Archives of Toxicology

, Volume 88, Issue 9, pp 1725–1737 | Cite as

Apoptotic, inflammatory, and fibrogenic effects of two different types of multi-walled carbon nanotubes in mouse lung

  • D. van BerloEmail author
  • V. Wilhelmi
  • A. W. Boots
  • M. Hullmann
  • T. A. J. Kuhlbusch
  • A. Bast
  • R. P. F. Schins
  • C. AlbrechtEmail author
Organ Toxicity and Mechanisms


There is increasing concern about the toxicity of inhaled multi-walled carbon nanotubes (MWCNTs). Pulmonary macrophages represent the primary cell type involved in the clearance of inhaled particulate materials, and induction of apoptosis in these cells has been considered to contribute to the development of lung fibrosis. We have investigated the apoptotic, inflammogenic, and fibrogenic potential of two types of MWCNTs, characterised by a contrasting average tube length and entanglement/agglomeration. Both nanotube types triggered H2O2 formation by RAW 264.7 macrophages, but in vitro toxicity was exclusively seen with the longer MWCNT. Both types of nanotubes caused granuloma in the mouse lungs. However, the long MWCNT induced a more pronounced pro-fibrotic (mRNA expression of matrix metalloproteinase-8 and tissue inhibitor of metalloproteinase-1) and inflammatory (serum level of monocyte chemotactic protein-1) response. Masson trichrome staining also revealed epithelial cell hyperplasia for this type of MWCNT. Enhanced apoptosis was detected by cleaved caspase 3 immunohistochemistry in lungs of mice treated with the long and rigid MWCNT and, to a lesser extent, with the shorter, highly agglomerated MWCNT. However, staining was merely localised to granulomatous foci, and neither of the MWCNTs induced apoptosis in vitro, evaluated by caspase 3/7 activity in RAW 264.7 cells. In addition, our study reveals that the inflammatory and pro-fibrotic effects of MWCNTs in the mouse lung can vary considerably depending on their composition. The in vitro analysis of macrophage apoptosis appears to be a poor predictor of their pulmonary hazard.


Multi-walled carbon nanotubes Lung Macrophage Apoptosis Inflammation Fibrosis 



The authors thank Dr. Burkhard Stahlmecke (IUTA) for the electron microscopy characterisation of MWCNTs, and Christel Weishaupt and Petra Gross (IUF) for technical support. This study was financially supported by the Federal Ministry of Education and Research (BMBF) and an ERS/Marie Curie Fellowship (awarded to AWB).

Supplementary material

204_2014_1220_MOESM1_ESM.ppt (2.2 mb)
Supplementary material 1 (PPT 2220 kb)
204_2014_1220_MOESM2_ESM.ppt (518 kb)
Supplementary material 2 (PPT 518 kb)
204_2014_1220_MOESM3_ESM.ppt (666 kb)
Supplementary material 3 (PPT 666 kb)
204_2014_1220_MOESM4_ESM.docx (12 kb)
Supplementary material 4 (DOCX 12 kb)


  1. Beamer CA, Holian A (2007) Antigen-presenting cell population dynamics during murine silicosis. Am J Respir Cell Mol Biol 37:729–738PubMedCentralPubMedCrossRefGoogle Scholar
  2. Cho HY, Reddy SP, Kleeberger SR (2006) Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 8:76–87PubMedCrossRefGoogle Scholar
  3. Clift MJ, Endes C, Vanhecke D, Wick P, Gehr P, Schins RP, Petri-Fink A, Rothen-Rutishauser B (2014) A comparative study of different in vitro lung cell culture systems to assess the most beneficial tool for screening the potential adverse effects of carbon nanotubes. Toxicol Sci 137:55–64PubMedCrossRefGoogle Scholar
  4. Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49PubMedCentralPubMedCrossRefGoogle Scholar
  5. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539PubMedCrossRefGoogle Scholar
  6. Di Giorgio ML, Di Bucchianico S, Ragnelli AM, Aimola P, Santucci S, Poma A (2011) Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res 722:20–31PubMedCrossRefGoogle Scholar
  7. Doll NJ, Stankus RP, Barkman HW (1983) Immunopathogenesis of asbestosis, silicosis, and coal workers’ pneumoconiosis. Clin Chest Med 4:3–14PubMedGoogle Scholar
  8. Donaldson K (2000) Nonneoplastic lung responses induced in experimental animals by exposure to poorly soluble nonfibrous particles. Inhal Toxicol 12:121–139PubMedCrossRefGoogle Scholar
  9. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22PubMedCrossRefGoogle Scholar
  10. Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Particle Fibre Toxicol 7:5CrossRefGoogle Scholar
  11. Driscoll KE, Lindenschmidt RC, Maurer JK, Higgins JM, Ridder G (1990) Pulmonary response to silica or titanium dioxide: inflammatory cells, alveolar macrophage-derived cytokines, and histopathology. Am J Respir Cell Mol Biol 2:381–390PubMedCrossRefGoogle Scholar
  12. Elgrabli D, Abella-Gallart S, Robidel F, Rogerieux F, Boczkowski J, Lacroix G (2008) Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology 253:131–136PubMedCrossRefGoogle Scholar
  13. Fairbairn IP (2004) Macrophage apoptosis in host immunity to mycobacterial infections. Biochem Soc Trans 32:496–498PubMedCrossRefGoogle Scholar
  14. Gasser M, Wick P, Clift MJ, Blank F, Diener L, Yan B, Gehr P, Krug HF, Rothen-Rutishauser B (2012) Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro. Part Fibre Toxicol 9:17PubMedCentralPubMedCrossRefGoogle Scholar
  15. Hansen K, Mossman BT (1987) Generation of superoxide (O2–.) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res 47:1681–1686PubMedGoogle Scholar
  16. Hirano S, Kanno S, Furuyama A (2008) Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol 232:244–251PubMedCrossRefGoogle Scholar
  17. Jaurand MC, Renier A, Daubriac J (2009) Mesothelioma: do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol 6:16PubMedCentralPubMedCrossRefGoogle Scholar
  18. Kane AB, MacDonald JL, Moalli PA (1986) Acute injury and regeneration of mesothelial cells produced by crocidolite asbestos fibers. Am Rev Respir Dis 133:A198Google Scholar
  19. Kato T, Totsuka Y, Ishino K, Matsumoto Y, Tada Y, Nakae D, Goto S, Masuda S, Ogo S, Kawanishi M, Yagi T, Matsuda T, Watanabe M, Wakabayashi K (2013) Genotoxicity of multi-walled carbon nanotubes in both in vitro and in vivo assay systems. Nanotoxicology 7:452–461PubMedCrossRefGoogle Scholar
  20. Kermanizadeh A, Pojana G, Gaiser BK, Birkedal R, Bilanicova D, Wallin H, Jensen KA, Sellergren B, Hutchison GR, Marcomini A, Stone V (2013) In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, pro-inflammatory cytokines and functional markers. Nanotoxicology 7:301–313PubMedCrossRefGoogle Scholar
  21. Kim JE, Lim HT, Minai-Tehrani A, Kwon JT, Shin JY, Woo CG, Choi M, Baek J, Jeong DH, Ha YC, Chae CH, Song KS, Ahn KH, Lee JH, Sung HJ, Yu IJ, Beck GR Jr, Cho MH (2010) Toxicity and clearance of intratracheally administered multiwalled carbon nanotubes from murine lung. J Toxicol Environ Health A 73:1530–1543PubMedCrossRefGoogle Scholar
  22. Kisin ER, Murray AR, Sargent L, Lowry D, Chirila M, Siegrist KJ, Schwegler-Berry D, Leonard S, Castranova V, Fadeel B, Kagan VE, Shvedova AA (2011) Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol Appl Pharmacol 252:1–10PubMedCrossRefGoogle Scholar
  23. Kobayashi N, Naya M, Ema M, Endoh S, Maru J, Mizuno K, Nakanishi J (2010) Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicology 276:143–153PubMedCrossRefGoogle Scholar
  24. Koerten HK, Hazekamp J, Kroon M, Daems WT (1990) Asbestos body formation and iron accumulation in mouse peritoneal granulomas after the introduction of crocidolite asbestos fibers. Am J Pathol 136:141–157PubMedCentralPubMedGoogle Scholar
  25. Kuwano K, Miyazaki H, Hagimoto N, Kawasaki M, Fujita M, Kunitake R, Kaneko Y, Hara N (1999) The involvement of Fas–Fas ligand pathway in fibrosing lung diseases. Am J Respir Cell Mol Biol 20:53–60PubMedCrossRefGoogle Scholar
  26. Leigh J, Wang H, Bonin A, Peters M, Ruan X (1997) Silica-induced apoptosis in alveolar and granulomatous cells in vivo. Environ Health Perspect 105(Suppl 5):1241–1245PubMedCentralPubMedCrossRefGoogle Scholar
  27. Li JG, Li WX, Xu JY, Cai XQ, Liu RL, Li YJ, Zhao QF, Li QN (2007a) Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 22:415–421PubMedCrossRefGoogle Scholar
  28. Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, Shvedova A, Luster MI, Simeonova PP (2007b) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115:377–382PubMedCentralPubMedCrossRefGoogle Scholar
  29. Liang J, Jung Y, Tighe RM, Xie T, Liu N, Leonard M, Gunn MD, Jiang D, Noble PW (2012) A macrophage subpopulation recruited by CC chemokine ligand-2 clears apoptotic cells in noninfectious lung injury. Am J Physiol Lung Cell Mol Physiol 302:L933–L940PubMedCentralPubMedGoogle Scholar
  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  31. Luo M, Deng X, Shen X, Dong L, Liu Y (2012) Comparison of cytotoxicity of pristine and covalently functionalized multi-walled carbon nanotubes in RAW 264.7 macrophages. J Nanosci Nanotechnol 12:274–283PubMedCrossRefGoogle Scholar
  32. Mariani TJ, Roby JD, Mecham RP, Parks WC, Crouch E, Pierce RA (1996) Localization of type I procollagen gene expression in silica-induced granulomatous lung disease and implication of transforming growth factor-beta as a mediator of fibrosis. Am J Pathol 148:151–164PubMedCentralPubMedGoogle Scholar
  33. Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, Castranova V, Porter DW (2011) Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Particle Fibre Toxicol 8:21CrossRefGoogle Scholar
  34. Miller BG, Searl A, Davis JM, Donaldson K, Cullen RT, Bolton RE, Buchanan D, Soutar CA (1999) Influence of fibre length, dissolution and biopersistence on the production of mesothelioma in the rat peritoneal cavity. Ann Occup Hyg 43:155–166PubMedCrossRefGoogle Scholar
  35. Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD (2007) Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100:203–214PubMedCrossRefGoogle Scholar
  36. Moolgavkar SH, Brown RC, Turim J (2001) Biopersistence, fiber length, and cancer risk assessment for inhaled fibers. Inhal Toxicol 13:755–772PubMedCrossRefGoogle Scholar
  37. Mossman BT (2000) Mechanisms of action of poorly soluble particulates in overload-related lung pathology. Inhal Toxicol 12:141–148PubMedCrossRefGoogle Scholar
  38. Muhlfeld C, Poland CA, Duffin R, Brandenberger C, Murphy FA, Rothen-Rutishauser B, Gehr P, Donaldson K (2012) Differential effects of long and short carbon nanotubes on the gas-exchange region of the mouse lung. Nanotoxicology 6:867–879PubMedCrossRefGoogle Scholar
  39. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231PubMedCrossRefGoogle Scholar
  40. Murphy FA, Schinwald A, Poland CA, Donaldson K (2012) The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part Fibre Toxicol 9:8PubMedCentralPubMedCrossRefGoogle Scholar
  41. Nagatomo H, Morimoto Y, Oyabu T, Hirohashi M, Ogami A, Yamato H, Kuroda K, Higashi T, Tanaka I (2005) Expression of heme oxygenase-1 in the lungs of rats exposed to crocidolite asbestos. Inhal Toxicol 17:293–296PubMedCrossRefGoogle Scholar
  42. Niu J, Kolattukudy PE (2009) Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin Sci 117:95–109PubMedCrossRefGoogle Scholar
  43. Oberdorster G (1996) Evaluation and use of animal models to assess mechanisms of fibre carcinogenicity. IARC Sci Publ 140:107–125Google Scholar
  44. Osmond-McLeod MJ, Poland CA, Murphy F, Waddington L, Morris H, Hawkins SC, Clark S, Aitken R, McCall MJ, Donaldson K (2011) Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres. Parti Fibre Toxicol 8:15CrossRefGoogle Scholar
  45. Pacurari M, Qian Y, Fu W, Schwegler-Berry D, Ding M, Castranova V, Guo NL (2012) Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. J Toxicol Environ Health A 75:129–147PubMedCrossRefGoogle Scholar
  46. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428PubMedCrossRefGoogle Scholar
  47. Porter DW, Ramsey D, Hubbs AF, Battelli L, Ma J, Barger M, Landsittel D, Robinson VA, McLaurin J, Khan A, Jones W, Teass A, Castranova V (2001) Time course of pulmonary response of rats to inhalation of crystalline silica: histological results and biochemical indices of damage, lipidosis, and fibrosis. J Environ Pathol Toxicol Oncol 20(Suppl 1):1–14PubMedGoogle Scholar
  48. Roda E, Coccini T, Acerbi D, Barni S, Vaccarone R, Manzo L (2011) Comparative pulmonary toxicity assessment of pristine and functionalized multi-walled carbon nanotubes intratracheally instilled in rats: morphohistochemical evaluations. Histol Histopathol 26:357–367PubMedGoogle Scholar
  49. Sabo-Attwood T, Ramos-Nino M, Bond J, Butnor KJ, Heintz N, Gruber AD, Steele C, Taatjes DJ, Vacek P, Mossman BT (2005) Gene expression profiles reveal increased mClca3 (Gob5) expression and mucin production in a murine model of asbestos-induced fibrogenesis. Am J Pathol 167:1243–1256PubMedCentralPubMedCrossRefGoogle Scholar
  50. Sato T, Takeno M, Honma K, Yamauchi H, Saito Y, Sasaki T, Morikubo H, Nagashima Y, Takagi S, Yamanaka K, Kaneko T, Ishigatsubo Y (2006) Heme oxygenase-1, a potential biomarker of chronic silicosis, attenuates silica-induced lung injury. Am J Respir Crit Care Med 174:906–914PubMedCrossRefGoogle Scholar
  51. Schinwald A, Chernova T, Donaldson K (2012a) Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol 9:47PubMedCentralPubMedCrossRefGoogle Scholar
  52. Schinwald A, Murphy FA, Prina-Mello A, Poland CA, Byrne F, Movia D, Glass JR, Dickerson JC, Schultz DA, Jeffree CE, Macnee W, Donaldson K (2012b) The threshold length for fiber-induced acute pleural inflammation: shedding light on the early events in asbestos-induced mesothelioma. Toxicol Sci 128:461–470PubMedCrossRefGoogle Scholar
  53. Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22PubMedCentralPubMedCrossRefGoogle Scholar
  54. Stone V, Johnston H, Schins RP (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39:613–626PubMedCrossRefGoogle Scholar
  55. Suga M, Iyonaga K, Ichiyasu H, Saita N, Yamasaki H, Ando M (1999) Clinical significance of MCP-1 levels in BALF and serum in patients with interstitial lung diseases. Eur Respir J 14:376–382PubMedCrossRefGoogle Scholar
  56. Takaya M, Serita F, Yamazaki K, Aiso S, Kubota H, Asakura M, Ikawa N, Nagano K, Arito H, Fukushima S (2010) Characteristics of multiwall carbon nanotubes for an intratracheal instillation study with rats. Ind Health 48:452–459PubMedCrossRefGoogle Scholar
  57. Tanaka T, Terada M, Ariyoshi K, Morimoto K (2010) Monocyte chemoattractant protein-1/CC chemokine ligand 2 enhances apoptotic cell removal by macrophages through Rac1 activation. Biochem Biophys Res Commun 399:677–682PubMedCrossRefGoogle Scholar
  58. van Berlo D, Wessels A, Boots AW, Wilhelmi V, Scherbart AM, Gerloff K, van Schooten FJ, Albrecht C, Schins RP (2010) Neutrophil-derived ROS contribute to oxidative DNA damage induction by quartz particles. Free Radic Biol Med 49:1685–1693PubMedCrossRefGoogle Scholar
  59. van Berlo D, Clift MJ, Albrecht C, Schins RP (2012) Carbon nanotubes: an insight into the mechanisms of their potential genotoxicity. Swiss Med Wkly 142:w13698Google Scholar
  60. Vietti G, Ibouraadaten S, Palmai-Pallag M, Yakoub Y, Bailly C, Fenoglio I, Marbaix E, Lison D, van den Brule S (2013) Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay. Part Fibre Toxicol 10:52PubMedCentralPubMedCrossRefGoogle Scholar
  61. Wang X, Jia G, Wang H, Nie H, Yan L, Deng XY, Wang S (2009) Diameter effects on cytotoxicity of multi-walled carbon nanotubes. J Nanosci Nanotechnol 9:3025–3033PubMedCrossRefGoogle Scholar
  62. Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, Walters DM, Wingard CJ, Brown JM (2011) Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol 8:24PubMedCentralPubMedCrossRefGoogle Scholar
  63. Wang X, Guo J, Chen T, Nie H, Wang H, Zang J, Cui X, Jia G (2012) Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor. Toxicol In Vitro 26:799–806PubMedCrossRefGoogle Scholar
  64. Wilhelmi V, Fischer U, van Berlo D, Schulze-Osthoff K, Schins RP, Albrecht C (2012) Evaluation of apoptosis induced by nanoparticles and fine particles in RAW 264.7 macrophages: facts and artefacts. Toxicol In Vitro 26:323–334PubMedCrossRefGoogle Scholar
  65. Yao SQ, Rojanasakul LW, Chen ZY, Xu YJ, Bai YP, Chen G, Zhang XY, Zhang CM, Yu YQ, Shen FH, Yuan JX, Chen J, He QC (2011) Fas/FasL pathway-mediated alveolar macrophage apoptosis involved in human silicosis. Apoptosis 16:1195–1204PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • D. van Berlo
    • 1
    • 2
    Email author
  • V. Wilhelmi
    • 1
  • A. W. Boots
    • 1
    • 3
  • M. Hullmann
    • 1
  • T. A. J. Kuhlbusch
    • 4
    • 5
  • A. Bast
    • 3
  • R. P. F. Schins
    • 1
  • C. Albrecht
    • 1
    Email author
  1. 1.Particle ResearchIUF-Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
  2. 2.Division of Biological Stress ResponseThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  3. 3.Department of ToxicologyMaastricht UniversityMaastrichtThe Netherlands
  4. 4.Air Quality and Sustainable NanotechnologyInstitute of Energy and Environmental Technology e.V. (IUTA)DuisburgGermany
  5. 5.CENIDEUniversity Duisburg-EssenDuisburgGermany

Personalised recommendations