apoptosis 14:687–698. doi: 10.1007/s10495-009-0337-7 PubMedGoogle Scholar
  50. El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275:223–228.
  51. Esteller M (2007) Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br J Cancer 96:R26–R30. doi: 10.1038/sj.bjc.6602918 PubMedGoogle Scholar
  52. Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M et al (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23:329–336. doi: 10.1038/nbt1068 PubMedGoogle Scholar
  53. Fantin VR, Berardi MJ, Babbe H, Michelman MV, Manning CM, Leder P (2005) A bifunctional targeted peptide that blocks HER-2 tyrosine kinase and disables mitochondrial function in HER-2-positive carcinoma cells. Cancer Res 65:6891–6900.
  54. Faure-Vigny H, Heddi A, Giraud S, Chautard D, Stepien G (1996) Expression of oxidative phosphorylation genes in renal tumors and tumoral cell lines. Mol Carcinog 16:165–172. doi: 10.1002/(SICI)1098-2744(199607 PubMedGoogle Scholar
  55. Ferlini C, Raspaglio G, Mozzetti S, Distefano M, Filippetti F, Martinelli E, Ferrandina G, Gallo D, Ranelletti FO, Scambia G (2003) Bcl-2 down-regulation is a novel mechanism of paclitaxel resistance. Mol Pharmacol 64:51–58. doi: 10.1124/mol.64.1.51 PubMedGoogle Scholar
  56. Fischer Y, Thomas J, Rösen P, Kammermeier H (1995) Action of metformin on glucose transport and glucose transporter GLUT1 and GLUT4 in heart muscle cells from healthy and diabetic rats. Endocrinology 136:412–420. doi: 10.1210/endo.136.2.7835271 PubMedGoogle Scholar
  57. Fiume L, Manerba M, Vettraino M, Di Stefano G (2011) Effect of sorafenib on the energy metabolism of hepatocellular carcinoma cells. Eur J Pharmacol 670:39–43. doi: 10.1016/j.ejphar.2011.08.038 PubMedGoogle Scholar
  58. Floridi A, D’Atri S, Bellocci M, Marcante ML, Paggi MG, Silvestrini B, Caputo A, De Martino C (1984) The effect of gossypol and Lonidamine on electron transport in Ehrlich ascites tumor mitochondria. Exp Mol Pathol 40:246–261. doi: 10.1016/0014-4800(84)90081-9 PubMedGoogle Scholar
  59. Funasaka T, Hogan V, Raz A (2009) Phosphoglucose isomerase/autocrine motility factor mediates epithelial and mesenchymal phenotype conversions in breast cancer. Cancer Res 69:5349–5356. doi: 10.1158/0008-5472.CAN-09-0488 PubMedCentralPubMedGoogle Scholar
  60. Gallardo-Pérez JC, Rivero-Segura NA, Marín-Hernández A, Moreno-Sánchez R, Rodríguez-Enríques S (2014) GPI/AMF inhibition blocks the metastatic progression of mature multicellular tumor spheroids. Biochim Biophys Acta 1843:1043–1053. doi: 10.1016/j.bbamcr.2014.01.013 PubMedGoogle Scholar
  61. Gaona-Gaona L, Molina-Jijón E, Tapia E, Zazueta C, Hernández-Pando R, Calderón-Oliver M, Zarco-Márquez G, Pinzón E, Pedraza-Chaverri J (2011) Protective effect of sulforaphane pretreatment against cisplatin-induced liver and mitochondrial oxidant damage in rats. Toxicology 286:20–27. doi: 10.1016/j.tox.2011.04.014 PubMedGoogle Scholar
  62. Garrido N, Pérez-Martos A, Faro M, Lou-Bonafonte JM, Fernández-Silva P, López-Pérez MJ, Montoya J, Enríquez JA (2008) Cisplatin-mediated impairment of mitochondrial DNA metabolism inversely correlates with glutathione levels. Biochem J 414:93–102. doi: 10.1042/BJ20071615 PubMedGoogle Scholar
  63. Gettings SD, Reeve JE, King LJ (1988) Possible role of intracellular Ca2+ in the toxicity of phenformin. Biochem Pharmacol 37:281–289. doi: 10.1016/0006-2952(88)90730-7 PubMedGoogle Scholar
  64. Giacobbe A, Bongiorno-Borbone L, Bernassola F, Terrinoni A, Markert EK, Levine AJ, Feng Z, Agostini M, Zolla L, Agro AF, Notterman DA, Melino G, Peschiaroli A (2013) p63 regulates glutaminase 2 expression. Cell Cycle 12:1395–1405. doi: 10.4161/cc.24478 PubMedCentralPubMedGoogle Scholar
  65. Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49:24S–42S. doi: 10.2967/jnumed.107.047258 PubMedGoogle Scholar
  66. Gottschalk S, Anderson N, Hainz C, Eckhardt SG, Serkova NJ (2004) Imatinib (STI571)-mediated changes in glucose metabolism in human leukemia BCR-ABL-positive cells. Clin Cancer Res 10:6661–6668. doi: 10.1158/1078-0432.CCR-04-0039 PubMedGoogle Scholar
  67. Gowher H, Jeltsch A (2004) Mechanism of inhibition of DNA methyltransferases by cytidine analogs in cancer therapy. Cancer Biol Ther 3:1062–1068. doi: 10.4161/cbt.3.11.1308 PubMedGoogle Scholar
  68. Grazette LP, Boecker W, Matsui T, Semigran M, Force TL, Hajjar RJ, Rosenzweig A (2004) Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: implications for herceptin-induced cardiomyopathy. J Am Coll Cardiol 44:2231–2238. doi: 10.1016/j.jacc.2004.08.066 PubMedGoogle Scholar
  69. Guerrero-Beltrán CE, Calderón-Oliver M, Martínez-Abundis E, Tapia E, Zarco-Márquez G, Zazueta C, Pedraza-Chaverri J (2010) Protective effect of sulforaphane against cisplatin-induced mitochondrial alterations and impairment in the activity of NAD(P)H: quinone oxidoreductase 1 and γ glutamyl cysteine ligase: studies in mitochondria isolated from rat kidney and in LLC-PK1 cells. Toxicol Lett 199:80–92. doi: 10.1016/j.toxlet.2010.08.009 PubMedGoogle Scholar
  70. Guigas B, Detaille D, Chauvin C, Batandier C, De Oliveira F, Fontaine E, Leverve X (2004) Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J 382:877–884. doi: 10.1042/BJ20040885 PubMedCentralPubMedGoogle Scholar
  71. Haas R, Stumpf DA, Parks JK, Eguren L (1981) Inhibitory effects of sodium valproate on oxidative phosphorylation. Neurology 31:1473–1476. doi: 10.1212/WNL.31.11.1473 PubMedGoogle Scholar
  72. Hamann A, Benecke H, Greten H, Hatthaei S (1993) Metformin increases glucose transporter protein and gene expression in human fibroblasts. Biochem Biophys Res Commun 196:382–387. doi: 10.1006/bbcr.193.2260 PubMedGoogle Scholar
  73. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9:325–338. doi: 10.1038/nrd3003 PubMedGoogle Scholar
  74. Haynes BP, Dowsett M, Miller WR, Dixon JM, Bhatnagar AS (2003) The pharmacology of letrozole. J Steroid Biochem Mol Biol 87:35–45. doi: 10.1016/S0960-0760(03)00384-4 PubMedGoogle Scholar
  75. Hegde PS, Rusnak D, Bertiaux M, Alligood K, Strum J, Gagnon R, Gilmer TM (2007) Delineation of molecular mechanisms of sensitivity to lapatinib in breast cancer cell lines using global gene expression profiles. Mol Cancer Ther 6:1629–1640. doi: 10.1158/1535-7163.MCT-05-0399 PubMedGoogle Scholar
  76. Hernández-Esquivel L, Marín-Hernández A, Pavón N, Carvajal K, Moreno-Sánchez R (2006) Cardiotoxicity of copper-based antineoplastic drugs casiopeinas is related to inhibition of energy metabolism. Toxicol Appl Pharmacol 212:79–88. doi: 10.1016/j.taap.2005.06.023 PubMedGoogle Scholar
  77. Hickey FB, Cotter TG (2006) Identification of transcriptional targets associated with the expression of p210 Bcr-Abl. Eur J Haematol 76:369–383. doi: 10.1111/j.1600-0609.2006.00629.x PubMedGoogle Scholar
  78. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M et al (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69:4918–4925. doi: 10.1158/0008-5472.CAN-08-4806 PubMedGoogle Scholar
  79. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148:3–15. doi: 10.1016/j.jbiotec.2010.01.012 PubMedGoogle Scholar
  80. Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic keyplayer in cancer. Cancer Res 71:6921–6925. doi: 10.1158/0008-5472.CAN-11-1457 PubMedGoogle Scholar
  81. Höckel M, Vaupel P (2001) Biological consequences of tumor hypoxia. Semin Oncol 28:36–41.
  82. Hodges-Gallagher L, Valentine CD, Bader SE, Kushner PJ (2007) Inhibition of histone deacetylase enhances the anti-proliferative action of antiestrogens on breast cancer cells and blocks tamoxifen-induced proliferation of uterine cells. Breast Cancer Res Treat 105:297–309. doi: 10.1007/s10549-006-9459-6 PubMedGoogle Scholar
  83. Iacobazzi V, Infantino V, Palmieri F (2008) Epigenetic mechanisms and Sp1 regulate mitochondrial citrate carrier gene expression. Biochem Biophys Res Commun 376:15–20. doi: 10.1016/j.bbrc.2008.08.015 PubMedGoogle Scholar
  84. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C, Chung YL, Merino M, Trepel J, Zbar B, Toro J, Ratcliffe PJ, Linehan WM, Neckers L (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8:143–153. doi: 10.1016/j.ccr.2005.06.017 PubMedGoogle Scholar
  85. Kachadourian R, Brechbuhl HM, Ruiz-Azuara L, Gracia-Mora I, Day BJ (2010) Casiopeína IIgly-induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells. Toxicology 268:176–183. doi: 10.1016/j.tox.2009.12.010 PubMedCentralPubMedGoogle Scholar
  86. Keller KE, Doctor ZM, Dwyer ZW, Lee YS (2014) SAICAR induces protein kinase activity of PKM2 that is necessary for sustained proliferative signaling of cancer cells. Mol Cell 53:700–709. doi: 10.1016/j.molcel.2014.02.015 PubMedGoogle Scholar
  87. Kessler T, Bayer M, Schwöppe C, Liersch R, Mesters RM, Berdel WE (2010) Compounds in clinical phase III and beyond. In: Liersch R, Berdel WE, Kessler T (eds) Angiogenesis inhibition. Springer, London, pp 137–163Google Scholar
  88. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R et al (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 108:3749–3754. doi: 10.1073/pnas.1014480108 PubMedCentralPubMedGoogle Scholar
  89. Keyes SR, Heimbrook DC, Fracasso PM, Rockwell S, Sligar SG, Sartorelli AC (1985) Chemotherapeutic attack of hypoxic tumor cells by the bioreductive alkylating agent mitomycin C. Adv Enzyme Regul 23:291–307. doi: 10.1016/0065-2571(85)90053-6 PubMedGoogle Scholar
  90. Kibayashi M, Nagao M, Chiba S (1999) Influence of valproic acid on the expression of various acyl-CoA dehydrogenases in rats. Pediatr Int 41:52–60. doi: 10.1046/j.1442-200x.1999.01012.x PubMedGoogle Scholar
  91. Kim MJ, Kim DH, Jung WH, Koo JS (2014) Expression of metabolism-related proteins in triple-negative breast cancer. Int J Clin Exp Pathol 7:301–312. ISSN 1936-2625/IJCEP1311042
  92. Kita A, Mitsuoka K, Kaneko N, Nakata M, Yamanaka K, Jitsuoka M, Miyoshi S, Noda A, Mori M, Nakahara T, Sasamata M (2012) Sepantronium bromide (YM155) enhances response of human B-cell non-Hodgkin lymphoma to rituximab. J Pharmacol Exp Ther 343:178–183. doi: 10.1124/jpet.112.195925 PubMedGoogle Scholar
  93. Klawitter J, Anderson N, Klawitter J, Christians U, Leibfritz D, Eckhardt SG, Serkova NJ (2009) Time-dependent effects of imatinib in human leukaemia cells: a kinetic NMR-profiling study. Br J Cancer 100:923–931. doi: 10.1038/sj.bjc.6604946 PubMedCentralPubMedGoogle Scholar
  94. Kluza J, Jendoubi M, Ballot C, Dammak A, Jonneaux A, Idziorek T, Joha S, Dauphin V, Malet-Martino M et al (2011) Exploiting mitochondrial dysfunction for effective elimination of imatinib-resistant leukemic cells. PLoS One 6:e21924. doi: 10.1371/journal.pone.0021924 PubMedCentralPubMedGoogle Scholar
  95. Koh MY, Spivak-Kroizman TR, Powis G (2010) HIF-1α and cancer therapy. In: Liersch R, Berdel WE, Kessler T (eds) Angiogenesis inhibition. Springer, London, pp 15–34Google Scholar
  96. Kong M, Ba M, Liang H, Ma L, Yu Q, Yu T, Wang Y (2012) 5′-Aza-dC sensitizes paraquat toxic effects on PC12 cell. Neurosci Lett 524:35–39. doi: 10.1016/j.neulet.2012.07.001 PubMedGoogle Scholar
  97. Ksienski D (2011) Imatinib mesylate: past successes and future challenges in the treatment of gastrointestinal stromal tumors. Clin Med Insights Oncol 5:365–379. doi: 10.4137/CMO.S4259 PubMedCentralPubMedGoogle Scholar
  98. Kunz-Schughart LA (1999) Multicellular tumor spheroids: intermediates between monolayer culture and in vivo tumor. Cell Biol Int 23:157–161. doi: 10.1177/1087057104265040 PubMedGoogle Scholar
  99. Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9:228–273. doi: 10.1177/1087057104265040 Google Scholar
  100. Lake DE, Hudis C (2002) Aromatase inhibitors in breast cancer: an update. Cancer Control 9:490-498.
  101. Le SB, Hailer MK, Buhrow S, Wang Q, Flatten K, Pediaditakis P, Bible KC, Lewis LD, Sausville EA, Pang YP, Ames MM et al (2007) Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J Biol Chem 282:8860–8872. doi: 10.1074/jbc.M611777200 PubMedGoogle Scholar
  102. Lee SJ, Wang JY (2009) Exploiting the promiscuity of imatinib. J Biol. 8:30. doi: 10.1186/jbiol134 PubMedCentralPubMedGoogle Scholar
  103. Lee CS, Park SY, Ko HH, Han ES (2004) Effect of change in cellular GSH levels on mitochondrial damage and cell viability loss due to mitomycin c in small cell lung cancer cells. Biochem Pharmacol 68:1857–1867. doi: 10.1016/j.bcp.2004.06010 PubMedGoogle Scholar
  104. Li GN, Wang SP, Xue X, Qu XJ, Liu HP (2013) Monoclonal antibody-related drugs for cancer therapy. Drug Discov Ther 7:178–184. doi: 10.5582/ddt.2013.v7.5.178 PubMedGoogle Scholar
  105. Lin YL, Meng Y, Jiang W, Roux B (2013) Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Proc Natl Acad Sci USA 110:1664–1669. doi: 10.1073/pnas.1214330110 PubMedCentralPubMedGoogle Scholar
  106. Liu W, Phang JM (2012) Proline dehydrogenase (oxidase), a mitochondrial tumor suppressor, and autophagy under the hypoxia microenvironment. Autophagy 8:1407–1409PubMedCentralPubMedGoogle Scholar
  107. Liu FT, Agrawal SG, Gribben JG, Ye H, Du MQ, Newland AC, Jia L (2008) Bortezomib blocks Bax degradation in malignant B cells during treatment with TRAIL. Blood 111:2797–2805PubMedGoogle Scholar
  108. Liu W, Glunde K, Bhujwalla ZM, Raman V, Sharma A, Phang JM (2012) Proline oxidase promotes tumor cell survival in hypoxic tumor microenvironments. Cancer Res 72:3677–3686PubMedCentralPubMedGoogle Scholar
  109. Liu AM, Xu Z, Shek FH, Wong KF, Lee NP, Poon RT, Chen J, Luk JM (2014) miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS ONE 9:e86872PubMedCentralPubMedGoogle Scholar
  110. Lu H, Li X, Luo Z, Liu J, Fan Z (2013) Cetuximab reverses the Warburg effect by inhibiting HIF-1-regulated LDH-A. Mol Cancer Ther 12:2187–2199. doi: 10.1158/0008-5472.CAN-12-0080 PubMedGoogle Scholar
  111. Luwor RB, Lu Y, Li X, Mendelsohn J, Fan Z (2005) The antiepidermal growth factor receptor monoclonal antibody cetuximab/C225 reduces hypoxia-inducible factor-1 alpha, leading to transcriptional inhibition of vascular endothelial growth factor expression. Oncogene 24:4433–4441. doi: 10.1038/sj.onc.1208625 PubMedGoogle Scholar
  112. Ma WW, Jacene H, Song D, Vilardell F, Messersmith WA, Laheru D, Wahl R, Endres C, Jimeno A, Pomper MG, Hidalgo M (2009) [18F]fluorodeoxyglucose positron emission tomography correlates with Akt pathway activity but is not predictive of clinical outcome during mTOR inhibitor therapy. J Clin Oncol 27:2697–2704. doi: 10.1200/JCO.2008.18.8383 PubMedCentralPubMedGoogle Scholar
  113. Mackay A, Urruticoechea A, Dixon JM, Dexter T, Fenwick K, Ashworth A, Drury S, Larionov A, Young O, White S et al (2007) Molecular response to aromatase inhibitor treatment in primary breast cancer. Breast Cancer Res 9:R37. doi: 10.1186/bcr1732 PubMedCentralPubMedGoogle Scholar
  114. Mandujano-Tinoco EA, Gallardo-Pérez JC, Marín-Hernández A, Moreno-Sánchez R, Rodríguez-Enríquez S (2013) Anti-mitochondrial therapy in human breast cáncer multi-cellular spheroids. Biochim Biophys Acta 1833:541–551. doi: 10.1016/j.bbamcr.2012.11.013 PubMedGoogle Scholar
  115. Marín-Hernández A, Gracia-Mora I, Ruiz-Ramírez L, Moreno-Sánchez R (2003) Toxic effects of copper-based antineoplastic drugs (Casiopeinas) on mitochondrial functions. Biochem Pharmacol 65:1979–1989. doi: 10.1016/S0006-2952(03)00212-0 PubMedGoogle Scholar
  116. Marín-Hernández A, Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Macías-Silva M, Sosa-Garrocho M, Moreno-Sánchez R (2006) Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J 273:1975–1988. doi: 10.1111/j.1742-4658.2006.05214.x PubMedGoogle Scholar
  117. Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ, Rodríguez-Enríquez S, Moreno-Sánchez R (2009) HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 9:1084–1101. doi: 10.2174/138955709788922610 PubMedGoogle Scholar
  118. Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S, Encalada R, Moreno-Sánchez R, Saavedra E (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767. doi: 10.1016/j.bbabio.2010.11.006 PubMedGoogle Scholar
  119. Marín-Hernández A, Gallardo-Pérez JC, López-Ramírez SY, García-García JD, Rodríguez-Zavala JS, Ruiz-Ramírez L, Gracia-Mora I, Zentella-Dehesa A, Sosa-Garrocho M, Macías-Silva M, Moreno-Sánchez R, Rodríguez-Enríquez S (2012) Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation. Arch Toxicol 86:753–766. doi: 10.1007/s00204-012-0809-3 PubMedGoogle Scholar
  120. Masdehors P, Merle-Béral H, Maloum K, Omura S, Magdelénat H, Delic J (2000) Deregulation of the ubiquitin system and p53 proteolysis modify the apoptotic response in B-CLL lymphocytes. Blood 96:269–274.
  121. Mathews EH, Liebenberg L, Pelzer R (2011) High-glycolytic cancers and their interplay with the body’s glucose demand and supply cycle. Med Hypotheses 76:157–165. doi: 10.1016/j.mehy.2010.09.006 PubMedGoogle Scholar
  122. Mazieres J, Peters S, Lepage B, Cortot AB, Barlesi F, Beau-Faller M, Besse B, Blons H, Mansuet-Lupo A, Urban T et al (2013) Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J Clin Oncol 31:1997–2003. doi: 10.1200/JCO.2012.45.6095 PubMedGoogle Scholar
  123. Mazurek S (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol 43(2011):969–980PubMedGoogle Scholar
  124. Mellor HR, Bell AR, Valentin JP, Roberts RR (2011) Cardiotoxicity associated with targeting kinase pathways in cancer. Toxicol Sci 120:14–32. doi: 10.1093/toxsci/kfq378 PubMedGoogle Scholar
  125. Mendelsohn J, Baselga J (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19:6550–6565. doi: 10.1038/sj.onc.1204082 PubMedGoogle Scholar
  126. Meng F, Sun G, Zhong M, Yu Y, Brewer MA (2013) Anticancer efficacy of cisplatin and trichostatin A or 5-aza-2′-deoxycytidine on ovarian cancer. Br J Cancer 108:579–586. doi: 10.1038/bjc.2013.10 PubMedCentralPubMedGoogle Scholar
  127. Menon C, Polin GM, Prabakaran I, Hsi A, Cheung C, Culver JP, Pingpank JF, Sehgal CS, Yodh AG, Buerk DG et al (2003) An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model. Cancer Res 63:7232–7240.
  128. Miller WR, Larionov A (2011) Molecular effects of oestrogen deprivation in breast cancer. Mol Cell Endocrinol 340:127–136. doi: 10.1097/FPC.0b013e32820b853a PubMedGoogle Scholar
  129. Miller WR, Larionov AA, Renshaw L, Anderson TJ, White S, Murray J, Murray E, Hampton G, Walker JR, Ho S et al (2007) Changes in breast cancer transcriptional profiles after treatment with the aromatase inhibitor, letrozole. Pharmacogenet Genomics 17:813–826PubMedGoogle Scholar
  130. Miller WR, Larionov A, Anderson TJ, Evans DB, Dixon JM (2012) Sequential changes in gene expression profiles in breast cancers during treatment with the aromatase inhibitor, letrozole. Pharmacogenomics J 12:10–21. doi: 10.1038/tpj.2010.67 PubMedGoogle Scholar
  131. Miller MJ, Foy KC, Kaumaya PT (2013) Cancer immunotherapy: present status, future perspective, and a new paradigm of peptide immunotherapeutics. Discov Med 15:166–176.
  132. Mironov SL, Ivannikov MV, Johansson M (2005) [Ca2+]i signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules. From mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J Biol Chem 280:715–721. doi: 10.1074/jbc.M409819200 PubMedGoogle Scholar
  133. Montopoli M, Bellanda M, Lonardoni F, Ragazzi E, Dorigo P, Froldi G, Mammi S, Caparrotta L (2011) “Metabolic reprogramming” in ovarian cancer cells resistant to cisplatin. Curr Cancer Drug Targets 11:226–235. doi: 10.2174/156800911794328501 PubMedGoogle Scholar
  134. Moreira PI, Custódio J, Moreno A, Oliveira CR, Santos MS (2006) Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 281:10143–10152. doi: 10.1074/jbc.M510249200 PubMedGoogle Scholar
  135. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418. doi: 10.1111/j.1742-4658.2007.05686.x PubMedGoogle Scholar
  136. Moreno-Sánchez R, Marín-Hernández A, Saavedra E, Pardo JP, Ralph SJ, Rodríguez-Enríquez S (2014) Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol 2725:42–49. doi: 10.1016/j.biocel.2014.01.025 Google Scholar
  137. Mrozek E, Kolesar J, Young D, Allen J, Villalona-Calero M, Shapiro CL (2008) Phase II study of sequentially administered low-dose mitomycin-C(MMC) and irinotecan (CPT-11) in women with metastatic breast cancer (MBC). Ann Oncol 19:1417–1422. doi: 10.1093/annonc/mdn154 PubMedGoogle Scholar
  138. Müller M, Siems W, Buttgereit F, Dumdey R, Rapoport SM (1986) Quantification of ATP-producing and consuming processes of Ehrlich ascites tumour cells. Eur J Biochem 161:701–705. doi: 10.1111/j.1432-1033.1986.tb10496.x PubMedGoogle Scholar
  139. Nicolay K, Timmers RJ, Spoelstra E, Van der Neut R, Fok JJ, Huigen YM, Verkleij AJ, De Kruijff B (1984) The interaction of adriamycin with cardiolipin in model and rat liver mitochondrial membranes. Biochim Biophys Acta 778:359–371. doi: 10.1016/0005-2736(84)90380-8 PubMedGoogle Scholar
  140. Nowis D, Maczewski M, Mackiewicz U, Kujawa M, Ratajska A, Wieckowski MR, Wilczyński GM, Malinowska M, Bil J, Salwa P et al (2010) Cardiotoxicity of the anticancer therapeutic agent bortezomib. Am J Pathol 176:2658–2668. doi: 10.2353/ajpath.2010.090690 PubMedCentralPubMedGoogle Scholar
  141. Ott PA, Adams S (2011) Small-molecule protein kinase inhibitors and their effects on the immune system: implications for cancer treatment. Immunotherapy 3:213–227. doi: 10.2217/imt.10.99 PubMedCentralPubMedGoogle Scholar
  142. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99:1259–1263. doi: 10.1073/pnas.241655498 PubMedCentralPubMedGoogle Scholar
  143. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348:607–614. doi: 10.1042/0264-6021:3480607 PubMedCentralPubMedGoogle Scholar
  144. Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi MP, Shi E, Pyles EA, Yancopoulos GD, Stahl N, Wiegand SJ (2012) Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis 15:171–185. doi: 10.1007/s10456-011-9249-6 PubMedCentralPubMedGoogle Scholar
  145. Papanikolaou V, Iliopoulos D, Dimou I, Dubos S, Kappas C, Kitsiou-Tzeli S, Tsezou A (2011) Survivin regulation by HER2 through NF-κB and c-myc in irradiated breast cancer cells. J Cell Mol Med 15:1542–1550. doi: 10.1111/j.1582-4934.2010.01149.x PubMedGoogle Scholar
  146. Park JH, Kim TH (2005) Release of cytochrome c from isolated mitochondria by etoposide. J Biochem Mol Biol 38:619–623.
  147. Patenaude A, Deschesnes RG, Rousseau JL, Petitclerc E, Lacroix J, Côté MF, C-Gaudreault R (2007) New soft alkylating agents with enhanced cytotoxicity against cancer cells resistant to chemotherapeutics and hypoxia. Cancer Res 67:2306–2316. doi: 10.1158/0008-5472.CAN-06-3824 PubMedGoogle Scholar
  148. Pathania D, Sechi M, Palomba M, Sanna V, Berretini F, Sias A, Taheri L, Neamati N (2014) Design and discovery of novel quinazolinedione-based redox modulators as therapies for pancreatic cancer. Biochim Biophys Acta 1840:332–343. doi: 10.1016/j.bbagen.2013.08.005 PubMedGoogle Scholar
  149. Paz MM, Zhang X, Lu J, Holmgren A (2012) A new mechanism of action for the anticancer drug mitomycin C: mechanism-based inhibition of thioredoxin reductase. Chem Res Toxicol 25:1502–1511. doi: 10.1021/tx3002065 PubMedGoogle Scholar
  150. Piperdi B, Ling YH, Liebes L, Muggia F, Perez-Soler R (2011) Bortezomib: understanding the mechanism of action. Mol Cancer Ther 10:2029–2030. doi: 10.1158/1535-7163.MCT-11-0745 PubMedGoogle Scholar
  151. Polivka J Jr, Janku F (2014) Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 142:164–175. doi: 10.1016/j.pharmthera.2013.12.004 PubMedGoogle Scholar
  152. Pollard PJ, Brière JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ et al (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231–2239. doi: 10.1093/hmg/ddi227 PubMedGoogle Scholar
  153. Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8:11-31. doi: 10.1677/erc.0.0080011
  154. Pritsos CA, Briggs LA, Gustafson DL (1997) A new cellular target for mitomycin C: a case for mitochondrial DNA. Oncol Res 9:333–337.
  155. Qian W, Nishikawa M, Haque AM, Hirose M, Mashimo M, Sato E, Inoue M (2005) Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol 289:C1466–C1475. doi: 10.1152/ajpcell.00265.2005 PubMedGoogle Scholar
  156. Radu M, Semenova G, Kosoff R, Chernoff J (2014) PAK signaling during the development and progression of cancer. Nat Rev Cancer 14:13–25. doi: 10.1038/nrc3645 PubMedGoogle Scholar
  157. Rix U, Hantschel O, Dürnberger G, Remsing Rix LL, Planyavsky M, Fernbach NV, Kaupe I, Bennett KL, Valent P, Colinge J, Köcher T, Superti-Furga G (2007) Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110:4055–4063. doi: 10.1182/blood-2007-07-102061 PubMedGoogle Scholar
  158. Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2000) Distinct pathways for stimulation of cytochrome c release by etoposide. J Biol Chem 275:32438–32443. doi: 10.1074/jbc.C000518200 PubMedGoogle Scholar
  159. Rodríguez-Enríquez S, Torres-Márquez ME, Moreno-Sánchez R (2000) Substrate oxidation and ATP supply in AS-30D hepatoma cells. Arch Biochem Biophys 375:21–30. doi: 10.1006/abbi.1999.1582 PubMedGoogle Scholar
  160. Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Marín-Hernández A, Ruiz-Azuara L, Moreno-Sánchez R (2006) Control of celullar proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Toxicol Appl Pharmacol 215:208–217. doi: 10.1016/j.taap.2006.02.005 PubMedGoogle Scholar
  161. Rodríguez-Enríquez S, Gallardo-Pérez JC, Avilés-Salas A, Marín-Hernández A, Carreño-Fuentes L, Maldonado-Lagunas V, Moreno-Sánchez R (2008) Energy metabolism transition in multi-cellular human tumor spheroids. J Cell Physiol 216:189–197. doi: 10.1002/jcp.21392 PubMedGoogle Scholar
  162. Rodríguez-Enríquez S, Marín-Hernández A, Gallardo-Pérez JC, Carreño-Fuentes L, Moreno-Sánchez R (2009) Targeting of cancer energy metabolism. Mol Nutr Food Res 53:29–48. doi: 10.1002/mnfr.200700470 PubMedGoogle Scholar
  163. Rodríguez-Enríquez S, Carreño-Fuentes L, Gallardo-Pérez JC, Saavedra E, Quezada H, Vega A, Marín-Hernández A, Olín-Sandoval V, Torres-Márquez ME, Moreno-Sánchez R (2010) Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma. Int J Biochem Cell Biol 42:1744–1751. doi: 10.1016/j.biocel.2010.07.010 PubMedGoogle Scholar
  164. Rodríguez-Enríquez S, Gallardo-Pérez JC, Marín-Hernández A, Aguilar-Ponce JL, Mandujano-Tinoco EA, Meneses A, Moreno-Sánchez R (2011) Oxidative phosphorylation as a target to arrest malignant neoplasias. Curr Med Chem 18:3156–3167. doi: 10.2174/092986711796391561 PubMedGoogle Scholar
  165. Rolfe DF, Brown GC (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758.
  166. Rumbach L, Warter JM, Rendon A, Marescaux C, Micheletti G, Waksman A (1983) Inhibition of oxidative phosphorylation in hepatic and cerebral mitochondria of sodium valproate-treated rats. J Neurol Sci 61:417–423. doi: 10.1016/0022-510X(83)90174-0 PubMedGoogle Scholar
  167. Saito T, Kaneko T (1968) Effects of simultaneous application of mitomycin C and prednisolone on respiration and glycolysis of Ehrlich ascites tumor cells in vitro. Tohoku J Exp Med 95:87–106. doi: 10.1620/tjem.95.87 PubMedGoogle Scholar
  168. Sasaki M, Okamura M, Ideo A, Shimada J, Suzuki F, Ishihara M, Kikuchi H, Kanda Y, Kunii S, Sakagami H (2006) Re-evaluation of tumor-specific cytotoxicity of mitomycin C, bleomycin and peplomycin. Anticancer Res 26:3373–3380. doi: 10.1126/scitranslmed.300765 PubMedGoogle Scholar
  169. Schmelz K, Wagner M, Dörken B, Tamm I (2005) 5-Aza-2′-deoxycytidine induces p21WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Int J Cancer 114:683–695. doi: 10.1002/ijc.20797 PubMedGoogle Scholar
  170. Schmidt H, Siems W, Müller M, Dumdey R, Rapoport SM (1991) ATP-producing and consuming processes of Ehrlich mouse ascites tumor cells in proliferating and resting phases. Exp Cell Res 94:122–127Google Scholar
  171. Schnekenburger M, Grandjenette C, Ghelfi J, Karius T, Foliguet B, Dicato M, Diederich M (2011) Sustained exposure to the DNA demethylating agent, 2′-deoxy-5-azacytidine, leads to apoptotic cell death in chronic myeloid leukemia by promoting differentiation, senescence, and autophagy. Biochem Pharmacol 81:364–378. doi: 10.1016/0014-4827(91)90140-P PubMedGoogle Scholar
  172. Sculier JP, Ghisdal L, Berghmans T, Branle F, Lafitte JJ, Vallot F, Meert AP, Lemaitre F, Steels E, Burniat A et al (2001) The role of mitomycin in the treatment of non-small cell lung cancer: a systematic review with meta-analysis of the literature. Br J Cancer 84:1150–1155. doi: 10.1054/bjoc.2001.1742 PubMedCentralPubMedGoogle Scholar
  173. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, Pan Y, Simon MC, Thompson CB, Gottlieb E (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85. doi: 10.1016/j.ccr.2004.11.022 PubMedGoogle Scholar
  174. Selimovic D, Porzig BB, El-Khattouti A, Badura HE, Ahmad M, Ghanjati F, Santourlidis S, Haikel Y, Hassan M (2013) Bortezomib/proteasome inhibitor triggers both apoptosis and autophagy-dependent pathways in melanoma cells. Cell Signal 25:308–318. doi: 10.1016/j.cellsig.2012.10.004 PubMedGoogle Scholar
  175. Shah JJ, Kuhn DJ, Orlowski RZ (2009) Bortezomib and EGCG: no green tea for you? Blood 113:5695–5696. doi: 10.1182/blood-2009-03-204776 PubMedCentralPubMedGoogle Scholar
  176. Shin DY, Park YS, Yang K, Kim GY, Kim WJ, Han MH, Kang HS, Choi YH (2012) Decitabine, a DNA methyltransferase inhibitor, induces apoptosis in human leukemia cells through intracellular reactive oxygen species generation. Int J Oncol 41:910–918. doi: 10.3892/ijo.2012.1546 PubMedGoogle Scholar
  177. Silva MF, Ruiter JP, Illst L, Jakobs C, Duran M, de Almeida IT, Wanders RJ (1997) Valproate inhibits the mitochondrial pyruvate-driven oxidative phosphorylation in vitro. J Inherit Metab Dis 20:397–400. doi: 10.1023/A:1005398516208 PubMedGoogle Scholar
  178. Singh KK, Russell J, Sigala B, Zhang Y, Williams J, Keshav KF (1999) Mitochondrial DNA determines the cellular response to cancer therapeutic agents. Oncogene 18:6641–6646. doi: 10.1038/sj.onc.1203056 PubMedGoogle Scholar
  179. Song IS, Kim HK, Lee SR, Jeong SH, Kim N, Ko KS, Rhee BD, Han J (2013) Mitochondrial modulation decreases the bortezomib-resistance in multiple myeloma cells. Int J Cancer 133:1357–1367. doi: 10.1002/ijc.28149 PubMedGoogle Scholar
  180. Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF et al (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942. doi: 10.1172/JCI36843 PubMedCentralPubMedGoogle Scholar
  181. Spanswick VJ, Cummings J, Smyth JF (1996) Enzymology of mitomycin C metabolic activation in tumour tissue. Characterization of a novel mitochondrial reductase. Biochem Pharmacol 51:1623–1630. doi: 10.1016/0006-2952(96)00104-9 PubMedGoogle Scholar
  182. Surendran S, Krishnamurthy V (2012) Effect of tanmoxifen on mitochondria—an in vitro study. Am J Pharmatech Res 2:471–482.
  183. Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184. doi: 10.1126/science.2451290 PubMedGoogle Scholar
  184. Sviriaeva IV, Ruuge EK, Shumaev KB (2007) Formation of superoxide radicals in isolated cardiac mitochondria: effect of adriamycin. Biofizika 52:1054–1059. doi: 10.1134/S0006350910020119 PubMedGoogle Scholar
  185. Takai N, Kawamata N, Gui D, Said JW, Miyakawa I, Koeffler HP (2004) Human ovarian carcinoma cells: histone deacetylase inhibitors exhibit antiproliferative activity and potently induce apoptosis. Cancer 101:2760–2770. doi: 10.1002/cncr.20709 PubMedGoogle Scholar
  186. Tamulevicius P, Streffer C (1995) Metabolic imaging in tumours by means of bioluminescence. Br J Cancer 72:1102–1112. doi: 10.1038/bjc.1995.472 PubMedCentralPubMedGoogle Scholar
  187. Tedder TF, Engel P (1994) CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today 15:450–454. doi: 10.1016/0167-5699(94)90276-3 PubMedGoogle Scholar
  188. Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordóñez Á, Corral-Escariz M, Soro I, López-Bernardo E, Perales-Clemente E et al (2011) Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity. Cell Metab 14:768–779. doi: 10.1016/j.cmet.2011.10.008 PubMedGoogle Scholar
  189. Trojnar MK, Wierzchowska-Cioch E, Krzyzanowski M, Jargiełło M, Czuczwar SJ (2004) New generation of valproic acid. Pol J Pharmacol 56:283–288.
  190. Tuquet C, Dupont J, Mesneau A, Roussaux J (2000) Effects of tamoxifen on the electron transport chain of isolated rat liver mitochondria. Cell Biol Toxicol 16:207–219. doi: 10.1023/A:1007695308257 PubMedGoogle Scholar
  191. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465.
  192. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122:253–270. doi: 10.1042/CS20110386 Google Scholar
  193. Von Ahsen O, Waterhouse NJ, Kuwana T, Newmeyer DD, Green DR (2000) The ‘harmless’ release of cytochrome c. Cell Death Differ 7:1192–1199.
  194. Waller CF (2010) Imatinib mesylate. Recent Results Cancer Res 184:3–20. doi: 10.1007/978-3-642-01222-8_1 PubMedGoogle Scholar
  195. Wang M, Han XH, Zhang L, Yang J, Qian JF, Shi YK, Kwak LW, Romaguera J, Yi Q (2008) Bortezomib is synergistic with rituximab and cyclophosphamide in inducing apoptosis of mantle cell lymphoma cells in vitro and in vivo. Leukemia 22:179–185. doi: 10.1038/sj.leu.2404959 PubMedGoogle Scholar
  196. Will Y, Dykens JA, Nadanaciva S, Hirakawa B, Jamieson J, Marroquin LD, Hynes J, Patyna S, Jessen BA (2008) Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicol Sci 106:153–161. doi: 10.1093/toxsci/kfn157 PubMedGoogle Scholar
  197. Williams SA, McConkey DJ (2003) The proteasome inhibitor bortezomib stabilizes a novel active form of p53 in human LNCaP-Pro5 prostate cancer cells. Cancer Res 63:7338–7344.
  198. Xu J, Zhou JY, Tainsky MA, Wu GS (2007) Evidence that tumor necrosis factor-related apoptosis-inducing ligand induction by 5-Aza-2′-deoxycytidine sensitizes human breast cancer cells to adriamycin. Cancer Res 67:1203–1211. doi: 10.1158/0008-5472.CAN-06-2310 PubMedGoogle Scholar
  199. Xu J, Wang J, Xu B, Ge H, Zhou X, Fang JY (2013) Colorectal cancer cells refractory to anti-VEGF treatment are vulnerable to glycolytic blockade due to persistent impairment of mitochondria. Mol Cancer Ther 12:717–724. doi: 10.1158/1535-7163.MCT-12-1016-T PubMedGoogle Scholar
  200. Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z, Cullen KJ (2006) Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin Cancer Res 12:5817–5825. doi: 10.1158/1078-0432.CCR-06-1037 PubMedGoogle Scholar
  201. Yaromina A, Meyer S, Fabian C, Zaleska K, Sattler UG, Kunz-Schughart LA, Mueller-Klieser W, Zips D, Baumann M (2012) Effects of three modifiers of glycolysis on ATP, lactate, hypoxia, and growth in human tumor cell lines in vivo. Strahlenther Onkol 188:431–437. doi: 10.1007/s00066-011-0054-3 PubMedGoogle Scholar
  202. Yin D, Zhou H, Kumagai T, Liu G, Ong JM, Black KL, Koeffler HP (2005) Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene 24:344–354. doi: 10.1038/sj.onc.1208225 PubMedGoogle Scholar
  203. Yu D, Hung MC (2000) Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene 19:6115–6121. doi: 10.1038/sj.onc.1203972 PubMedGoogle Scholar
  204. Zgouras D, Becker U, Loitsch S, Stein J (2004) Modulation of angiogenesis-related protein synthesis by valproic acid. Biochem Biophys Res Commun 316:693–697. doi: 10.1016/j.bbrc.2004.02.105 PubMedGoogle Scholar
  205. Zhang D, Tai LK, Wong LL, Chiu LL, Sethi SK, Koay ES (2005) Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Mol Cell Proteomics 4:1686–1696. doi: 10.1074/mcp.M400221-MCP200 PubMedGoogle Scholar
  206. Zhao F, Mancuso A, Bui TV, Tong X, Gruber JJ, Swider CR, Sanchez PV, Lum JJ, Sayed N, Melo JV et al (2010) Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene 29:2962–2972. doi: 10.1038/onc.2010.67 PubMedCentralPubMedGoogle Scholar
  207. Zhao Y, Liu H, Liu Z, Ding Y, Ledoux SP, Wilson GL, Voellmy R, Lin Y, Lin W, Nahta R, Liu B, Fodstad O, Chen J, Wu Y, Price JE, Tan M (2011) Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res 71:4585–4597. doi: 10.1158/0008-5472.CAN-11-0127 PubMedCentralPubMedGoogle Scholar
  208. Zhao L, Ashek A, Wang L, Fang W, Dabral S, Dubois O, Cupitt J, Pullamsetti SS, Cotroneo E, Jones H et al (2013) Heterogeneity in lung (18)FDG uptake in pulmonary arterial hypertension: potential of dynamic (18)FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation 128:1214–1224. doi: 10.1161/CIRCULATIONAHA.113.004136 PubMedGoogle Scholar
  209. Zsengellér ZK, Ellezian L, Brown D, Horváth B, Mukhopadhyay P, Kalyanaraman B, Parikh SM, Karumanchi SA, Stillman IE, Pacher P (2012) Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. J Histochem Cytochem 60:521–529. doi: 10.1369/0022155412446227 PubMedCentralPubMedGoogle Scholar
  210. Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313:459–465. doi: 10.1016/j.bbrc.2003.11.136 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sara Rodríguez-Enríquez
    • 1
    • 2
    Email author
  • Juan Carlos Gallardo-Pérez
    • 1
  • Ileana Hernández-Reséndiz
    • 1
  • Alvaro Marín-Hernández
    • 1
  • Silvia C. Pacheco-Velázquez
    • 1
  • Sayra Y. López-Ramírez
    • 1
  • Franklin D. Rumjanek
    • 3
  • Rafael Moreno-Sánchez
    • 1
    Email author
  1. 1.Departamento de BioquímicaInstituto Nacional de CardiologíaMexicoMexico
  2. 2.Laboratorio de Medicina TraslacionalInstituto Nacional de CancerologíaSan FernandoMexico
  3. 3.Centro de Ciencias de Saúde, Instituto de Bioquímica MédicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations