Archives of Toxicology

, Volume 88, Issue 9, pp 1749–1763

MicroRNA-34a is dispensable for p53 function as teratogenesis inducer

Reproductive Toxicology


The tumor suppressor protein p53 is a powerful regulator of the embryo’s susceptibility to diverse teratogenic stimuli, functioning both as a teratogenesis inducer and suppressor. However, the targets that p53 engages to fulfill its functions remain largely undefined. We asked whether the microRNA (miRNA) miR-34 family, identified as one of the main targets of p53, mediates its function as a teratogenesis inducer. For this, pregnant ICR-, p53- and miR-34a-deficient mice, as well as rats, were exposed to 5-aza-2′-deoxycytidine (5-aza), a teratogen inducing limb reduction anomalies (LRA) of the hindlimbs in mice and either the hindlimbs or forelimbs in rats. Using hind- and forelimb buds of 5-aza-exposed embryos, we identified that the miR-34 family members are the most upregulated miRNAs in mouse and rat limb buds, with their increase level being significantly higher in limb buds destined for LRA. We showed that p53 mediates the 5-aza-induced miR-34 transcription followed by met proto-oncogene and growth-arrest-specific 1 target suppression in embryonic limb buds. We demonstrated that p53 regulates the teratogenic response to 5-aza acting as a teratogenesis inducer albeit miR-34a deletion does not affect the susceptibility of mice to 5-aza. Overall, our study thoroughly characterizes the expression and regulation of miR-34 family in teratogen-resistant and teratogen-sensitive embryonic structures and discusses the involvement of epigenetic miRNA-mediated pathway(s) in induced teratogenesis.


miRNA microRNA miR-34 Limbs Development p53 Teratogens 

Supplementary material

204_2014_1223_MOESM1_ESM.doc (30 kb)
Supplementary material 1 (DOC 30 kb)
204_2014_1223_MOESM2_ESM.jpg (46 kb)
Supplementary material 2 (JPEG 45 kb)
204_2014_1223_MOESM3_ESM.xls (93 kb)
Supplementary material 3 (XLS 93 kb)
204_2014_1223_MOESM4_ESM.doc (30 kb)
Supplementary material 4 (DOC 30 kb)
204_2014_1223_MOESM5_ESM.doc (30 kb)
Supplementary material 5 (DOC 30 kb)
204_2014_1223_MOESM6_ESM.doc (28 kb)
Supplementary material 6 (DOC 28 kb)


  1. Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y, Bertin T, Dawson BC, Munivez E, Tao J, Lee BH (2012) miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 21(13):2991–3000PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376(6543):768–771PubMedCrossRefGoogle Scholar
  4. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307PubMedCrossRefGoogle Scholar
  5. Branch S, Francis BM, Brownie CF, Chernoff N (1996) Teratogenic effects of the demethylating agent 5-aza-2′-deoxycytidine in the Swiss Webster mouse. Toxicology 112(1):37–43PubMedCrossRefGoogle Scholar
  6. Branch S, Chernoff N, Brownie C, Francis BM (1999) 5-AZA-2′-deoxycytidine-induced dysmorphogenesis in the rat. Teratog Carcinog Mutagen 19(5):329–338PubMedCrossRefGoogle Scholar
  7. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752PubMedCentralPubMedCrossRefGoogle Scholar
  8. Chen F, Hu SJ (2012) Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: a review. J Biochem Mol Toxicol 26(2):79–86PubMedCrossRefGoogle Scholar
  9. Chen X, Hu H, Guan X, Xiong G, Wang Y, Wang K, Li J, Xu X, Yang K, Bai Y (2012) CpG island methylation status of miRNAs in esophageal squamous cell carcinoma. Int J Cancer 130(7):1607–1613PubMedCrossRefGoogle Scholar
  10. Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, Zhong Y, Kim SY, Bennett MJ, Chen C, Ozturk A, Hicks GG, Hannon GJ, He L (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 13(11):1353–1360PubMedCentralPubMedCrossRefGoogle Scholar
  11. Concepcion CP, Han YC, Mu P, Bonetti C, Yao E, D’Andrea A, Vidigal JA, Maughan WP, Ogrodowski P, Ventura A (2012) Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet 8(7):e1002797PubMedCentralPubMedCrossRefGoogle Scholar
  12. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67(18):8433–8438PubMedCrossRefGoogle Scholar
  13. Feng Z, Zhang C, Wu R, Hu W (2011) Tumor suppressor p53 meets microRNAs. J Mol Cell Biol 3(1):44–50PubMedCentralPubMedCrossRefGoogle Scholar
  14. Fleiss JL (1981) Statistical methods for rates and proportions. Wiley, New YorkGoogle Scholar
  15. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105PubMedCentralPubMedCrossRefGoogle Scholar
  16. Gueta K, Molotski N, Gerchikov N, Mor E, Savion S, Fein A, Toder V, Shomron N, Torchinsky A (2010) Teratogen-induced alterations in microRNA-34, microRNA-125b and microRNA-155 expression: correlation with embryonic p53 genotype and limb phenotype. BMC Dev Biol 10:20PubMedCentralPubMedCrossRefGoogle Scholar
  17. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134PubMedCrossRefGoogle Scholar
  18. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199PubMedCrossRefGoogle Scholar
  19. Hiroki E, Suzuki F, Akahira J, Nagase S, Ito K, Sugawara J, Miki Y, Suzuki T, Sasano H, Yaegashi N (2012) MicroRNA-34b functions as a potential tumor suppressor in endometrial serous adenocarcinoma. Int J Cancer 131(4):E395–E404PubMedCrossRefGoogle Scholar
  20. Hornstein E, Shomron N (2006) Canalization of development by microRNAs. Nat Genet 38(Suppl):S20–S24PubMedCrossRefGoogle Scholar
  21. Huang DW, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13PubMedCentralCrossRefGoogle Scholar
  22. Huang DW, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57CrossRefGoogle Scholar
  23. Inouye M (1976) Differential staining of cartilage and bone in fetal mouse skeleton by Alcian blue and Alizarin red S. Congenit Anom 16:171–173Google Scholar
  24. Irizarry RA, Ooi SL, Wu Z, Boeke JD (2003) Use of mixture models in a microarray-based screening procedure for detecting differentially represented yeast mutants. Stat Appl Genet Mol Biol 2(1):1002Google Scholar
  25. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4(1):1–7PubMedCrossRefGoogle Scholar
  26. Jain AK, Barton MC (2012) Unmet expectations: miR-34 plays no role in p53-mediated tumor suppression in vivo. PLoS Genet 8(7):e1002859PubMedCentralPubMedCrossRefGoogle Scholar
  27. Kalimutho M, Di Cecilia S, Del Vecchio BG, Roviello F, Sileri P, Cretella M, Formosa A, Corso G, Marrelli D, Pallone F, Federici G, Bernardini S (2011) Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer. Br J Cancer 104(11):1770–1778PubMedCentralPubMedCrossRefGoogle Scholar
  28. Karpf AR, Moore BC, Ririe TO, Jones DA (2001) Activation of the p53 DNA damage response pathway after inhibition of DNA methyltransferase by 5-aza-2′-deoxycytidine. Mol Pharmacol 59(4):751–757PubMedGoogle Scholar
  29. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev 11(9):597–610Google Scholar
  30. Lane D, Levine A (2010) p53 Research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2(12):a000893PubMedCentralPubMedCrossRefGoogle Scholar
  31. Lee CS, May NR, Fan CM (2001) Transdifferentiation of the ventral retinal pigmented epithelium to neural retina in the growth arrest specific gene 1 mutant. Dev Biol 236(1):17–29PubMedCrossRefGoogle Scholar
  32. Lee HY, Inselman AL, Kanungo J, Hansen DK (2012) Alternative models in developmental toxicology. Syst Biol Reprod Med 58(1):10–22PubMedCrossRefGoogle Scholar
  33. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X (2009) miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 275(1):44–53PubMedCrossRefGoogle Scholar
  34. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299(5612):1540PubMedCrossRefGoogle Scholar
  35. Liu C, Zhou C, Gao F, Cai S, Zhang C, Zhao L, Zhao F, Cao F, Lin J, Yang Y, Ni J, Jia J, Wu W, Zhou L, Cui J, Zhang W, Li B, Cai J (2011) MiR-34a in age and tissue related radio-sensitivity and serum miR-34a as a novel indicator of radiation injury. Int J Biol Sci 7(2):221–233PubMedCentralPubMedCrossRefGoogle Scholar
  36. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, Knyazev P, Diebold J, Hermeking H (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7(16):2591–2600PubMedCrossRefGoogle Scholar
  37. Martinelli DC, Fan CM (2007) The role of Gas1 in embryonic development and its implications for human disease. Cell Cycle 6(21):2650–2655PubMedCrossRefGoogle Scholar
  38. Mazar J, Khaitan D, DeBlasio D, Zhong C, Govindarajan SS, Kopanathi S, Zhang S, Ray A, Perera RJ (2011) Epigenetic regulation of microRNA genes and the role of miR-34b in cell invasion and motility in human melanoma. PLoS ONE 6(9):e24922PubMedCentralPubMedCrossRefGoogle Scholar
  39. Mirkes PE (2008) Cell death in normal and abnormal development. Congenit Anom 48(1):7–17CrossRefGoogle Scholar
  40. Nakamura T, Sakai K, Nakamura T, Matsumoto K (2011) Hepatocyte growth factor twenty years on: much more than a growth factor. J Gastroenterol Hepatol 26(Suppl 1):188–202PubMedCrossRefGoogle Scholar
  41. Nalls D, Tang SN, Rodova M, Srivastava RK, Shankar S (2011) Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS ONE 6(8):e24099PubMedCentralPubMedCrossRefGoogle Scholar
  42. Pekar O, Molotski N, Savion S, Fein A, Toder V, Torchinsky A (2007) p53 regulates cyclophosphamide teratogenesis by controlling caspases 3, 8, 9 activation and NF-kappaB DNA binding. Reproduction 134(2):379–388PubMedCrossRefGoogle Scholar
  43. Raver-Shapira N, Oren M (2007) Tiny actors, great roles: microRNAs in p53′s service. Cell Cycle 6(21):2656–2661PubMedCrossRefGoogle Scholar
  44. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743PubMedCrossRefGoogle Scholar
  45. Rogers JM, Francis BM, Sulik KK, Alles AJ, Massaro EJ, Zucker RM, Elstein KH, Rosen MB, Chernoff N (1994) Cell death and cell cycle perturbation in the developmental toxicity of the demethylating agent, 5-aza-2′-deoxycytidine. Teratology 50(5):332–339PubMedCrossRefGoogle Scholar
  46. Rosen MB, Chernoff N (2002) 5-Aza-2′-deoxycytidine-induced cytotoxicity and limb reduction defects in the mouse. Teratology 65(4):180–190PubMedCrossRefGoogle Scholar
  47. Shea CM, Edgar CM, Einhorn TA, Gerstenfeld LC (2003) BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem 90(6):1112–1127PubMedCrossRefGoogle Scholar
  48. Silber J, Jacobsen A, Ozawa T, Harinath G, Pedraza A, Sander C, Holland EC, Huse JT (2012) miR-34a repression in proneural malignant gliomas upregulates expression of its target PDGFRA and promotes tumorigenesis. PLoS ONE 7(3):e33844PubMedCentralPubMedCrossRefGoogle Scholar
  49. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. New York (NY). Freeman 3:1995Google Scholar
  50. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13):1586–1593PubMedCrossRefGoogle Scholar
  51. Toder V, Carp H, Fein A, Torchinsky A (2002) The role of pro- and anti-apoptotic molecular interactions in embryonic maldevelopment. Am J Reprod Immunol 48(4):235–244PubMedCrossRefGoogle Scholar
  52. Torchinsky A, Toder V (2010) Mechanisms of the embryo’s response to embryopathic stressors: a focus on p53. J Reprod Immunol 85(1):76–80PubMedCrossRefGoogle Scholar
  53. Torchinsky A, Fein A, Toder V (1995) Immunoteratology: I. MHC involvement in the embryo response to teratogens in mice. Am J Reprod Immunol 34(5):288–298PubMedCrossRefGoogle Scholar
  54. Torchinsky A, Fein A, Toder V (2005) Teratogen-induced apoptotic cell death: does the apoptotic machinery act as a protector of embryos exposed to teratogens? Birth Defects Res C Embryo Today 75(4):353–361PubMedCrossRefGoogle Scholar
  55. Torchinsky A, Mizrahi L, Savion S, Shahar R, Toder V, Kobyliansky E (2012) Bone loss in adult offspring induced by low-dose exposure to teratogens. J Bone Miner Metab 30(3):270–280PubMedCrossRefGoogle Scholar
  56. Tulasne D, Foveau B (2008) The shadow of death on the MET tyrosine kinase receptor. Cell Death Differ 15(3):427–434PubMedCrossRefGoogle Scholar
  57. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431PubMedCrossRefGoogle Scholar
  58. Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R, Karsenty G (2012) miR-34 s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 197(4):509–521PubMedCentralPubMedCrossRefGoogle Scholar
  59. Wise LD, Beck SL, Beltrame D, Beyer BK, Chahoud I, Clark RL, Clark R, Druga AM, Feuston MH, Guittin P, Henwood SM, Kimmel CA, Lindstrom P, Palmer AK, Petrere JA, Solomon HM, Yasuda M, York RG (1997) Terminology of developmental abnormalities in common laboratory mammals (version 1). Teratology 55(4):249–292PubMedCrossRefGoogle Scholar
  60. Zhu WG, Hileman T, Ke Y, Wang P, Lu S, Duan W, Dai Z, Tong T, Villalona-Calero MA, Plass C, Otterson GA (2004) 5-aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 279(15):15161–15166PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Sackler Faculty of MedicineTel-Aviv UniversityTel AvivIsrael
  2. 2.Division of Cellular and Developmental Biology, Molecular and Cell Biology DepartmentUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations