Archives of Toxicology

, Volume 88, Issue 8, pp 1607–1618 | Cite as

Magnetite- and maghemite-induced different toxicity in murine alveolar macrophage cells

  • Eun-Jung Park
  • Ha Nee Umh
  • Dong-Hyuk Choi
  • Myung Haing Cho
  • Wookhee Choi
  • Sang-Wook Kim
  • Younghun Kim
  • Jae-Ho Kim
In vitro systems

Abstract

The unique properties of nanoparticles and biological systems are important factors affecting the biological response following nanoparticle exposure. Iron oxide nanoparticles are classified mainly as magnetite (M-FeNPs) and maghemite (NM-FeNPs). In our previous study, NM-FeNPs induced autophagic cell death in RAW264.7, a murine peritoneal macrophage cell line, which has excellent lysosomal activity. In this study, we compared the toxicity of M-FeNPs and NM-FeNPs in MH-S, a murine alveolar macrophage cell line, which has relatively low lysosomal activity. At 24 h post-exposure, M-FeNPs decreased cell viability and ATP production, and elevated the levels of reactive oxygen species, nitric oxide, and pro-inflammatory cytokines to a higher extent than NM-FeNPs. Damage of mitochondria and the endoplasmic reticulum and the down-regulation of mitochondrial function and transcription-related genes were also higher in cells exposed to M-FeNPs than in cells exposed to NM-FeNPs (50 μg/ml). In addition, cells exposed to M-FeNPs (50 μg/ml) showed an increase in the number of autophagosome-like vacuoles, whereas cells exposed to NM-FeNPs formed large vacuoles in the cytosol. However, an autophagy-related molecular response was not induced by exposure to either FeNPs, unlike the results seen in our previous study with RAW264.7 cells. We suggest that M-FeNPs induced higher toxicity compared to NM-FeNPs in MH-S cells, and lysosomal activity plays an important role in determining cell death pathway.

Keywords

Iron nanoparticles Magnetic Toxicity Autophagy Macrophage 

Supplementary material

204_2014_1210_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 24 kb)
204_2014_1210_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 17 kb)
204_2014_1210_MOESM3_ESM.ppt (5.2 mb)
Supplementary material 3 (PPT 5297 kb)

References

  1. Altamura S, Muckenthaler MU (2009) Iron toxicity in diseases of aging: Alzheimer’s disease, Parkinson’s disease and atherosclerosis. J Alzheimers Dis 16(4):879–895PubMedGoogle Scholar
  2. Andón FT, Fadeel B (2013) Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials. Acc Chem Res 46(3):733–742PubMedCrossRefGoogle Scholar
  3. Beard J, Han O (2009) Systemic iron status. Biochim Biophys Acta 1790(7):584–588PubMedCrossRefGoogle Scholar
  4. Berberat PO, Katori M, Kaczmarek E, Anselmo D, Lassman C, Ke B, Shen X, Busuttil RW, Yamashita K, Csizmadia E, Tyagi S, Otterbein LE, Brouard S, Tobiasch E, Bach FH, Kupiec-Weglinski JW, Soares MP (2003) Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB J 17:1724–1726PubMedGoogle Scholar
  5. Bonkovsky HL (1991) Iron and the liver. Am J Med Sci 301(1):32–43PubMedCrossRefGoogle Scholar
  6. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15(7):713–720PubMedCrossRefGoogle Scholar
  7. Cho SH, Ahn AK, Bhargava P, Lee CH, Eischen CM, McGuinness O, Boothby M (2011) Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressivelymphoma (BAL) family. Proc Natl Acad Sci USA 108(38):15972–15977PubMedCentralPubMedCrossRefGoogle Scholar
  8. Crichton RR, Wilmet S, Legssyer R, Ward RJ (2002) Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 91(1):9–18PubMedCrossRefGoogle Scholar
  9. Culcasi M, Benameur L, Mercier A, Lucchesi C, Rahmouni H, Asteian A, Casano G, Botta A, Kovacic H, Pietri S (2012) EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles: evidence for NADPH oxidase and mitochondrial stimulation. Chem Biol Interact 199(3):161–176PubMedCrossRefGoogle Scholar
  10. Dunai Z, Bauer PI, Mihalik R (2011) Necroptosis: biochemical, physiological and pathological aspects. Pathol Oncol Res 17:791–800PubMedCrossRefGoogle Scholar
  11. Dupont CL, Grass G, Rensing C (2011) Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics 3:1109–1118PubMedCrossRefGoogle Scholar
  12. Duvigneau JC, Piskernik C, Haindl S, Kloesch B, Hartl RT, Hüttemann M, Lee I, Ebel T, Moldzio R, Gemeiner M, Redl H, Kozlov AV (2008) A novel endotoxin-induced pathway: upregulation of heme oxygenase 1, accumulation of free ion, and free iron-mediated mitochondrial dysfunction. Lab Invest 88:70–77PubMedCrossRefGoogle Scholar
  13. Feliu N, Fadeel B (2010) Nanotoxicology: no small matter. Nanoscale 2:2514–2520PubMedCrossRefGoogle Scholar
  14. Fong NM, Jensen TC, Shah AS, Parekh NN, Saltiel AR, Brady MJ (2000) Identification of binding sites on protein targeting to glycogen for enzymes of glycogen metabolism. J Biol Chem 275(45):35034–35039PubMedCrossRefGoogle Scholar
  15. Galleano M, Gimontacchi M, Puntarulo S (2004) Nitric oxide and iron: effect of iron overload on nitric oxide production in endotoxemia. Mol Aspects Med 25(1–2):141–154PubMedCrossRefGoogle Scholar
  16. Grau-Crespo R, Al-Baitai AY, Saadoune I, De Leeuw NH (2010) Vacancy ordering and electronic structure of γ-Fe2O3 (maghemite): a theoretical investigation. J Phys Condens Matter 22(25):255401PubMedCrossRefGoogle Scholar
  17. Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6:35PubMedCentralPubMedCrossRefGoogle Scholar
  18. Hegde ML, Hegde PM, Rao KS, Mitra S (2011) Oxidative genome damage and its repair in neurodegenerative diseases: function of transition metals as a double-edged sword. J Alzheimers Dis 24(Suppl 2):183–198PubMedCentralPubMedGoogle Scholar
  19. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104PubMedCrossRefGoogle Scholar
  20. Kang YS, Sisbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater 8:2209CrossRefGoogle Scholar
  21. Kimball SR (1999) Eukaryotic initiation factor eIF2. Int J Biochem Cell Biol 31(1):25–29PubMedCrossRefGoogle Scholar
  22. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110PubMedCrossRefGoogle Scholar
  23. Liu Q, Berchner-Pfannschmidt U, Möller U, Brecht M, Wotzlaw C, Acker H, Jungermann K, Kietzmann T (2004) A fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc Natl Acad Sci USA 101:4302–4307PubMedCentralPubMedCrossRefGoogle Scholar
  24. Lu JV, Walsh CM (2012) Programmed necrosis and autophagy in immune function. Immunol Rev 249:205–217PubMedCentralPubMedCrossRefGoogle Scholar
  25. Maurer-Jones MA, Lin YS, Haynes CL (2010) Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 4:3363–3373PubMedCrossRefGoogle Scholar
  26. Núñez MT, Urrutia P, Mena N, Aguirre P, Tapia V, Salazar J (2012) Iron toxicity in neurodegeneration. Biomaterials 25(4):761–776Google Scholar
  27. Orrenius S, Nicotera P, Zhivotovsky B (2011) Cell death mechanisms and their implications in toxicology. Toxicol Sci 119:3–19PubMedCrossRefGoogle Scholar
  28. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-sacle syntheses of monodisperse nanocrystals. Nat Mater 3:891–895PubMedCrossRefGoogle Scholar
  29. Park EJ, Shim HW, Lee GH, Kim JH, Kim DW (2013) Comparison of toxicity between the different-type TiO2 nanowires in vivo and in vitro. Arch Toxicol 87(7):1219–1230PubMedCrossRefGoogle Scholar
  30. Park EJ, Umh HN, Kim SW, Cho MH, Kim JH, Kim Y (2014) ERK pathway is activated in bare-FeNps-induced autophagy. Arch Toxicol 88(2):323–336Google Scholar
  31. Platt N, Haworth R, Darley L, Gordon S (2002) The many roles of the class A macrophage scavenger receptor. Int Rev Cytol 212:1–40PubMedCrossRefGoogle Scholar
  32. Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3(6):2461–2464PubMedCrossRefGoogle Scholar
  33. Sperandio S, Poksay KS, Schilling B, Crippen D, Gibson BW, Bredesen DE (2010) Identification of new modulators and protein alteration in non-apoptotic programmed cell death. J Cell Biochem 111(6):1401–1412PubMedCrossRefGoogle Scholar
  34. The National Academy of Sciences (2007) Toxicity testing in the 21st century: a vision and a strategy. http://nationalacacemies.org/best
  35. Trump BF, Berezesky IK (1995) Calcium-mediated cell injury and cell death. FASEB J 9:219–228PubMedGoogle Scholar
  36. Voinov MA, Sosa Pagán JO, Morrison E, Smirnova TI, Smirnov AI (2011) Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133:35–41PubMedCrossRefGoogle Scholar
  37. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91:227–236PubMedCrossRefGoogle Scholar
  38. Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104PubMedCrossRefGoogle Scholar
  39. Winterbourn CC (1995) Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82–83:969–974PubMedCrossRefGoogle Scholar
  40. Wu W, Liu P, Li J (2012) Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol 82:249–258PubMedCrossRefGoogle Scholar
  41. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552PubMedCentralPubMedCrossRefGoogle Scholar
  42. Zhang R, Piao MJ, Kim KC, Kim AD, Choi JY, Choi J, Hyun JW (2012) Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis. Int J Biochem Cell Biol 44(1):224–232PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eun-Jung Park
    • 1
  • Ha Nee Umh
    • 2
  • Dong-Hyuk Choi
    • 1
  • Myung Haing Cho
    • 3
  • Wookhee Choi
    • 4
  • Sang-Wook Kim
    • 1
  • Younghun Kim
    • 2
  • Jae-Ho Kim
    • 1
  1. 1.Department of Molecular Science and TechnologyAjou UniversitySuwonKorea
  2. 2.Department of Chemical EngineeringKwangwoon UniversitySeoulKorea
  3. 3.College of Veterinary MedicineSeoul National UniversitySeoulKorea
  4. 4.Environmental Health Research DepartmentNational Institute of Environmental ResearchIncheonKorea

Personalised recommendations