Archives of Toxicology

, Volume 88, Issue 1, pp 15–45 | Cite as

Khat and synthetic cathinones: a review

  • Maria João Valente
  • Paula Guedes de Pinho
  • Maria de Lourdes Bastos
  • Félix Carvalho
  • Márcia Carvalho
Review Article

Abstract

For centuries, ‘khat sessions’ have played a key role in the social and cultural traditions among several communities around Saudi Arabia and most East African countries. The identification of cathinone as the main psychoactive compound of khat leaves, exhibiting amphetamine-like pharmacological properties, resulted in the synthesis of several derivatives structurally similar to this so-called natural amphetamine. Synthetic cathinones were primarily developed for therapeutic purposes, but promptly started being misused and extensively abused for their euphoric effects. In the mid-2000’s, synthetic cathinones emerged in the recreational drug markets as legal alternatives (‘legal highs’) to amphetamine, ‘ecstasyʼ, or cocaine. Currently, they are sold as ‘bath salts’ or ‘plant foodʼ, under ambiguous labels lacking information about their true contents. Cathinone derivatives are conveniently available online or at ‘smartshops’ and are much more affordable than the traditional illicit drugs. Despite the scarcity of scientific data on these ‘legal highs’, synthetic cathinones use became an increasingly popular practice worldwide. Additionally, criminalization of these derivatives is often useless since for each specific substance that gets legally controlled, one or more structurally modified analogs are introduced into the legal market. Chemically, these substances are structurally related to amphetamine. For this reason, cathinone derivatives share with this drug both central nervous system stimulating and sympathomimetic features. Reports of intoxication and deaths related to the use of ‘bath salts’ have been frequently described over the last years, and several attempts to apply a legislative control on synthetic cathinones have been made. However, further research on their pharmacological and toxicological properties is fully required in order to access the actual potential harm of synthetic cathinones to general public health. The present work provides a review on khat and synthetic cathinones, concerning their historical background, prevalence, patterns of use, legal status, chemistry, pharmacokinetics, pharmacodynamics, and their physiological and toxicological effects on animals and humans.

Keywords

Khat Synthetic cathinones Bath salts Pharmacokinetics Pharmacodynamics Toxicity 

References

  1. AAPCC (2013) American Association of Poison Control Centers: bath salts. Available in http://www.aapcc.org/alerts/bath-salts/
  2. Aarde SM, Angrish D, Barlow DJ et al (2013a) Mephedrone (4-methylmethcathinone) supports intravenous self-administration in Sprague-Dawley and Wistar rats. Addict Biol 18(5):786–799. doi:10.1111/adb.12038 Google Scholar
  3. Aarde SM, Huang PK, Creehan KM, Dickerson TJ, Taffe MA (2013b) The novel recreational drug 3,4-methylenedioxypyrovalerone (MDPV) is a potent psychomotor stimulant: self-administration and locomotor activity in rats. Neuropharmacology 71:130–140. doi:10.1016/j.neuropharm.2013.04.003 PubMedGoogle Scholar
  4. Adebamiro A, Perazella MA (2012) Recurrent acute kidney injury following bath salts intoxication. Am J Kidney Dis Off J Natl Kidney Found 59(2):273–275. doi:10.1053/j.ajkd.2011.10.012 Google Scholar
  5. Alem A, Kebede D, Kullgren G (1999) The prevalence and socio-demographic correlates of khat chewing in Butajira, Ethiopia. Acta Psychiatr Scand Suppl 397:84–91. doi:10.1111/j.1600-0447.1999.tb10699.x PubMedGoogle Scholar
  6. Al-Habori M (2005) The potential adverse effects of habitual use of Catha edulis (khat). Expert Opin Drug Saf 4(6):1145–1154. doi:10.1517/14740338.4.6.1145 PubMedGoogle Scholar
  7. Ali WM, Zubaid M, Al-Motarreb A et al (2010) Association of khat chewing with increased risk of stroke and death in patients presenting with acute coronary syndrome. Mayo Clin Proc 85(11):974–980. doi:10.4065/mcp.2010.0398 PubMedGoogle Scholar
  8. Alkadi HO, Noman MA, Al-Thobhani AK, Al-Mekhlafi FS, Raja a YA (2002) Clinical and experimental evaluation of the effect of khat-induced myocardial infarction. Saudi Med J 23(10):1195–1198PubMedGoogle Scholar
  9. Al-Motarreb A, Baker K, Broadley KJ (2002) Khat: pharmacological and medical aspects and its social use in Yemen. Phytother Res 16(5):403–413. doi:10.1002/ptr.1106 PubMedGoogle Scholar
  10. Al-Motarreb A, Briancon S, Al-Jaber N et al (2005) Khat chewing is a risk factor for acute myocardial infarction: a case-control study. Br J Clin Pharmacol 59(5):574–581. doi:10.1111/j.1365-2125.2005.02358.x PubMedGoogle Scholar
  11. Al-Motarreb A, Al-Habori M, Broadley KJ (2010) Khat chewing, cardiovascular diseases and other internal medical problems: the current situation and directions for future research. J Ethnopharmacol 132(3):540–548. doi:10.1016/j.jep.2010.07.001 PubMedGoogle Scholar
  12. Al-Mugahed L (2008) Khat chewing in Yemen: turning over a new leaf. Bull World Health Organ 86(10):741PubMedGoogle Scholar
  13. Angoa-Pérez M, Kane MJ, Francescutti DM et al (2012) Mephedrone, an abused psychoactive component of ‘bath salts’ and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. J Neurochem 120(6):1097–1107. doi:10.1111/j.1471-4159.2011.07632.x PubMedCentralPubMedGoogle Scholar
  14. Angoa-Pérez M, Kane MJ, Briggs DI et al (2013) Mephedrone does not damage dopamine nerve endings of the striatum, but enhances the neurotoxicity of methamphetamine, amphetamine, and MDMA. J Neurochem 125(1):102–110. doi:10.1111/jnc.12114 Google Scholar
  15. Antonowicz JL, Metzger AK, Ramanujam SL (2011) Paranoid psychosis induced by consumption of methylenedioxypyrovalerone: two cases. General Hosp Psychiatry 33(6):640 e5–640 e6. doi:10.1016/j.genhosppsych.2011.04.010 Google Scholar
  16. Archer RP (2009) Fluoromethcathinone, a new substance of abuse. Forensic Sci Int 185(1–3):10–20. doi:10.1016/j.forsciint.2008.11.013 PubMedGoogle Scholar
  17. Arunotayanun W, Gibbons S (2012) Natural product ‘legal highs’. Nat Prod Rep 29(11):1304–1316. doi:10.1039/c2np20068f PubMedGoogle Scholar
  18. Balint EE, Falkay G, Balint GA (2009) Khat—a controversial plant. Wien Klin Wochenschr 121(19–20):604–614. doi:10.1007/s00508-009-1259-7 PubMedGoogle Scholar
  19. Banjaw MY, Miczek K, Schmidt WJ (2006) Repeated Catha edulis oral administration enhances the baseline aggressive behavior in isolated rats. J Neural Transm 113(5):543–556. doi:10.1007/s00702-005-0356-7 PubMedGoogle Scholar
  20. Baumann MH, Ayestas MA Jr, Partilla JS et al (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 37(5):1192–1203. doi:10.1038/npp.2011.304 Google Scholar
  21. Baumann MH, Partilla JS, Lehner KR (2013a) Psychoactive “bath salts”: not so soothing. Eur J Pharmacol 698(1–3):1–5. doi:10.1016/j.ejphar.2012.11.020 PubMedGoogle Scholar
  22. Baumann MH, Partilla JS, Lehner KR et al (2013b) Powerful cocaine-like actions of 3,4-Methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive ‘bath salts’ products. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 38(4):552–562. doi:10.1038/npp.2012.204 Google Scholar
  23. Belhadj-Tahar H, Sadeg N (2005) Methcathinone: a new postindustrial drug. Forensic Sci Int 153(1):99–101. doi:10.1016/j.forsciint.2005.04.023 PubMedGoogle Scholar
  24. Bentur Y, Bloom-Krasik A, Raikhlin-Eisenkraft B (2008) Illicit cathinone (“Hagigat”) poisoning. Clin Toxicol 46(3):206–210. doi:10.1080/15563650701517574 Google Scholar
  25. Borek HA, Holstege CP (2012) Hyperthermia and multiorgan failure after abuse of “bath salts” containing 3,4-methylenedioxypyrovalerone. Ann Emerg Med 60(1):103–105. doi:10.1016/j.annemergmed.2012.01.005 PubMedGoogle Scholar
  26. Bossong MG, Van Dijk JP, Niesink RJ (2005) Methylone and mCPP, two new drugs of abuse? Addict Biol 10(4):321–323. doi:10.1080/13556210500350794 PubMedGoogle Scholar
  27. Boulanger-Gobeil C, St-Onge M, Laliberte M, Auger PL (2012) Seizures and hyponatremia related to ethcathinone and methylone poisoning. J Med Toxicol Off J Am Coll Med Toxicol 8(1):59–61. doi:10.1007/s13181-011-0159-1 Google Scholar
  28. Brandt SD, Sumnall HR, Measham F, Cole J (2010a) Analyses of second-generation ‘legal highs’ in the UK: initial findings. Drug Test Anal 2(8):377–382. doi:10.1002/dta.155 PubMedGoogle Scholar
  29. Brandt SD, Sumnall HR, Measham F, Cole J (2010b) Second generation mephedrone. The confusing case of NRG-1. Bmj 341:c3564. doi:10.1136/bmj.c3564
  30. Brandt SD, Wootton RC, De Paoli G, Freeman S (2010c) The naphyrone story: the alpha or beta-naphthyl isomer? Drug Test Anal 2(10):496–502. doi:10.1002/dta.185 PubMedGoogle Scholar
  31. Brandt SD, Freeman S, Sumnall HR, Measham F, Cole J (2011) Analysis of NRG ‘legal highs’ in the UK: identification and formation of novel cathinones. Drug Test Anal 3(9):569–575. doi:10.1002/dta.204 PubMedGoogle Scholar
  32. Brenneisen R, Geisshusler S, Schorno X (1986) Metabolism of cathinone to (−)-norephedrine and (−)-norpseudoephedrine. The Journal of pharmacy and pharmacology 38(4):298–300. doi:10.1111/j.2042-7158.1986.tb04571.x PubMedGoogle Scholar
  33. Brenneisen R, Fisch HU, Koelbing U, Geisshusler S, Kalix P (1990) Amphetamine-like effects in humans of the khat alkaloid cathinone. Br J Clin Pharmacol 30(6):825–828. doi:10.1111/j.1365-2125.1990.tb05447.x PubMedGoogle Scholar
  34. Bretteville-Jensen A, Tuv S, Bilgrei O, Fjeld B, Bachs L (2013) Synthetic cannabinoids and cathinones: prevalence and markets. Forensic Sci Rev 25:7–26Google Scholar
  35. Bronstein AC, Spyker DA, Cantilena LR, Jr., Green JL, Rumack BH, Dart RC (2011) 2010 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 28th annual report. Clinical toxicology 49(10):910–41 doi:10.3109/15563650.2011.635149
  36. Bruno R, Matthews AJ, Dunn M et al (2012) Emerging psychoactive substance use among regular ecstasy users in Australia. Drug Alcohol Depend 124(1–2):19–25. doi:10.1016/j.drugalcdep.2011.11.020 PubMedGoogle Scholar
  37. Brunt TM, Poortman A, Niesink RJ, van den Brink W (2011) Instability of the ecstasy market and a new kid on the block: mephedrone. J Psychopharmacol 25(11):1543–1547. doi:10.1177/0269881110378370 PubMedGoogle Scholar
  38. Cameron KN, Kolanos R, Solis E Jr, Glennon RA, De Felice LJ (2013) Bath salts components mephedrone and methylenedioxypyrovalerone (MDPV) act synergistically at the human dopamine transporter. Br J Pharmacol 168(7):1750–1757. doi:10.1111/bph.12061 PubMedGoogle Scholar
  39. Canning H, Goff D, Leach MJ, Miller AA, Tateson JE, Wheatley PL (1979) The involvement of dopamine in the central actions of bupropion, a new antidepressant [proceedings]. Br J Pharmacol 66(1):104P–105PPubMedGoogle Scholar
  40. Carbone PN, Carbone DL, Carstairs SD, Luzi SA (2013) Sudden cardiac death associated with methylone use. Am J Forensic Med Pathol 34(1):26–28. doi:10.1097/PAF.0b013e31827ab5da PubMedGoogle Scholar
  41. Carhart-Harris RL, King LA, Nutt DJ (2011) A web-based survey on mephedrone. Drug Alcohol Depend 118(1):19–22. doi:10.1016/j.drugalcdep.2011.02.011 PubMedGoogle Scholar
  42. Carvalho F (2003) The toxicological potential of khat. J Ethnopharmacol 87(1):1–2PubMedGoogle Scholar
  43. Carvalho M, Carmo H, Costa VM et al (2012) Toxicity of amphetamines: an update. Arch Toxicol 86(8):1167–1231. doi:10.1007/s00204-012-0815-5 PubMedGoogle Scholar
  44. Cawrse BM, Levine B, Jufer RA et al (2012) Distribution of methylone in four postmortem cases. J Anal Toxicol 36(6):434–439. doi:10.1093/jat/bks046 PubMedGoogle Scholar
  45. Chapman MH, Kajihara M, Borges G et al (2010) Severe, acute liver injury and khat leaves. N Engl J Med 362(17):1642–1644. doi:10.1056/NEJMc0908038 PubMedGoogle Scholar
  46. Clein LJ, Benady DR (1962) Case of diethylpropion addiction. Br Med J 2(5302):456PubMedCentralPubMedGoogle Scholar
  47. Colosimo C, Guidi M (2009) Parkinsonism due to ephedrone neurotoxicity: a case report. Eur J Neurol Off J Eur Fed Neurol Soc 16(6):e114–e115. doi:10.1111/j.1468-1331.2009.02606.x Google Scholar
  48. Colzato LS, Ruiz MJ, van den Wildenberg WP, Hommel B (2011) Khat use is associated with impaired working memory and cognitive flexibility. PLoS ONE 6(6):e20602PubMedCentralPubMedGoogle Scholar
  49. Coppola M, Mondola R (2012) Synthetic cathinones: chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as “bath salts” or “plant food”. Toxicol Lett 211(2):144–149. doi:10.1016/j.toxlet.2012.03.009 PubMedGoogle Scholar
  50. Corkery JM, Schifano F, Oyefeso A et al (2011) ‘Bundle of fun’or’bunch of problems’? Case series of khat-related deaths in the UK. Drugs Educ Prev Policy 18(6):408–425. doi:10.3109/09687637.2010.504200 Google Scholar
  51. Council E (2010) 2010/759/EU: council Decision of 2 December 2010 on submitting 4-methylmethcathinone (mephedrone) to control measures. Off J Eur Union L 322:44–45Google Scholar
  52. Cox G, Rampes H (2003) Adverse effects of khat: a review. Adv Psychiatr Treat 9:456–463. doi:10.1192/apt.9.6.456 Google Scholar
  53. Cozzi NV, Sievert MK, Shulgin AT, Jacob P 3rd, Ruoho AE (1999) Inhibition of plasma membrane monoamine transporters by beta-ketoamphetamines. Eur J Pharmacol 381(1):63–69. doi:10.1016/S0014-2999(99)00538-5 PubMedGoogle Scholar
  54. Cunningham GL (1963) Diethylpropion in the treatment of obesity. J Coll General Pract 6:347–349Google Scholar
  55. Dal Cason TA (1997) The characterization of some 3, 4-methylenedioxycathinone (MDCATH) homologs. Forensic Sci Int 87(1):9–53. doi:10.1016/S0379-0738(97)02133-6 Google Scholar
  56. Dal Cason TA, Young R, Glennon RA (1997) Cathinone: an investigation of several N-alkyl and methylenedioxy-substituted analogs. Pharmacol Biochem Behav 58:1109–1116. doi:10.1016/S0091-3057(97)00323-7 PubMedGoogle Scholar
  57. Dargan PI, Albert S, Wood DM (2010) Mephedrone use and associated adverse effects in school and college/university students before the UK legislation change. QJM Mon J Assoc Phys 103(11):875–879. doi:10.1093/qjmed/hcq134 Google Scholar
  58. Dargan PI, Sedefov R, Gallegos A, Wood DM (2011) The pharmacology and toxicology of the synthetic cathinone mephedrone (4-methylmethcathinone). Drug Test Anal 3(7–8):454–463. doi:10.1002/dta.312 PubMedGoogle Scholar
  59. Davies S, Wood DM, Smith G et al (2010) Purchasing ‘legal highs’ on the Internet–is there consistency in what you get? QJM Mon J Assoc Phys 103(7):489–493. doi:10.1093/qjmed/hcq056 Google Scholar
  60. de Bie RM, Gladstone RM, Strafella AP, Ko JH, Lang AE (2007) Manganese-induced Parkinsonism associated with methcathinone (Ephedrone) abuse. Arch Neurol 64(6):886–889. doi:10.1001/archneur.64.6.886 PubMedGoogle Scholar
  61. Deluca P, Schifano F, Davey Z, Corazza O, Di Furia L, Group PWMR (2009a) MDPV Report. Available at http://www.psychonautproject.eu/
  62. Deluca P, Schifano F, Davey Z, Corazza O, Di Furia L, Group PWMR (2009b) Mephedrone report. Available at http://www.psychonautproject.eu/
  63. den Hollander B, Rozov S, Linden AM, Uusi-Oukari M, Ojanpera I, Korpi ER (2013) Long-term cognitive and neurochemical effects of “bath salt” designer drugs methylone and mephedrone. Pharmacol Biochem Behav 103(3):501–509. doi:10.1016/j.pbb.2012.10.006 Google Scholar
  64. Deniker P, Loo H, Cuche H, Roux JM (1975) Abuse of pyrovalerone by drug addicts. Ann Med Psychol 2(4):745–748Google Scholar
  65. Derungs A, Schietzel S, Meyer MR, Maurer HH, Krahenbuhl S, Liechti ME (2011) Sympathomimetic toxicity in a case of analytically confirmed recreational use of naphyrone (naphthylpyrovalerone). Clin Toxicol 49(7):691–693. doi:10.3109/15563650.2011.592838 Google Scholar
  66. Dhaifalah I, Santavy J (2004) Khat habit and its health effect. A natural amphetamine. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 148(1):11–15Google Scholar
  67. Drug Enforcement Administration DoJ (1993a) Schedules of controlled substances: placement of cathinone and 2,5-dimethoxy-4-ethylamphetamine into schedule I. Fed Reg 58(9):4316–4318Google Scholar
  68. Drug Enforcement Administration DoJ (1993b) Schedules of controlled substances: temporary placement of cathine ((+)-norpseudoephedrine), fencamfamine, fenproporex and mefenorex into schedule IV. Fed Reg 53(95):17459–17460Google Scholar
  69. Drug Enforcement Administration DoJ (2011) Schedules of controlled substances: temporary placement of three synthetic cathinones in Schedule I. Final order. Fed Reg 76(204):65371–65375Google Scholar
  70. Drug Enforcement Administration DoJ (2012) Schedules of controlled substances: extension of temporary placement of methylone into schedule I of the controlled substances Act. Final order. Fed Reg 77(202):64032–64033Google Scholar
  71. EMCDDA (2011) The EMCDDA annual report 2011: the state of the drugs problem in Europe. Euro Surveill. doi:10.2810/44330. Available at http://www.emcdda.europa.eu/
  72. EMCDDA (2012) The EMCDDA annual report 2012: the state of the drugs problem in Europe. Euro Surveill. doi:10.2810/64775. Available at http://www.emcdda.europa.eu/
  73. EMCDDA-Europol (2009) EMCDDA–Europol 2008 annual report on the implementation of council decision 2005/387/JHA. Available at http://www.emcdda.europa.eu/
  74. EMCDDA-Europol (2010) EMCDDA–Europol 2009 annual report on the implementation of council decision 2005/387/JHA. Available at http://www.emcdda.europa.eu/
  75. EMCDDA-Europol (2011) EMCDDA–Europol 2010 annual report on the implementation of council decision 2005/387/JHA. Available at http://www.emcdda.europa.eu/
  76. Emerson TS, Cisek JE (1993) Methcathinone: a Russian designer amphetamine infiltrates the rural midwest. Ann Emerg Med 22(12):1897–1903. doi:10.1016/S0196-0644(05)80419-6 PubMedGoogle Scholar
  77. Europol–EMCDDA (2010) Europol–EMCDDA Joint Report on a new psychoactive substance: 4-methylmethcathinone (mephedrone). Available at http://www.emcdda.europa.eu/
  78. Falgiani M, Desai B, Ryan M (2012) “Bath salts” intoxication: a case report. Case Rep Emerg Med 2012:976314. doi:10.1155/2012/976314 PubMedCentralPubMedGoogle Scholar
  79. Fantegrossi WE, Gannon BM, Zimmerman SM, Rice KC (2013) In vivo effects of abused ‘bath salt’ constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice: drug discrimination, thermoregulation, and locomotor activity. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 38(4):563–573. doi:10.1038/npp.2012.233 Google Scholar
  80. Fasanmade A, Kwok E, Newman L (2007) Oral squamous cell carcinoma associated with khat chewing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104(1):e53–e55. doi:10.1016/j.tripleo.2007.01.010 PubMedGoogle Scholar
  81. Fass JA, Fass AD, Garcia AS (2012) Synthetic cathinones (bath salts): legal status and patterns of abuse. Ann Pharmacother 46(3):436–441. doi:10.1345/aph.1Q628 PubMedGoogle Scholar
  82. Fay V, Eitel J (2013) High on the designer drug naphyrone: a case report of “bath salt” toxicity. Internet J Adv Nurs Pract 12(1)Google Scholar
  83. Feyissa AM, Kelly JP (2008) A review of the neuropharmacological properties of khat. Prog Neuropsychopharmacol Biol Psychiatry 32(5):1147–1166. doi:10.1016/j.pnpbp.2007.12.033 PubMedGoogle Scholar
  84. Fluckiger FA, Gerock JE (1887) Contribution to the knowledge of catha leaves. Pharm J Transvaal 18:221–224Google Scholar
  85. Fröhlich S, Lambe E, O’Dea J (2011) Acute liver failure following recreational use of psychotropic “head shop” compounds. Ir J Med Sci 180(1):263–264. doi:10.1007/s11845-010-0636-6 PubMedGoogle Scholar
  86. Gardos G, Cole JO (1971) Evaluation of pyrovalerone in chronically fatigued volunteers. Curr Ther Res Clin Exp 13(10):631–635PubMedGoogle Scholar
  87. Garrett G, Sweeney M (2010) The serotonin syndrome as a result of mephedrone toxicity. BMJ Case Rep 2010:1–5. doi:10.1136/bcr.04.2010.2925
  88. Gershman JA, Fass AD (2012) Synthetic cathinones (‘bath salts’): legal and health care challenges. P & T Peer Rev J formul Manag 37(10):571–595Google Scholar
  89. Gezon LL (2012) Drug crops and food security: the effects of khat on lives and livelihoods in northern madagascar. Cult Agric Food Environ 34(2):124–135. doi:10.1111/j.2153-9561.2012.01072.x Google Scholar
  90. Giannini JA, Castellani S (1982) A manic-like psychosis due to khat catha edulis Forsk. Clin Toxicol 19(5):455–459Google Scholar
  91. Gibbons S, Zloh M (2010) An analysis of the ‘legal high’ mephedrone. Bioorg Med Chem Lett 20(14):4135–4139. doi:10.1016/j.bmcl.2010.05.065 PubMedGoogle Scholar
  92. Goldberg J, Gardos G, Cole JO (1973) A controlled evaluation of pyrovalerone in chronically fatigued volunteers. Int Pharmacopsychiatry 8(1):60–69PubMedGoogle Scholar
  93. Goldstone MS (1993) ‘Cat’: methcathinone–a new drug of abuse. JAMA, J Am Med Assoc 269(19):2508Google Scholar
  94. Gorgaslidze AG, Saifullaeva MA, Kuz’mina MM, Golitsina LS, Smetnev AS (1993) Cardiac arrhythmia and myocardial contraction in opium and ephedrone addiction. Kardiologiia 33(1):14–16PubMedGoogle Scholar
  95. Gorun G, Dermengiu D, Curcă C, Hostiuc S, Ioan B, Luta V (2010) Toxicological drivers issues in “legal highs” use. Romanian J Legal Med 18(4):272Google Scholar
  96. Goshgarian AM, Benford DM, Caplan JP (2011) Bath salt abuse: neuropsychiatric effects of cathinone derivatives. Psychosomatics 52(6):593–594. doi:10.1016/j.psym.2011.03.003 PubMedGoogle Scholar
  97. Granek M, Shalev A, Weingarten AM (1988) Khat-induced hypnagogic hallucinations. Acta Psychiatr Scand 78(4):458–461PubMedGoogle Scholar
  98. Griffith JD, Carranza J, Griffith C, Miller LL (1983) Bupropion: clinical assay for amphetamine-like abuse potential. J Clin Psychiatry 44(5 Pt 2):206–208PubMedGoogle Scholar
  99. Griffiths P, Lopez D, Sedefov R et al (2010) Khat use and monitoring drug use in Europe: the current situation and issues for the future. J Ethnopharmacol 132(3):578–583. doi:10.1016/j.jep.2010.04.046 PubMedGoogle Scholar
  100. Guantai AN, Maitai CK (1983) Metabolism of cathinone to d-norpseudoephedrine in humans. J Pharm Sci 72(10):1217–1218PubMedGoogle Scholar
  101. Gunderson EW, Kirkpatrick MG, Willing LM, Holstege CP (2013) Intranasal substituted cathinone “bath salts” psychosis potentially exacerbated by diphenhydramine. J Addict Med 7(3):163–168. doi:10.1097/ADM.0b013e31829084d5 PubMedGoogle Scholar
  102. Hadlock GC, Webb KM, McFadden LM et al (2011) 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. J Pharmacol Exp Ther 339(2):530–536. doi:10.1124/jpet.111.184119 PubMedGoogle Scholar
  103. Halbach H (1972) Medical aspects of the chewing of khat leaves. Bull World Health Organ 47(1):21–29PubMedCentralPubMedGoogle Scholar
  104. Halket JM, Karasu Z, Murray-Lyon IM (1995) Plasma cathinone levels following chewing khat leaves (Catha edulis Forsk.). J Ethnopharmacol 49(2):111–113PubMedGoogle Scholar
  105. Hansen P (2010) The ambiguity of khat in Somaliland. J Ethnopharmacol 132(3):590–599. doi:10.1016/j.jep.2010.02.028 PubMedGoogle Scholar
  106. Hill SL, Thomas SH (2011) Clinical toxicology of newer recreational drugs. Clin Toxicol 49(8):705–719. doi:10.3109/15563650.2011.615318 Google Scholar
  107. Hyde J, Browning E, Adams R (1928) Synthetic homologs of d, l-ephedrine. J Am Chem Soc 50(8):2287–2292Google Scholar
  108. Iqbal M, Monaghan T, Redmond J (2012) Manganese toxicity with ephedrone abuse manifesting as Parkinsonism: a case report. J Med Case Rep 6(1):52. doi:10.1186/1752-1947-6-52 PubMedCentralPubMedGoogle Scholar
  109. James D, Adams RD, Spears R et al (2011) Clinical characteristics of mephedrone toxicity reported to the U.K. National Poisons Information Service. Emerg Med J EMJ 28(8):686–689. doi:10.1136/emj.2010.096636 Google Scholar
  110. Jerry J, Collins G, Streem D (2012) Synthetic legal intoxicating drugs: the emerging ‘incense’ and ‘bath salt’ phenomenon. Clevel Clin J Med 79(4):258–264. doi:10.3949/ccjm.79a.11147 Google Scholar
  111. Kalix P (1983) A comparison of the catecholamine releasing effect of the khat alkaloids (−)-cathinone and (+)-norpseudoephedrine. Drug Alcohol Depend 11(3–4):395–401PubMedGoogle Scholar
  112. Kalix P (1984) Recent advances in khat research. Alcohol Alcohol 19(4):319–323PubMedGoogle Scholar
  113. Kalix P (1991) The pharmacology of psychoactive alkaloids from ephedra and catha. J Ethnopharmacol 32(1–3):201–208. doi:10.1016/0378-8741(91)90119-X PubMedGoogle Scholar
  114. Kalix P (1992) Cathinone, a natural amphetamine. Pharmacol Toxicol 70(2):77–86. doi:10.1111/j.1600-0773.1992.tb00434.x PubMedGoogle Scholar
  115. Kalix P (1996) Catha edulis, a plant that has amphetamine effects. Pharm World Sci PWS 18(2):69–73Google Scholar
  116. Kalix P, Braenden O (1985) Pharmacological aspects of the chewing of khat leaves. Pharmacol Rev 37(2):149–164PubMedGoogle Scholar
  117. Kalix P, Khan I (1984) Khat: an amphetamine-like plant material. Bull World Health Organ 62(5):681–686PubMedCentralPubMedGoogle Scholar
  118. Kamata HT, Shima N, Zaitsu K et al (2006) Metabolism of the recently encountered designer drug, methylone, in humans and rats. Xenobiotica Fate Foreign Compd Biol Syst 36(8):709–723. doi:10.1080/00498250600780191 Google Scholar
  119. Karila L, Reynaud M (2011) GHB and synthetic cathinones: clinical effects and potential consequences. Drug Test Anal 3(9):552–559. doi:10.1002/dta.210 PubMedGoogle Scholar
  120. Kasick DP, McKnight CA, Klisovic E (2012) “Bath salt” ingestion leading to severe intoxication delirium: two cases and a brief review of the emergence of mephedrone use. Am Journal Drug Alcohol Abuse 38(2):176–180. doi:10.3109/00952990.2011.643999 Google Scholar
  121. Kassie F, Darroudi F, Kundi M, Schulte-Hermann R, Knasmuller S (2001) Khat (Catha edulis) consumption causes genotoxic effects in humans. Int J Cancer 92(3):329–332PubMedGoogle Scholar
  122. Kelly JP (2011) Cathinone derivatives: a review of their chemistry, pharmacology and toxicology. Drug Test Anal 3(7–8):439–453. doi:10.1002/dta.313 PubMedGoogle Scholar
  123. Khan S, Shaheen F, Sarwar H, Molina J, Mushtaq S (2013) “Bath salts”-induced psychosis in a young woman. Prim Care Companion CNS Disord 15(1):1–7. doi:10.4088/PCC.12l01417
  124. Khreit OI, Grant MH, Zhang T, Henderson C, Watson DG, Sutcliffe OB (2013) Elucidation of the Phase I and Phase II metabolic pathways of (±)-4′-methylmethcathinone (4-MMC) and (±)-4′-(trifluoromethyl)methcathinone (4-TFMMC) in rat liver hepatocytes using LC-MS and LC-MS(2). J Pharm Biomed Anal 72:177–185. doi:10.1016/j.jpba.2012.08.015 PubMedGoogle Scholar
  125. Klein A, Beckerleg S, Hailu D (2009) Regulating khat—dilemmas and opportunities for the international drug control system. Int J Drug Policy 20(6):509–513PubMedGoogle Scholar
  126. Klein A, Jelsma M, Metaal P (2012) Chewing over Khat prohibition. In: The globalisation of control and regulation of an ancient stimulant. Transnational Institute Series on Legislative Reform of Drug Policies No. 17. Transnational Institute, AmsterdamGoogle Scholar
  127. Knoll J (1979) Studies on the central effects of (-)cathinone. NIDA Res Monogr 27:322–323PubMedGoogle Scholar
  128. Kovacs K, Toth AR, Kereszty EM (2012) A new designer drug: methylone related death. Orv Hetil 153(7):271–276. doi:10.1556/OH.2012.29310 PubMedGoogle Scholar
  129. Kriikku P, Wilhelm L, Schwarz O, Rintatalo J (2011) New designer drug of abuse: 3,4-Methylenedioxypyrovalerone (MDPV). Findings from apprehended drivers in Finland. Forensic Sci Int 210(1–3):195–200. doi:10.1016/j.forsciint.2011.03.015 PubMedGoogle Scholar
  130. Kuenssberg E (1962) Diethylpropion. Br Med J 2(5306):729PubMedCentralGoogle Scholar
  131. Kyle PB, Iverson RB, Gajagowni RG, Spencer L (2011) Illicit bath salts: not for bathing. J Miss State Med Assoc 52(12):375–377PubMedGoogle Scholar
  132. Lea T, Reynolds R, De Wit J (2011) Mephedrone use among same-sex attracted young people in Sydney, Australia. Drug Alcohol Rev 30(4):438–440. doi:10.1111/j.1465-3362.2011.00288.x PubMedGoogle Scholar
  133. Levine M, Levitan R, Skolnik A (2013) Compartment syndrome after “bath salts” use: a case series. Ann Emerg Med 61(4):480–483. doi:10.1016/j.annemergmed.2012.11.021 PubMedGoogle Scholar
  134. Lindsay L, White ML (2012) Herbal marijuana alternatives and bath salts—“barely legal” toxic highs. Clin Pediatr Emerg Med 13(4):283–291. doi:10.1016/j.cpem.2012.09.001 Google Scholar
  135. Lisek R, Xu W, Yuvasheva E et al (2012) Mephedrone (‘bath salt’) elicits conditioned place preference and dopamine-sensitive motor activation. Drug Alcohol Depend 126(1–2):257–262. doi:10.1016/j.drugalcdep.2012.04.021 PubMedCentralPubMedGoogle Scholar
  136. Locos O, Reynolds D (2012) The characterization of 3,4-dimethylmethcathinone (3,4-DMMC). J Forensic Sci 57(5):1303–1306. doi:10.1111/j.1556-4029.2012.02142.x PubMedGoogle Scholar
  137. Lopez-Arnau R, Martinez-Clemente J, Pubill D, Escubedo E, Camarasa J (2012) Comparative neuropharmacology of three psychostimulant cathinone derivatives: butylone, mephedrone and methylone. Br J Pharmacol 167(2):407–420. doi:10.1111/j.1476-5381.2012.01998.x PubMedGoogle Scholar
  138. Lopez-Arnau R, Martinez-Clemente J, Carbo M, Pubill D, Escubedo E, Camarasa J (2013) An integrated pharmacokinetic and pharmacodynamic study of a new drug of abuse, methylone, a synthetic cathinone sold as “bath salts”. Progress Neuro Psychopharmacol Biol Psychiatry 45:64–72. doi:10.1016/j.pnpbp.2013.04.007
  139. Lusthof KJ, Oosting R, Maes A, Verschraagen M, Dijkhuizen A, Sprong AG (2011) A case of extreme agitation and death after the use of mephedrone in The Netherlands. Forensic Sci Int 206(1–3):e93–e95. doi:10.1016/j.forsciint.2010.12.014 PubMedGoogle Scholar
  140. Maan ZN, D’Souza AR (2012) Spontaneous subcutaneous emphysema associated with mephedrone usage. Ann R Coll Surg Engl 94(1):e38–e40. doi:10.1308/003588412X13171221499108 PubMedGoogle Scholar
  141. Mackay K, Taylor M, Bajaj N (2011) The adverse consequences of mephedrone use: a case series. Psychiatrist 35(6):203–205. doi:10.1192/pb.bp.110.032433 Google Scholar
  142. Maheux CR, Copeland CR (2012) Chemical analysis of two new designer drugs: buphedrone and pentedrone. Drug Test Anal 4(1):17–23. doi:10.1002/dta.385 PubMedGoogle Scholar
  143. Maheux CR, Copeland CR, Pollard MM (2010) Characterization of three methcathinone analogs: 4-methylmethcathinone, methylone, and bk-MBDB. Microgram J 7:42–49Google Scholar
  144. Manghi RA, Broers B, Khan R, Benguettat D, Khazaal Y, Zullino DF (2009) Khat use: lifestyle or addiction? J Psychoact Drugs 41(1):1–10. doi:10.1080/02791072.2009.10400669 Google Scholar
  145. Marinetti LJ, Antonides HM (2013) Analysis of synthetic cathinones commonly found in bath salts in human performance and postmortem toxicology: method development, drug distribution and interpretation of results. J Anal Toxicol 37(3):135–146. doi:10.1093/jat/bks136 PubMedGoogle Scholar
  146. Markantonis SL, Kyroudis A, Beckett AH (1986) The stereoselective metabolism of dimethylpropion and monomethylpropion. Biochem Pharmacol 35(3):529–532PubMedGoogle Scholar
  147. Martinez-Clemente J, Lopez-Arnau R, Carbo M, Pubill D, Camarasa J, Escubedo E (2013) Mephedrone pharmacokinetics after intravenous and oral administration in rats: relation to pharmacodynamics. Psychopharmacology 229(2):295–306. doi:10.1007/s00213-013-3108-7 Google Scholar
  148. Marusich JA, Grant KR, Blough BE, Wiley JL (2012) Effects of synthetic cathinones contained in “bath salts” on motor behavior and a functional observational battery in mice. Neurotoxicology 33(5):1305–1313. doi:10.1016/j.neuro.2012.08.003 PubMedCentralPubMedGoogle Scholar
  149. Maskell PD, De Paoli G, Seneviratne C, Pounder DJ (2011) Mephedrone (4-methylmethcathinone)-related deaths. J Anal Toxicol 35(3):188–191. doi:10.1093/anatox/35.3.188 PubMedGoogle Scholar
  150. Mas-Morey P, Visser M, Winkelmolen L, Touw D (2012) Clinical toxicology and management of intoxications with synthetic cathinones (“bath salts”). J Pharm Pract 26(4):353–357. doi:10.1177/0897190012465949 Google Scholar
  151. Mathys K, Brenneisen R (1992) Determination of (S)-(−)-cathinone and its metabolites (R, S)-(−)-norephedrine and (R, R)-(−)-norpseudoephedrine in urine by high-performance liquid chromatography with photodiode-array detection. J Chromatogr 593(1–2):79–85. doi:10.1016/0021-9673(92)80270-5 PubMedGoogle Scholar
  152. Maurer HH, Kraemer T, Springer D, Staack RF (2004) Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (ecstasy), piperazine, and pyrrolidinophenone types: a synopsis. Ther Drug Monit 26(2):127–131PubMedGoogle Scholar
  153. McClean JM, Anspikian A, Tsuang JW (2012) Bath salt use: a case report and review of the literature. J Dual Diagn 8(3):250–256. doi:10.1080/15504263.2012.697447 Google Scholar
  154. McElrath K, O’Neill C (2011) Experiences with mephedrone pre- and post-legislative controls: perceptions of safety and sources of supply. Int J Drug Policy 22(2):120–127. doi:10.1016/j.drugpo.2010.11.001 PubMedGoogle Scholar
  155. McGraw M, McGraw L (2012) Bath salts: not as harmless as they sound. J Emerg Nurs 38(6):582–588. doi:10.1016/j.jen.2012.07.025 Google Scholar
  156. McNamara S, Stokes S, Coleman N (2010) Head shop compound abuse amongst attendees of the Drug Treatment Centre Board. Ir Med J 103(5):134, 136–137Google Scholar
  157. Measham F, Moore K, Newcombe R (2010) Tweaking, bombing, dabbing and stockpiling: the emergence of mephedrone and the perversity of prohibition. Drugs Alcohol Today 10(1):14–21. doi:10.5042/daat.2010.0123 Google Scholar
  158. Measham F, Wood DM, Dargan PI, Moore K (2011) The rise in legal highs: prevalence and patterns in the use of illegal drugs and first-and second-generation “legal highs” in South London gay dance clubs. J Subst Use 16(4):263–272. doi:10.3109/14659891.2011.594704 Google Scholar
  159. Meng H, Cao J, Kang J et al (2012) Mephedrone, a new designer drug of abuse, produces acute hemodynamic effects in the rat. Toxicol Lett 208(1):62–68. doi:10.1016/j.toxlet.2011.10.010 PubMedGoogle Scholar
  160. Meyer MR, Du P, Schuster F, Maurer HH (2010a) Studies on the metabolism of the alpha-pyrrolidinophenone designer drug methylenedioxy-pyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC-MS and LC-high-resolution MS and its detectability in urine by GC-MS. J Mass Spectrom JMS 45(12):1426–1442. doi:10.1002/jms.1859 Google Scholar
  161. Meyer MR, Wilhelm J, Peters FT, Maurer HH (2010b) Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry. Anal Bioanal Chem 397(3):1225–1233. doi:10.1007/s00216-010-3636-5 PubMedGoogle Scholar
  162. Meyer MR, Vollmar C, Schwaninger AE, Wolf E, Maurer HH (2012) New cathinone-derived designer drugs 3-bromomethcathinone and 3-fluoromethcathinone: studies on their metabolism in rat urine and human liver microsomes using GC-MS and LC-high-resolution MS and their detectability in urine. J Mass Spectrom JMS 47(2):253–262. doi:10.1002/jms.2960 Google Scholar
  163. Meyer MR, Prosser D, Maurer HH (2013) Studies on the metabolism and detectability of the designer drug beta-naphyrone in rat urine using GC-MS and LC-HR-MS/MS. Drug Test Anal 5(4):259–265. doi:10.1002/dta.1443 PubMedGoogle Scholar
  164. Miller ML, Creehan KM, Angrish D et al (2013) Changes in ambient temperature differentially alter the thermoregulatory, cardiac and locomotor stimulant effects of 4-methylmethcathinone (mephedrone). Drug Alcohol Depend 127(1–3):248–253. doi:10.1016/j.drugalcdep.2012.07.003 PubMedCentralPubMedGoogle Scholar
  165. Morikawa K, Oshita M, Yamazaki M et al (1987) Pharmacological studies of the new centrally acting muscle relaxant 4′-ethyl-2-methyl-3-pyrrolidinopropiophenone hydrochloride. Arzneimittelforschung 37(3):331PubMedGoogle Scholar
  166. Morris K (2010) UK places generic ban on mephedrone drug family. Lancet 375(9723):1333–1334. doi:10.1016/S0140-6736(10)60559-4 PubMedGoogle Scholar
  167. Motbey CP, Hunt GE, Bowen MT, Artiss S, McGregor IS (2012a) Mephedrone (4-methylmethcathinone, ‘meow’): acute behavioural effects and distribution of Fos expression in adolescent rats. Addict Biol 17(2):409–422. doi:10.1111/j.1369-1600.2011.00384.x PubMedGoogle Scholar
  168. Motbey CP, Karanges E, Li KM et al (2012b) Mephedrone in adolescent rats: residual memory impairment and acute but not lasting 5-HT depletion. PLoS ONE 7(9):e45473. doi:10.1371/journal.pone.0045473 PubMedCentralPubMedGoogle Scholar
  169. Motbey CP, Clemens KJ, Apetz N et al (2013) High levels of intravenous mephedrone (4-methylmethcathinone) self-administration in rats: neural consequences and comparison with methamphetamine. J Psychopharmacol 27(9):823–836. doi:10.1177/0269881113490325 Google Scholar
  170. Mugele J, Nanagas KA, Tormoehlen LM (2012) Serotonin syndrome associated with MDPV use: a case report. Ann Emerg Med 60(1):100–102. doi:10.1016/j.annemergmed.2011.11.033 PubMedGoogle Scholar
  171. Murray BL, Murphy CM, Beuhler MC (2012) Death following recreational use of designer drug “bath salts” containing 3,4-methylenedioxypyrovalerone (MDPV). J Med Toxicol Off J Am Coll Med Toxicol 8(1):69–75. doi:10.1007/s13181-011-0196-9 Google Scholar
  172. Nencini P, Ahmed AM (1989) Khat consumption: a pharmacological review. Drug Alcohol Depend 23(1):19–29. doi:10.1016/0376-8716(89)90029-X PubMedGoogle Scholar
  173. Nencini P, Amiconi G, Befani O, Abdullahi MA, Anania MC (1984) Possible involvement of amine oxidase inhibition in the sympathetic activation induced by khat (Catha edulis) chewing in humans. J Ethnopharmacol 11(1):79–86. doi:10.1016/0378-8741(84)90097-7 PubMedGoogle Scholar
  174. Nicholson PJ, Quinn MJ, Dodd JD (2010) Headshop heartache: acute mephedrone ‘meow’ myocarditis. Heart 96(24):2051–2052. doi:10.1136/hrt.2010.209338 PubMedGoogle Scholar
  175. Odenwald M (2007) Chronic khat use and psychotic disorders: a review of the literature and future prospects. SUCHT-Zeitschrift für Wissenschaft und Praxis/Journal of Addiction Research and Practice 53(1):9–22. doi:10.1024/2007.01.03 Google Scholar
  176. Osorio-Olivares M, Rezende MC, Sepulveda-Boza S, Cassels BK, Fierro A (2004) MAO inhibition by arylisopropylamines: the effect of oxygen substituents at the beta-position. Bioorg Med Chem 12(15):4055–4066. doi:10.1016/j.bmc.2004.05.033 PubMedGoogle Scholar
  177. Patel SL, Murray R, Britain G (2005) Khat use among Somalis in four English cities. Home Office, LondonGoogle Scholar
  178. Paul BD, Cole KA (2001) Cathinone (Khat) and methcathinone (CAT) in urine specimens: a gas chromatographic-mass spectrometric detection procedure. J Anal Toxicol 25(7):525–530. doi:10.1093/jat/25.7.525 PubMedGoogle Scholar
  179. Pawlik E, Plasser G, Mahler H, Daldrup T (2012) Studies on the phase I metabolism of the new designer drug 3-fluoromethcathinone using rabbit liver slices. Int J Legal Med 126(2):231–240. doi:10.1007/s00414-011-0601-6 PubMedGoogle Scholar
  180. Pearson JM, Hargraves TL, Hair LS et al (2012) Three fatal intoxications due to methylone. J Anal Toxicol 36(6):444–451. doi:10.1093/jat/bks043 PubMedGoogle Scholar
  181. Pedersen AJ, Reitzel LA, Johansen SS, Linnet K (2013) In vitro metabolism studies on mephedrone and analysis of forensic cases. Drug Test Anal 5(6):430–438. doi:10.1002/dta.1369 Google Scholar
  182. Peevers CG, Moorghen M, Collins PL, Gordon FH, McCune CA (2010) Liver disease and cirrhosis because of khat chewing in UK Somali men: a case series. Liver Int 30(8):1242–1243. doi:10.1111/j.1478-3231.2010.02228.x PubMedGoogle Scholar
  183. Penders TM, Gestring RE, Vilensky DA (2012) Excited delirium following use of synthetic cathinones (bath salts). Gen Hosp Psychiatry 34(6):647–650. doi:10.1016/j.genhosppsych.2012.06.005 PubMedGoogle Scholar
  184. Peters FT, Meyer MR, Fritschi G, Maurer HH (2005) Studies on the metabolism and toxicological detection of the new designer drug 4′-methyl-alpha-pyrrolidinobutyrophenone (MPBP) in rat urine using gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 824(1–2):81–91. doi:10.1016/j.jchromb.2005.07.003 Google Scholar
  185. Portuguese Government (2013) Decreto-Lei n.º 54/2013. Diário da República 75Google Scholar
  186. Prosser JM, Nelson LS (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol Off J Am Coll Med Toxicol 8(1):33–42. doi:10.1007/s13181-011-0193-z Google Scholar
  187. Ramsey J, Dargan PI, Smyllie M et al (2010) Buying ‘legal’ recreational drugs does not mean that you are not breaking the law. QJM Month J Assoc Phys 103(10):777–783. doi:10.1093/qjmed/hcq132 Google Scholar
  188. Regan L, Mitchelson M, Macdonald C (2011) Mephedrone toxicity in a Scottish emergency department. Emerg Med J EMJ 28(12):1055–1058. doi:10.1136/emj.2010.103093 Google Scholar
  189. Regunath H, Ariyamuthu VK, Dalal P, Misra M (2012) Bath salt intoxication causing acute kidney injury requiring hemodialysis. Hemodial Int Int Sympos Home Hemodial 16(Suppl 1):S47–S49. doi:10.1111/j.1542-4758.2012.00750.x Google Scholar
  190. Roelandt P, George C, d’Heygere F et al (2011) Acute liver failure secondary to khat (< i > Catha edulis </i >)–induced necrotic hepatitis requiring liver transplantation: case report. Transpl Proc 43(9):3493–3495. doi:10.1016/j.transproceed.2011.09.032 Google Scholar
  191. Rojek S, Klys M, Strona M, Maciow M, Kula K (2012) “Legal highs”–toxicity in the clinical and medico-legal aspect as exemplified by suicide with bk-MBDB administration. Forensic Sci Int 222(1–3):e1–e6. doi:10.1016/j.forsciint.2012.04.034 PubMedGoogle Scholar
  192. Russo R, Marks N, Morris K, King H, Gelvin A, Rooney R (2012) Life-threatening necrotizing fasciitis due to ‘bath salts’ injection. Orthopedics 35(1):e124–e127. doi:10.3928/01477447-20111122-36 PubMedGoogle Scholar
  193. Saem de Burnaga Sanchez J (1929) Sur un homologue de l’éphédrine [On an analogue of ephedrine]. Bulletin de la Societé Chimique de France 45:284–286Google Scholar
  194. Sakitama K, Ozawa Y, Aoto N, Nakamura K, Ishikawa M (1995) Pharmacological properties of NK433, a new centrally acting muscle relaxant. Eur J Pharmacol 273(1–2):47–56. doi:10.1016/0014-2999(94)00666-U PubMedGoogle Scholar
  195. Sammler EM, Foley PL, Lauder GD, Wilson SJ, Goudie AR, O’Riordan JI (2010) A harmless high? Lancet 376(9742):742. doi:10.1016/S0140-6736(10)60891-4 PubMedGoogle Scholar
  196. Sanotsky Y, Lesyk R, Fedoryshyn L, Komnatska I, Matviyenko Y, Fahn S (2007) Manganic encephalopathy due to “ephedrone” abuse. Mov Disord Off J Mov Disord Soc 22(9):1337–1343. doi:10.1002/mds.21378 Google Scholar
  197. Sauer C, Peters FT, Haas C, Meyer MR, Fritschi G, Maurer HH (2009) New designer drug alpha-pyrrolidinovalerophenone (PVP): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom JMS 44(6):952–964. doi:10.1002/jms.1571 Google Scholar
  198. Schifano F, Albanese A, Fergus S et al (2011) Mephedrone (4-methylmethcathinone; ‘meow meow’): chemical, pharmacological and clinical issues. Psychopharmacology 214(3):593–602. doi:10.1007/s00213-010-2070-x PubMedGoogle Scholar
  199. Seaton D, Duncan L, Rose K, Scott AM (1961) Diethylpropion in the treatment of “refractory” obesity. Br Med J 1(5231):1009PubMedCentralPubMedGoogle Scholar
  200. Sharma TR, Iskandar JW, Ali R, Shah UR (2012) Bath salts-induced delirium and brief psychotic episode in an otherwise healthy young man. Prim Care Companion CNS Disord 14(2):1–4. doi:10.4088/PCC.11l01224
  201. Shima N, Katagi M, Tsuchihashi H (2009) Direct analysis of conjugate metabolites of methamphetamine, 3, 4-methylenedioxymethamphetamine, and their designer drugs in biological fluids. J Health Sci 55(4):495–502. doi:10.1248/jhs.55.495 Google Scholar
  202. Shima N, Katagi M, Kamata H et al (2013) Urinary excretion and metabolism of the newly encountered designer drug 3, 4-dimethylmethcathinone in humans. Forensic Toxicol 31(1):101–112. doi:10.1007/s11419-012-0172-3 Google Scholar
  203. Shimizu E, Watanabe H, Kojima T et al (2007) Combined intoxication with methylone and 5-MeO-MIPT. Prog Neuropsychopharmacol Biol Psychiatry 31(1):288–291. doi:10.1016/j.pnpbp.2006.06.012 PubMedGoogle Scholar
  204. Shortall SE, Macerola AE, Swaby RT et al (2013a) Behavioural and neurochemical comparison of chronic intermittent cathinone, mephedrone and MDMA administration to the rat. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 23(9):1085–1095. doi:10.1016/j.euroneuro.2012.09.005
  205. Shortall SE, Green AR, Swift KM, Fone KC, King MV (2013b) Differential effects of cathinone compounds and MDMA on body temperature in the rat, and pharmacological characterization of mephedrone-induced hypothermia. Br J Pharmacol 168(4):966–977. doi:10.1111/j.1476-5381.2012.02236.x PubMedGoogle Scholar
  206. Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (1999) Storage and release of catecholamines. In: Siegel GJ, Fisher SK, Uhler MD, Albers RW, Agranoff BW (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  207. Simmler LD, Buser TA, Donzelli M et al (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168(2):458–470. doi:10.1111/j.1476-5381.2012.02145.x PubMedGoogle Scholar
  208. Smith K, Flatley J (2011) Drug misuse declared: findings from the 2010/11 British Crime Survey England and Wales. Home Office Statistical Bulletin 12(11)Google Scholar
  209. Sogawa C, Sogawa N, Ohyama K et al (2011) Methylone and monoamine transporters: correlation with toxicity. Curr Neuropharmacol 9(1):58–62. doi:10.2174/157015911795017425 PubMedGoogle Scholar
  210. Soroko FE, Mehta NB, Maxwell RA, Ferris RM, Schroeder DH (1977) Bupropion hydrochloride ((±) alpha-t-butylamino-3-chloropropiophenone HCl): a novel antidepressant agent. J Pharm Pharmacol 29(12):767–770. doi:10.1111/j.2042-7158.1977.tb11460.x PubMedGoogle Scholar
  211. Soufi HE, Kameswaran M, Malatani T (1991) Khat and oral cancer. J Laryngol Otol 105(8):643–645. doi:10.1017/S0022215100116913 PubMedGoogle Scholar
  212. Sparago M, Wlos J, Yuan J et al (1996) Neurotoxic and pharmacologic studies on enantiomers of the N-methylated analog of cathinone (methcathinone): a new drug of abuse. J Pharmacol Exp Ther 279(2):1043–1052PubMedGoogle Scholar
  213. Spiller HA, Ryan ML, Weston RG, Jansen J (2011) Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clin Toxicol 49(6):499–505. doi:10.3109/15563650.2011.590812 Google Scholar
  214. Springer D, Peters FT, Fritschi G, Maurer HH (2002) Studies on the metabolism and toxicological detection of the new designer drug 4′-methyl-alpha-pyrrolidinopropiophenone in urine using gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 773(1):25–33. doi:10.1016/S1570-0232(01)00578-5 Google Scholar
  215. Springer D, Fritschi G, Maurer HH (2003a) Metabolism and toxicological detection of the new designer drug 3′,4′-methylenedioxy-alpha-pyrrolidinopropiophenone studied in urine using gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 793(2):377–388. doi:10.1016/S1570-0232(03)00350-7 Google Scholar
  216. Springer D, Fritschi G, Maurer HH (2003b) Metabolism and toxicological detection of the new designer drug 4′-methoxy-alpha-pyrrolidinopropiophenone studied in rat urine using gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 793(2):331–342. doi:10.1016/S1570-0232(03)00334-9 Google Scholar
  217. Springer D, Fritschi G, Maurer HH (2003c) Metabolism of the new designer drug alpha-pyrrolidinopropiophenone (PPP) and the toxicological detection of PPP and 4′-methyl-alpha-pyrrolidinopropiophenone (MPPP) studied in rat urine using gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 796(2):253–266. doi:10.1016/j.jchromb.2003.07.008 Google Scholar
  218. Springer D, Peters FT, Fritschi G, Maurer HH (2003d) New designer drug 4′-methyl-alpha-pyrrolidinohexanophenone: studies on its metabolism and toxicological detection in urine using gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 789(1):79–91. doi:10.1016/S1570-0232(03)00043-6 Google Scholar
  219. Springer D, Staack RF, Paul LD, Kraemer T, Maurer HH (2005) Identification of cytochrome P450 enzymes involved in the metabolism of 3′,4′-methylenedioxy-alpha-pyrrolidinopropiophenone (MDPPP), a designer drug, in human liver microsomes. Xenobiotica Fate Foreign Compd Biol Syst 35(3):227–237. doi:10.1080/00498250400028239 Google Scholar
  220. Spyker DA, Thomas S, Bateman DN et al (2012) International trends in designer amphetamine abuse in UK and US, 2009–2012. Clin Toxicol 50(636):141Google Scholar
  221. Strano-Rossi S, Cadwallader AB, de la Torre X, Botre F (2010) Toxicological determination and in vitro metabolism of the designer drug methylenedioxypyrovalerone (MDPV) by gas chromatography/mass spectrometry and liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass spectrom RCM 24(18):2706–2714. doi:10.1002/rcm.4692 Google Scholar
  222. Striebel JM, Pierre JM (2011) Acute psychotic sequelae of “bath salts”. Schizophr Res 133(1–3):259–260. doi:10.1016/j.schres.2011.09.001 PubMedGoogle Scholar
  223. Szendrei K (1980) The chemistry of khat. Bull Narc 32(3):5–35PubMedGoogle Scholar
  224. Tariq M, Islam MW, al-Meshal IA, el-Feraly FS, Ageel AM (1989) Comparative study of cathinone and amphetamine on brown adipose thermogenesis. Life Sci 44(14):951–955. doi:10.1016/0024-3205(89)90494-3 PubMedGoogle Scholar
  225. Tesfaye F, Byass P, Wall S, Berhane Y, Bonita R (2008) Association of smoking and khat (Catha edulis Forsk) use with high blood pressure among adults in Addis Ababa, Ethiopia, 2006. Preventing Chronic Disease 5(3)Google Scholar
  226. Thornton SL, Gerona RR, Tomaszewski CA (2012) Psychosis from a bath salt product containing flephedrone and MDPV with serum, urine, and product quantification. J Med Toxicol 8(3):310–313. doi:10.1007/s13181-012-0232-4 PubMedCentralPubMedGoogle Scholar
  227. Toennes SW, Kauert GF (2002) Excretion and detection of cathinone, cathine, and phenylpropanolamine in urine after kath chewing. Clin Chem 48(10):1715–1719PubMedGoogle Scholar
  228. Toennes SW, Harder S, Schramm M, Niess C, Kauert GF (2003) Pharmacokinetics of cathinone, cathine and norephedrine after the chewing of khat leaves. Br J Clin Pharmacol 56(1):125–130. doi:10.1046/j.1365-2125.2003.01834.x PubMedGoogle Scholar
  229. United Nations (1975) Etudes sur la composition chimique du khat: recherches sur la fraction phénylalkylamine. UN document MNAR/11/1975Google Scholar
  230. Van Hout MC, Brennan R (2011) Plant food for thought: a qualitative study of mephedrone use in Ireland. Drugs Educ Prev Policy 18(5):371–381. doi:10.3109/09687637.2010.537713 Google Scholar
  231. Vardakou I, Pistos C, Spiliopoulou C (2011) Drugs for youth via Internet and the example of mephedrone. Toxicol Lett 201(3):191–195. doi:10.1016/j.toxlet.2010.12.014 PubMedGoogle Scholar
  232. Vardakou I, Pistos C, Dona A, Spiliopoulou C, Athanaselis S (2012) Naphyrone: a “legal high” not legal any more. Drug Chem Toxicol 35(4):467–471. doi:10.3109/01480545.2011.642381 PubMedGoogle Scholar
  233. Varlibas F, Delipoyraz I, Yuksel G, Filiz G, Tireli H, Gecim NO (2009) Neurotoxicity following chronic intravenous use of “Russian cocktail”. Clin Toxicol 47(2):157–160. doi:10.1080/15563650802010388 Google Scholar
  234. Varner KJ, Daigle K, Weed PF et al (2013) Comparison of the behavioral and cardiovascular effects of mephedrone with other drugs of abuse in rats. Psychopharmacology 225(3):675–685. doi:10.1007/s00213-012-2855-1 PubMedGoogle Scholar
  235. Vekariya RH (2012) Towards understanding the mechanism of action of abused cathinones. Virginia Commonwealth University, Richmond, VAGoogle Scholar
  236. Volkow ND (2011) ‘Bath salts’–emerging and dangerous products. Natl Inst Drug Abuse. available at http://www.drugabuse.gov/about-nida/directors-page/messages-director/2011/02/bath-salts-emergingdangerous-products
  237. Warrick BJ, Wilson J, Hedge M, Freeman S, Leonard K, Aaron C (2012) Lethal serotonin syndrome after methylone and butylone ingestion. J Med Toxicol Off J Am Coll Med Toxicol 8(1):65–68. doi:10.1007/s13181-011-0199-6 Google Scholar
  238. Watterson L, Hood L, Sewalia K, Tomek S, Yahn S (2012a) The reinforcing and rewarding effects of methylone, a synthetic cathinone commonly found in “bath salts”. J Addict Res Ther S 9:2. doi:10.4172/2155-6105.S9-002 Google Scholar
  239. Watterson LR, Kufahl PR, Nemirovsky NE et al (2012b) Potent rewarding and reinforcing effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Addict Biol 1–10. doi:10.1111/j.1369-1600.2012.00474.x
  240. Westphal F, Junge T, Rosner P, Fritschi G, Klein B, Girreser U (2007) Mass spectral and NMR spectral data of two new designer drugs with an alpha-aminophenone structure: 4′-methyl-alpha-pyrrolidinohexanophenone and 4′-methyl-alpha-pyrrolidinobutyrophenone. Forensic Sci Int 169(1):32–42. doi:10.1016/j.forsciint.2006.07.024 PubMedGoogle Scholar
  241. Westphal F, Rosner P, Junge T (2010) Differentiation of regioisomeric ring-substituted fluorophenethylamines with product ion spectrometry. Forensic Sci Int 194(1–3):53–59. doi:10.1016/j.forsciint.2009.10.007 PubMedGoogle Scholar
  242. Widler P, Mathys K, Brenneisen R, Kalix P, Fisch HU (1994) Pharmacodynamics and pharmacokinetics of khat: a controlled study. Clin Pharmacol Ther 55(5):556–562. doi:10.1038/clpt.1994.69 PubMedGoogle Scholar
  243. Wikstrom M, Thelander G, Nystrom I, Kronstrand R (2010) Two fatal intoxications with the new designer drug methedrone (4-methoxymethcathinone). J Anal Toxicol 34(9):594–598. doi:10.1093/jat/34.9.594 PubMedGoogle Scholar
  244. Winder GS, Stern N, Hosanagar A (2013) Are “bath salts” the next generation of stimulant abuse? J Subst Abuse Treat 44(1):42–45. doi:10.1016/j.jsat.2012.02.003 PubMedGoogle Scholar
  245. Winstock AR, Mitcheson LR, Deluca P, Davey Z, Corazza O, Schifano F (2011) Mephedrone, new kid for the chop? Addiction 106(1):154–161. doi:10.1111/j.1360-0443.2010.03130.x PubMedGoogle Scholar
  246. Wolfes O (1930) Über das Vorkommen von d-nor-iso-Ephedrin in Catha edulis. Arch Pharm 268(2):81–83Google Scholar
  247. Wood DM, Davies S, Greene SL et al (2010a) Case series of individuals with analytically confirmed acute mephedrone toxicity. Clin Toxicol 48(9):924–927. doi:10.3109/15563650.2010.531021 Google Scholar
  248. Wood DM, Davies S, Puchnarewicz M et al (2010b) Recreational use of mephedrone (4-methylmethcathinone, 4-MMC) with associated sympathomimetic toxicity. J Med Toxicol Off J Am Coll Med Toxicol 6(3):327–330. doi:10.1007/s13181-010-0018-5 Google Scholar
  249. Wood DM, Davies S, Cummins A et al (2011) Energy-1 (‘NRG-1’): don’t believe what the newspapers say about it being legal. BMJ Case Rep 2011:1–7. doi:10.1136/bcr.07.2010.3184
  250. Wood DM, Measham F, Dargan PI (2012) ‘Our favourite drug’: prevalence of use and preference for mephedrone in the London night-time economy 1 year after control. J Subs Use 17(2):91–97. doi:10.3109/14659891.2012.661025 Google Scholar
  251. Wright MJ Jr, Angrish D, Aarde SM et al (2012a) Effect of ambient temperature on the thermoregulatory and locomotor stimulant effects of 4-methylmethcathinone in Wistar and Sprague-Dawley rats. PLoS ONE 7(8):e44652. doi:10.1371/journal.pone.0044652 PubMedCentralPubMedGoogle Scholar
  252. Wright MJ Jr, Vandewater SA, Angrish D, Dickerson TJ, Taffe MA (2012b) Mephedrone (4-methylmethcathinone) and d-methamphetamine improve visuospatial associative memory, but not spatial working memory, in rhesus macaques. Br J Pharmacol 167(6):1342–1352. doi:10.1111/j.1476-5381.2012.02091.x PubMedGoogle Scholar
  253. Yamazaki M, Aoki Y, Kato H, Ito Y, Kontani H, Koshiura R (1987) Centrally acting muscle relaxant activities of 2-methyl-3-pyrrolidinopropiophenone derivatives. Yakugaku zasshi J Pharm Soc Jpn 107(9):705–710Google Scholar
  254. Yohannan JC, Bozenko JS Jr (2010) The characterization of 3, 4-methylenedioxypyrovalerone (MDPV). Microgram J 7(1):5–15Google Scholar
  255. Young R, Glennon RA (1993) Cocaine-stimulus generalization to two new designer drugs: methcathinone and 4-methylaminorex. Pharmacol Biochem Behav 45(1):229–231. doi:10.1016/0091-3057(93)90110-F PubMedGoogle Scholar
  256. Zaitsu K, Katagi M, Kamata HT et al (2009) Determination of the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. Forensic Sci Int 188(1–3):131–139. doi:10.1016/j.forsciint.2009.04.001 PubMedGoogle Scholar
  257. Zaitsu K, Katagi M, Tatsuno M, Sato T, Tsuchihashi H, Suzuki K (2011) Recently abused β-keto derivatives of 3, 4-methylenedioxyphenylalkylamines: a review of their metabolisms and toxicological analysis. Forensic Toxicol 29(2):73–84. doi:10.1007/s11419-011-0111-8 Google Scholar
  258. Zelger JL, Schorno HX, Carlini EA (1980) Behavioural effects of cathinone, an amine obtained from Catha edulis Forsk.: comparisons with amphetamine, norpseudoephedrine, apomorphine and nomifensine. Bull Narc 32(3):67–81PubMedGoogle Scholar
  259. Zuba D, Byrska B (2013) Prevalence and co-existence of active components of ‘legal highs’. Drug Test Anal 5(6):420–429. doi:10.1002/dta.1365
  260. Zuba D, Adamowicz P, Byrska B (2013) Detection of buphedrone in biological and non-biological material–two case reports. Forensic Sci Int 227(1–3):15–20. doi:10.1016/j.forsciint.2012.08.034 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Maria João Valente
    • 1
  • Paula Guedes de Pinho
    • 1
  • Maria de Lourdes Bastos
    • 1
  • Félix Carvalho
    • 1
  • Márcia Carvalho
    • 1
    • 2
  1. 1.REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal
  2. 2.CEBIMED, Faculdade de Ciências da SaúdeUniversidade Fernando PessoaPortoPortugal

Personalised recommendations