Archives of Toxicology

, Volume 87, Issue 10, pp 1743–1786 | Cite as

Cadmium and cellular signaling cascades: interactions between cell death and survival pathways

  • Frank ThévenodEmail author
  • Wing-Kee LeeEmail author
Review Article


Cellular stress elicited by the toxic metal Cd2+ does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd2+, death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd2+ exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd2+, determined by magnitude and duration of Cd2+ stress. Signaling cascades are the key factors affecting cellular reactions to Cd2+. This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd2+. Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd2+ recruits physiological 2nd messenger systems, in particular Ca2+ and reactive oxygen species (ROS), which control key Ca2+- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca2+ signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca2+ levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca2+ (metallothioneins, Bcl-2 proteins, ubiquitin–proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival. Hence, temporary or permanent disruptions of ROS/Ca2+ induced by Cd2+ play a crucial role in eliciting, modulating and linking downstream cell death and adaptive and survival signaling cascades.


BiP/GRP78 CHOP ERAD MAPK transition metal 



We apologize to the many scientists whose work we were not able to credit due to space restrictions. We thank the current and previous members of the laboratory for many stimulating ideas, and Ann Cuypers, Andrea Hartwig, Wolfgang Maret and Jean-Marc Moulis for helpful discussions. Research in the laboratory is funded by The German Research Foundation (DFG) (grants FT345/8-1 to FT345/11-1), the Westermann-Westerdorp Foundation and the Centre for Biomedical Research and Training (ZBAF) at the University of Witten/Herdecke.


  1. Abu-Bakar A, Satarug S, Marks GC, Lang MA, Moore MR (2004) Acute cadmium chloride administration induces hepatic and renal CYP2A5 mRNA, protein and activity in the mouse: involvement of transcription factor NRF2. Toxicol Lett 148(3):199–210. doi: 10.1016/j.toxlet.2003.10.029 PubMedGoogle Scholar
  2. Adle DJ, Wei W, Smith N, Bies JJ, Lee J (2009) Cadmium-mediated rescue from ER-associated degradation induces expression of its exporter. Proc Natl Acad Sci USA 106(25):10189–10194. doi: 10.1073/pnas.0812114106 PubMedGoogle Scholar
  3. Ak P, Levine AJ (2010) p53 and NF-kappaB: different strategies for responding to stress lead to a functional antagonism. FASEB J 24(10):3643–3652. doi: 10.1096/fj.10-160549 PubMedGoogle Scholar
  4. Alam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL (1999) Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274(37):26071–26078PubMedGoogle Scholar
  5. Alam J, Wicks C, Stewart D, Gong P, Touchard C, Otterbein S, Choi AM, Burow ME, Tou J (2000) Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. J Biol Chem 275(36):27694–27702. doi: 10.1074/jbc.M004729200 Google Scholar
  6. Appenzeller-Herzog C, Hall MN (2012) Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol 22(5):274–282. doi: 10.1016/j.tcb.2012.02.006 PubMedGoogle Scholar
  7. Bailey TA, Kanuga N, Romero IA, Greenwood J, Luthert PJ, Cheetham ME (2004) Oxidative stress affects the junctional integrity of retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 45(2):675–684PubMedGoogle Scholar
  8. Banakou E, Dailianis S (2010) Involvement of Na+/H+ exchanger and respiratory burst enzymes NADPH oxidase and NO synthase, in Cd-induced lipid peroxidation and DNA damage in haemocytes of mussels. Comp Biochem Physiol C Toxicol Pharmacol 152(3):346–352. doi: 10.1016/j.cbpc.2010.06.001 PubMedGoogle Scholar
  9. Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ (2004) Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23(5):1207–1216. doi: 10.1038/sj.emboj.7600104 PubMedGoogle Scholar
  10. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313. doi: 10.1152/physrev.00044.2005 PubMedGoogle Scholar
  11. Bell SG, Vallee BL (2009) The metallothionein/thionein system: an oxidoreductive metabolic zinc link. ChemBioChem 10(1):55–62. doi: 10.1002/cbic.200800511 PubMedGoogle Scholar
  12. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouyssegur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581. doi: 10.1128/MCB.00166-09 PubMedGoogle Scholar
  13. Belyaeva EA, Glazunov VV, Korotkov SM (2002) Cyclosporin A-sensitive permeability transition pore is involved in Cd(2+)-induced dysfunction of isolated rat liver mitochondria: doubts no more. Arch Biochem Biophys 405(2):252–264PubMedGoogle Scholar
  14. Belyaeva EA, Dymkowska D, Wieckowski MR, Wojtczak L (2006) Reactive oxygen species produced by the mitochondrial respiratory chain are involved in Cd2+-induced injury of rat ascites hepatoma AS-30D cells. Biochim Biophys Acta 1757(12):1568–1574. doi: 10.1016/j.bbabio.2006.09.006 PubMedGoogle Scholar
  15. Bender T, Martinou JC (2013) Where killers meet–permeabilization of the outer mitochondrial membrane during apoptosis. Cold Spring Harb Perspect Biol 5(1):a011106. doi: 10.1101/cshperspect.a011106 PubMedGoogle Scholar
  16. Berridge MJ (2012) Calcium signalling remodelling and disease. Biochem Soc Trans 40(2):297–309. doi: 10.1042/BST20110766 PubMedGoogle Scholar
  17. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529. doi: 10.1038/nrm1155 PubMedGoogle Scholar
  18. Betin VM, Lane JD (2009) Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci 122(Pt 14):2554–2566. doi: 10.1242/jcs.046250 PubMedGoogle Scholar
  19. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82(8):493–512. doi: 10.1007/s00204-008-0313-y PubMedGoogle Scholar
  20. Biagioli M, Watjen W, Beyersmann D, Zoncu R, Cappellini C, Ragghianti M, Cremisi F, Bucci S (2001) Cadmium-induced apoptosis in murine fibroblasts is suppressed by Bcl-2. Arch Toxicol 75(6):313–320PubMedGoogle Scholar
  21. Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P (2008) Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 43(2):184–195PubMedGoogle Scholar
  22. Bialik S, Kimchi A (2010) Lethal weapons: DAP-kinase, autophagy and cell death: DAP-kinase regulates autophagy. Curr Opin Cell Biol 22(2):199–205. doi: 10.1016/ PubMedGoogle Scholar
  23. Bingol B, Wang CF, Arnott D, Cheng D, Peng J, Sheng M (2010) Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140(4):567–578. doi: 10.1016/j.cell.2010.01.024 PubMedGoogle Scholar
  24. Bork U, Lee WK, Kuchler A, Dittmar T, Thévenod F (2010) Cadmium-induced DNA damage triggers G(2)/M arrest via chk1/2 and cdc2 in p53-deficient kidney proximal tubule cells. Am J Physiol Renal Physiol 298(2):F255–F265. doi: 10.1152/ajprenal.00273.2009 PubMedGoogle Scholar
  25. Brigelius-Flohe R, Flohe L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15(8):2335–2381. doi: 10.1089/ars.2010.3534 PubMedGoogle Scholar
  26. Britschgi A, Bill A, Brinkhaus H, Rothwell C, Clay I, Duss S, Rebhan M, Raman P, Guy CT, Wetzel K, George E, Popa MO, Lilley S, Choudhury H, Gosling M, Wang L, Fitzgerald S, Borawski J, Baffoe J, Labow M, Gaither LA, Bentires-Alj M (2013) Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci USA 110(11):E1026–E1034. doi: 10.1073/pnas.1217072110 PubMedGoogle Scholar
  27. Brodsky JL (2012) Cleaning up: ER-associated degradation to the rescue. Cell 151(6):1163–1167. doi: 10.1016/j.cell.2012.11.012 PubMedGoogle Scholar
  28. Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47(9):1239–1253. doi: 10.1016/j.freeradbiomed.2009.07.023 PubMedGoogle Scholar
  29. Burhans WC, Heintz NH (2009) The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med 47(9):1282–1293. doi: 10.1016/j.freeradbiomed.2009.05.026 PubMedGoogle Scholar
  30. Burton TR, Gibson SB (2009) The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ 16(4):515–523. doi: 10.1038/cdd.2008.185 PubMedGoogle Scholar
  31. Caldeira MV, Curcio M, Leal G, Salazar IL, Mele M, Santos AR, Melo CV, Pereira P, Canzoniero LM, Duarte CB (2013) Excitotoxic stimulation downregulates the ubiquitin-proteasome system through activation of NMDA receptors in cultured hippocampal neurons. Biochim Biophys Acta 1832(1):263–274. doi: 10.1016/j.bbadis.2012.10.009 Google Scholar
  32. Campagne MV, Thibodeaux H, van Bruggen N, Cairns B, Lowe DG (2000) Increased binding activity at an antioxidant-responsive element in the metallothionein-1 promoter and rapid induction of metallothionein-1 and -2 in response to cerebral ischemia and reperfusion. J Neurosci 20(14):5200–5207PubMedGoogle Scholar
  33. Cao F, Zhou T, Simpson D, Zhou Y, Boyer J, Chen B, Jin T, Cordeiro-Stone M, Kaufmann W (2007) p53-Dependent but ATM-independent inhibition of DNA synthesis and G2 arrest in cadmium-treated human fibroblasts. Toxicol Appl Pharmacol 218(2):174–185. doi: 10.1016/j.taap.2006.10.031 PubMedGoogle Scholar
  34. Cardenas C, Foskett JK (2012) Mitochondrial Ca(2+) signals in autophagy. Cell Calcium 52(1):44–51. doi: 10.1016/j.ceca.2012.03.001 PubMedGoogle Scholar
  35. Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142(2):270–283. doi: 10.1016/j.cell.2010.06.007 PubMedGoogle Scholar
  36. Carrasco MA, Jaimovich E, Kemmerling U, Hidalgo C (2004) Signal transduction and gene expression regulated by calcium release from internal stores in excitable cells. Biol Res 37(4):701–712PubMedGoogle Scholar
  37. Casalino E, Calzaretti G, Sblano C, Landriscina C (2002) Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology 179(1–2):37–50PubMedGoogle Scholar
  38. Castillo K, Rojas-Rivera D, Lisbona F, Caballero B, Nassif M, Court FA, Schuck S, Ibar C, Walter P, Sierralta J, Glavic A, Hetz C (2011) BAX inhibitor-1 regulates autophagy by controlling the IRE1alpha branch of the unfolded protein response. EMBO J 30(21):4465–4478. doi: 10.1038/emboj.2011.318 PubMedGoogle Scholar
  39. Cereghetti GM, Scorrano L (2006) The many shapes of mitochondrial death. Oncogene 25(34):4717–4724. doi: 10.1038/sj.onc.1209605 PubMedGoogle Scholar
  40. Chakraborty PK, Lee WK, Molitor M, Wolff NA, Thévenod F (2010a) Cadmium induces Wnt signaling to upregulate proliferation and survival genes in sub-confluent kidney proximal tubule cells. Mol Cancer 9:102. doi: 10.1186/1476-4598-9-102 PubMedGoogle Scholar
  41. Chakraborty PK, Scharner B, Jurasovic J, Messner B, Bernhard D, Thévenod F (2010b) Chronic cadmium exposure induces transcriptional activation of the Wnt pathway and upregulation of epithelial-to-mesenchymal transition markers in mouse kidney. Toxicol Lett 198(1):69–76. doi: 10.1016/j.toxlet.2010.05.007 PubMedGoogle Scholar
  42. Chang NC, Nguyen M, Germain M, Shore GC (2010) Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J 29(3):606–618. doi: 10.1038/emboj.2009.369 PubMedGoogle Scholar
  43. Chao JI, Yang JL (2001) Opposite roles of ERK and p38 mitogen-activated protein kinases in cadmium-induced genotoxicity and mitotic arrest. Chem Res Toxicol 14(9):1193–1202PubMedGoogle Scholar
  44. Chargui A, Zekri S, Jacquillet G, Rubera I, Ilie M, Belaid A, Duranton C, Tauc M, Hofman P, Poujeol P, El May MV, Mograbi B (2011) Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicol Sci 121(1):31–42. doi: 10.1093/toxsci/kfr031 PubMedGoogle Scholar
  45. Chen J, Shaikh ZA (2009) Activation of Nrf2 by cadmium and its role in protection against cadmium-induced apoptosis in rat kidney cells. Toxicol Appl Pharmacol 241(1):81–89. doi: 10.1016/j.taap.2009.07.038 PubMedGoogle Scholar
  46. Chen R, Valencia I, Zhong F, McColl KS, Roderick HL, Bootman MD, Berridge MJ, Conway SJ, Holmes AB, Mignery GA, Velez P, Distelhorst CW (2004) Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 166(2):193–203. doi: 10.1083/jcb.200309146 PubMedGoogle Scholar
  47. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2007) Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 120(Pt 23):4155–4166. doi: 10.1242/jcs.011163 PubMedGoogle Scholar
  48. Chen CL, Lin CF, Chang WT, Huang WC, Teng CF, Lin YS (2008a) Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway. Blood 111(8):4365–4374. doi: 10.1182/blood-2007-08-106336 PubMedGoogle Scholar
  49. Chen L, Liu L, Huang S (2008b) Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic Biol Med 45(7):1035–1044. doi: 10.1016/j.freeradbiomed.2008.07.011 PubMedGoogle Scholar
  50. Chen L, Liu L, Luo Y, Huang S (2008c) MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis. J Neurochem 105(1):251–261. doi: 10.1111/j.1471-4159.2007.05133.x PubMedGoogle Scholar
  51. Chen L, Xu B, Liu L, Luo Y, Zhou H, Chen W, Shen T, Han X, Kontos CD, Huang S (2011a) Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radic Biol Med 50(5):624–632. doi: 10.1016/j.freeradbiomed.2010.12.032 PubMedGoogle Scholar
  52. Chen S, He FF, Wang H, Fang Z, Shao N, Tian XJ, Liu JS, Zhu ZH, Wang YM, Wang S, Huang K, Zhang C (2011b) Calcium entry via TRPC6 mediates albumin overload-induced endoplasmic reticulum stress and apoptosis in podocytes. Cell Calcium 50(6):523–529. doi: 10.1016/j.ceca.2011.08.008 PubMedGoogle Scholar
  53. Chen S, Xu Y, Xu B, Guo M, Zhang Z, Liu L, Ma H, Chen Z, Luo Y, Huang S, Chen L (2011c) CaMKII is involved in cadmium activation of MAPK and mTOR pathways leading to neuronal cell death. J Neurochem 119(5):1108–1118. doi: 10.1111/j.1471-4159.2011.07493.x PubMedGoogle Scholar
  54. Chen BP, Li M, Asaithamby A (2012) New insights into the roles of ATM and DNA-PKcs in the cellular response to oxidative stress. Cancer Lett 327(1–2):103–110. doi: 10.1016/j.canlet.2011.12.004 PubMedGoogle Scholar
  55. Chiarelli R, Agnello M, Bosco L, Roccheri MC (2013) Sea urchin embryos exposed to cadmium as an experimental model for studying the relationship between autophagy and apoptosis. Marine Environ Res. doi: 10.1016/j.marenvres.2013.06.001 Google Scholar
  56. Chipuk JE, Bouchier-Hayes L, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13(8):1396–1402. doi: 10.1038/sj.cdd.4401963 PubMedGoogle Scholar
  57. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37(3):299–310. doi: 10.1016/j.molcel.2010.01.025 PubMedGoogle Scholar
  58. Chiribau CB, Gaccioli F, Huang CC, Yuan CL, Hatzoglou M (2010) Molecular symbiosis of CHOP and C/EBP beta isoform LIP contributes to endoplasmic reticulum stress-induced apoptosis. Mol Cell Biol 30(14):3722–3731. doi: 10.1128/MCB.01507-09 PubMedGoogle Scholar
  59. Chitnis NS, Pytel D, Bobrovnikova-Marjon E, Pant D, Zheng H, Maas NL, Frederick B, Kushner JA, Chodosh LA, Koumenis C, Fuchs SY, Diehl JA (2012) miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell 48(3):353–364. doi: 10.1016/j.molcel.2012.08.025 PubMedGoogle Scholar
  60. Chiu J, Dawes IW (2012) Redox control of cell proliferation. Trends Cell Biol 22(11):592–601. doi: 10.1016/j.tcb.2012.08.002 PubMedGoogle Scholar
  61. Chou HC, Chan HL (2011) Proteomic analysis of potential breast cancer biomarkers. In: Done SJ (ed) Breast cancer—recent advances in biology. Imaging and Therapeutics, InTech, pp 179–202Google Scholar
  62. Chun YS, Choi E, Kim GT, Choi H, Kim CH, Lee MJ, Kim MS, Park JW (2000) Cadmium blocks hypoxia-inducible factor (HIF)-1-mediated response to hypoxia by stimulating the proteasome-dependent degradation of HIF-1alpha. Eur J Biochem 267(13):4198–4204PubMedGoogle Scholar
  63. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058. doi: 10.1016/j.cell.2007.11.028 PubMedGoogle Scholar
  64. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205. doi: 10.1016/j.cell.2012.05.012 PubMedGoogle Scholar
  65. Covarrubias L, Hernandez-Garcia D, Schnabel D, Salas-Vidal E, Castro-Obregon S (2008) Function of reactive oxygen species during animal development: passive or active? Dev Biol 320(1):1–11. doi: 10.1016/j.ydbio.2008.04.041 PubMedGoogle Scholar
  66. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249Google Scholar
  67. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789. doi: 10.1038/378785a0 PubMedGoogle Scholar
  68. Cui ZG, Ogawa R, Piao JL, Hamazaki K, Feril LB Jr, Shimomura A, Kondo T, Inadera H (2011) Molecular mechanisms involved in the adaptive response to cadmium-induced apoptosis in human myelomonocytic lymphoma U937 cells. Toxicol In Vitro 25(8):1687–1693. doi: 10.1016/j.tiv.2011.07.008 PubMedGoogle Scholar
  69. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940. doi: 10.1007/s10534-010-9329-x PubMedGoogle Scholar
  70. Darding M, Meier P (2012) IAPs: guardians of RIPK1. Cell Death Differ 19(1):58–66. doi: 10.1038/cdd.2011.163 PubMedGoogle Scholar
  71. Darios F, Lambeng N, Troadec JD, Michel PP, Ruberg M (2003) Ceramide increases mitochondrial free calcium levels via caspase 8 and Bid: role in initiation of cell death. J Neurochem 84(4):643–654PubMedGoogle Scholar
  72. D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824PubMedGoogle Scholar
  73. De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai) 43(10):745–756. doi: 10.1093/abbs/gmr079 Google Scholar
  74. Decuypere JP, Bultynck G, Parys JB (2011a) A dual role for Ca(2+) in autophagy regulation. Cell Calcium 50(3):242–250. doi: 10.1016/j.ceca.2011.04.001 PubMedGoogle Scholar
  75. Decuypere JP, Welkenhuyzen K, Luyten T, Ponsaerts R, Dewaele M, Molgo J, Agostinis P, Missiaen L, De Smedt H, Parys JB, Bultynck G (2011b) Ins(1,4,5)P3 receptor-mediated Ca2+ signaling and autophagy induction are interrelated. Autophagy 7(12):1472–1489PubMedGoogle Scholar
  76. DeGennaro M, Hurd TR, Siekhaus DE, Biteau B, Jasper H, Lehmann R (2011) Peroxiredoxin stabilization of DE-cadherin promotes primordial germ cell adhesion. Dev Cell 20(2):233–243. doi: 10.1016/j.devcel.2010.12.007 PubMedGoogle Scholar
  77. Denton D, Nicolson S, Kumar S (2012) Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 19(1):87–95. doi: 10.1038/cdd.2011.146 PubMedGoogle Scholar
  78. Di Gioacchino M, Petrarca C, Perrone A, Martino S, Esposito DL, Lotti LV, Mariani-Costantini R (2008) Autophagy in hematopoietic stem/progenitor cells exposed to heavy metals: biological implications and toxicological relevance. Autophagy 4(4):537–539PubMedGoogle Scholar
  79. Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X, Stolz DB, Shao ZM, Yin XM (2007) Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 282(7):4702–4710. doi: 10.1074/jbc.M609267200 PubMedGoogle Scholar
  80. Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J Biol Chem 284(39):26655–26665. doi: 10.1074/jbc.M109.021956 PubMedGoogle Scholar
  81. Djakovic SN, Marquez-Lona EM, Jakawich SK, Wright R, Chu C, Sutton MA, Patrick GN (2012) Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J Neurosci 32(15):5126–5131. doi: 10.1523/JNEUROSCI.4427-11.2012 PubMedGoogle Scholar
  82. Djavaheri-Mergny M, Maiuri MC, Kroemer G (2010) Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 29(12):1717–1719. doi: 10.1038/onc.2009.519 PubMedGoogle Scholar
  83. Dorta DJ, Leite S, DeMarco KC, Prado IM, Rodrigues T, Mingatto FE, Uyemura SA, Santos AC, Curti C (2003) A proposed sequence of events for cadmium-induced mitochondrial impairment. J Inorg Biochem 97(3):251–257PubMedGoogle Scholar
  84. Dremina ES, Sharov VS, Kumar K, Zaidi A, Michaelis EK, Schoneich C (2004) Anti-apoptotic protein Bcl-2 interacts with and destabilizes the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA). Biochem J 383(Pt 2):361–370. doi: 10.1042/BJ20040187 PubMedGoogle Scholar
  85. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95. doi: 10.1152/physrev.00018.2001 PubMedGoogle Scholar
  86. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16(6):663–669. doi: 10.1016/ PubMedGoogle Scholar
  87. Edwards JR, Kolman K, Lamar PC, Chandar N, Fay MJ, Prozialeck WC (2013) Effects of cadmium on the sub-cellular localization of beta-catenin and beta-catenin-regulated gene expression in NRK-52E cells. Biometals 26(1):33–42. doi: 10.1007/s10534-012-9592-0 PubMedGoogle Scholar
  88. Eichler T, Ma Q, Kelly C, Mishra J, Parikh S, Ransom RF, Devarajan P, Smoyer WE (2006) Single and combination toxic metal exposures induce apoptosis in cultured murine podocytes exclusively via the extrinsic caspase 8 pathway. Toxicol Sci 90(2):392–399. doi: 10.1093/toxsci/kfj106 PubMedGoogle Scholar
  89. Engel T, Sanz-Rodgriguez A, Jimenez-Mateos EM, Concannon CG, Jimenez-Pacheco A, Moran C, Mesuret G, Petit E, Delanty N, Farrell MA, O’Brien DF, Prehn JH, Lucas JJ, Henshall DC (2013) CHOP regulates the p53-MDM2 axis and is required for neuronal survival after seizures. Brain J Neurol 136(Pt 2):577–592. doi: 10.1093/brain/aws337 Google Scholar
  90. Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci 14:1197–1218Google Scholar
  91. Ferrari D, Pinton P, Campanella M, Callegari MG, Pizzirani C, Rimessi A, Di Virgilio F, Pozzan T, Rizzuto R (2011) Functional and structural alterations in the endoplasmic reticulum and mitochondria during apoptosis triggered by C2-ceramide and CD95/APO-1/FAS receptor stimulation. Biochem Biophys Res Commun 391(1):575–581. doi: 10.1016/j.bbrc.2009.11.101
  92. Ferraro PM, Costanzi S, Naticchia A, Sturniolo A, Gambaro G (2010) Low level exposure to cadmium increases the risk of chronic kidney disease: analysis of the NHANES 1999–2006. BMC Public Health 10:304. doi: 10.1186/1471-2458-10-304 PubMedGoogle Scholar
  93. Figueiredo-Pereira ME, Cohen G (1999) The ubiquitin/proteasome pathway: friend or foe in zinc-, cadmium-, and H2O2-induced neuronal oxidative stress. Mol Biol Rep 26(1–2):65–69PubMedGoogle Scholar
  94. Filipic M (2012) Mechanisms of cadmium induced genomic instability. Mutat Res 733(1–2):69–77. doi: 10.1016/j.mrfmmm.2011.09.002 PubMedGoogle Scholar
  95. Fischer H, Koenig U, Eckhart L, Tschachler E (2002) Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun 293(2):722–726. doi: 10.1016/S0006-291X(02)00289-9 PubMedGoogle Scholar
  96. Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285(19):14071–14077. doi: 10.1074/jbc.R109.094003 PubMedGoogle Scholar
  97. Fouad AA, Jresat I (2011) Protective effect of telmisartan against cadmium-induced nephrotoxicity in mice. Life Sci 89(1–2):29–35. doi: 10.1016/j.lfs.2011.04.019 PubMedGoogle Scholar
  98. Franklin RA, Rodriguez-Mora OG, Lahair MM, McCubrey JA (2006) Activation of the calcium/calmodulin-dependent protein kinases as a consequence of oxidative stress. Antioxid Redox Signal 8(9–10):1807–1817. doi: 10.1089/ars.2006.8.1807 PubMedGoogle Scholar
  99. Freitas M, Fernandes E (2011) Zinc, cadmium and nickel increase the activation of NF-kappaB and the release of cytokines from THP-1 monocytic cells. Metallomics 3(11):1238–1243. doi: 10.1039/c1mt00050k PubMedGoogle Scholar
  100. Fruehauf JP, Meyskens FL Jr (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13(3):789–794. doi: 10.1158/1078-0432.CCR-06-2082 PubMedGoogle Scholar
  101. Fujiki K, Inamura H, Matsuoka M (2013) Phosphorylation of FOXO3a by PI3K/Akt pathway in HK-2 renal proximal tubular epithelial cells exposed to cadmium. Arch Toxicol. doi: 10.1007/s00204-013-1077-6 PubMedGoogle Scholar
  102. Funato Y, Miki H (2010) Redox regulation of Wnt signalling via nucleoredoxin. Free Radic Res 44(4):379–388. doi: 10.3109/10715761003610745 PubMedGoogle Scholar
  103. Funato Y, Michiue T, Asashima M, Miki H (2006) The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through dishevelled. Nat Cell Biol 8(5):501–508. doi: 10.1038/ncb1405 PubMedGoogle Scholar
  104. Galluzzi L, Vanden Berghe T, Vanlangenakker N, Buettner S, Eisenberg T, Vandenabeele P, Madeo F, Kroemer G (2011) Programmed necrosis from molecules to health and disease. Int Rev Cell Mol Biol 289:1–35. doi: 10.1016/B978-0-12-386039-2.00001-8 PubMedGoogle Scholar
  105. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death. Cell Death Differ 19(1):107–120. doi: 10.1038/cdd.2011.96 PubMedGoogle Scholar
  106. Ghosh S, Hayden MS (2012) Celebrating 25 years of NF-kappaB research. Immunol Rev 246(1):5–13. doi: 10.1111/j.1600-065X.2012.01111.x PubMedGoogle Scholar
  107. Ghosh G, Wang VY, Huang DB, Fusco A (2012) NF-kappaB regulation: lessons from structures. Immunol Rev 246(1):36–58. doi: 10.1111/j.1600-065X.2012.01097.x PubMedGoogle Scholar
  108. Gil-Parrado S, Fernandez-Montalvan A, Assfalg-Machleidt I, Popp O, Bestvater F, Holloschi A, Knoch TA, Auerswald EA, Welsh K, Reed JC, Fritz H, Fuentes-Prior P, Spiess E, Salvesen GS, Machleidt W (2002) Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members. J Biol Chem 277(30):27217–27226. doi: 10.1074/jbc.M202945200 Google Scholar
  109. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428. doi: 10.1152/physrev.00027.2001 PubMedGoogle Scholar
  110. Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32(1):37–43. doi: 10.1016/j.tibs.2006.11.001 PubMedGoogle Scholar
  111. Gomez-Vicente V, Donovan M, Cotter TG (2005) Multiple death pathways in retina-derived 661W cells following growth factor deprivation: crosstalk between caspases and calpains. Cell Death Differ 12(7):796–804. doi: 10.1038/sj.cdd.4401621 PubMedGoogle Scholar
  112. Gorlach A, Klappa P, Kietzmann T (2006) The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 8(9–10):1391–1418. doi: 10.1089/ars.2006.8.1391 PubMedGoogle Scholar
  113. Grimm S (2012) The ER-mitochondria interface: the social network of cell death. Biochim Biophys Acta 1823(2):327–334. doi: 10.1016/j.bbamcr.2011.11.018
  114. Grosch S, Schiffmann S, Geisslinger G (2012) Chain length-specific properties of ceramides. Prog Lipid Res 51(1):50–62. doi: 10.1016/j.plipres.2011.11.001 PubMedGoogle Scholar
  115. Gulbins E, Li PL (2006) Physiological and pathophysiological aspects of ceramide. Am J Physiol Regul Integr Comp Physiol 290(1):R11–R26PubMedGoogle Scholar
  116. Guntaka SR, Samak G, Seth A, LaRusso NF, Rao R (2011) Epidermal growth factor protects the apical junctional complexes from hydrogen peroxide in bile duct epithelium. Lab Invest 91(9):1396–1409. doi: 10.1038/labinvest.2011.73 PubMedGoogle Scholar
  117. Habeebu SS, Liu J, Klaassen CD (1998) Cadmium-induced apoptosis in mouse liver. Toxicol Appl Pharmacol 149(2):203–209. doi: 10.1006/taap.1997.8334 PubMedGoogle Scholar
  118. Hader C, Hadnagy W, Seemayer NH (1996) A rapid method for detection of nongenotoxic carcinogens of environmental pollutants using synchronized V79 cells and flow cytometry. Toxicol Lett 88(1–3):99–108PubMedGoogle Scholar
  119. Hampton RY, Sommer T (2012) Finding the will and the way of ERAD substrate retrotranslocation. Curr Opin Cell Biol 24(4):460–466. doi: 10.1016/ PubMedGoogle Scholar
  120. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS, Sartor MA, Kaufman RJ (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15(5):481–490. doi: 10.1038/ncb2738 PubMedGoogle Scholar
  121. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi: 10.1016/j.cell.2011.02.013 PubMedGoogle Scholar
  122. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150. doi: 10.1038/nrm2329 PubMedGoogle Scholar
  123. Hansen JM, Zhang H, Jones DP (2006) Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic Biol Med 40(1):138–145. doi: 10.1016/j.freeradbiomed.2005.09.023 PubMedGoogle Scholar
  124. Hanson CJ, Bootman MD, Distelhorst CW, Maraldi T, Roderick HL (2008a) The cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect. Cell Calcium 44(3):243–258. doi: 10.1016/j.ceca.2007.11.014 PubMedGoogle Scholar
  125. Hanson CJ, Bootman MD, Distelhorst CW, Wojcikiewicz RJ, Roderick HL (2008b) Bcl-2 suppresses Ca2+ release through inositol 1,4,5-trisphosphate receptors and inhibits Ca2+ uptake by mitochondria without affecting ER calcium store content. Cell Calcium 44(3):324–338. doi: 10.1016/j.ceca.2008.01.003 PubMedGoogle Scholar
  126. Haq F, Mahoney M, Koropatnick J (2003) Signaling events for metallothionein induction. Mutat Res 533(1–2):211–226PubMedGoogle Scholar
  127. Hart BA, Lee CH, Shukla GS, Shukla A, Osier M, Eneman JD, Chiu JF (1999) Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress. Toxicology 133(1):43–58PubMedGoogle Scholar
  128. Hartwig A (2013a) Cadmium and cancer. Met Ions Life Sci 11:491–507. doi: 10.1007/978-94-007-5179-8_15 PubMedGoogle Scholar
  129. Hartwig A (2013b) Metal interaction with redox regulation: an integrating concept in metal carcinogenesis? Free Radic Biol Med 55:63–72. doi: 10.1016/j.freeradbiomed.2012.11.009 PubMedGoogle Scholar
  130. Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT (2008) Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 88(2):639–672. doi: 10.1152/physrev.00022.2007 PubMedGoogle Scholar
  131. Hatai T, Matsuzawa A, Inoshita S, Mochida Y, Kuroda T, Sakamaki K, Kuida K, Yonehara S, Ichijo H, Takeda K (2000) Execution of apoptosis signal-regulating kinase 1 (ASK1)-induced apoptosis by the mitochondria-dependent caspase activation. J Biol Chem 275(34):26576–26581. doi: 10.1074/jbc.M003412200 PubMedGoogle Scholar
  132. Hattori K, Naguro I, Runchel C, Ichijo H (2009) The roles of ASK family proteins in stress responses and diseases. Cell Commun Signal 7:9. doi: 10.1186/1478-811X-7-9 PubMedGoogle Scholar
  133. He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AM, Alam J (2001) Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276(24):20858–20865. doi: 10.1074/jbc.M101198200 Google Scholar
  134. He X, Chen MG, Ma Q (2008) Activation of Nrf2 in defense against cadmium-induced oxidative stress. Chem Res Toxicol 21(7):1375–1383. doi: 10.1021/tx800019a PubMedGoogle Scholar
  135. Hers I, Vincent EE, Tavare JM (2011) Akt signalling in health and disease. Cell Signal 23(10):1515–1527. doi: 10.1016/j.cellsig.2011.05.004 PubMedGoogle Scholar
  136. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. doi: 10.1038/nrm3270 PubMedGoogle Scholar
  137. Hidalgo C, Donoso P (2008) Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal 10(7):1275–1312. doi: 10.1089/ars.2007.1886 PubMedGoogle Scholar
  138. Higa A, Chevet E (2012) Redox signaling loops in the unfolded protein response. Cell Signal 24(8):1548–1555. doi: 10.1016/j.cellsig.2012.03.011 PubMedGoogle Scholar
  139. Hiramatsu N, Kasai A, Du S, Takeda M, Hayakawa K, Okamura M, Yao J, Kitamura M (2007) Rapid, transient induction of ER stress in the liver and kidney after acute exposure to heavy metal: evidence from transgenic sensor mice. FEBS Lett 581(10):2055–2059. doi: 10.1016/j.febslet.2007.04.040 PubMedGoogle Scholar
  140. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T, Yamagishi S, Bando Y, Imaizumi K, Tsujimoto Y, Tohyama M (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165(3):347–356. doi: 10.1083/jcb.200310015 PubMedGoogle Scholar
  141. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, Jaattela M (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25(2):193–205. doi: 10.1016/j.molcel.2006.12.009 Google Scholar
  142. Hsiao CJ, Stapleton SR (2004) Characterization of Cd-induced molecular events prior to cellular damage in primary rat hepatocytes in culture: activation of the stress activated signal protein JNK and transcription factor AP-1. J Biochem Mol Toxicol 18(3):133–142. doi: 10.1002/jbt.20018 PubMedGoogle Scholar
  143. Hsu TS, Yang PM, Tsai JS, Lin LY (2009) Attenuation of cadmium-induced necrotic cell death by necrostatin-1: potential necrostatin-1 acting sites. Toxicol Appl Pharmacol 235(2):153–162. doi: 10.1016/j.taap.2008.12.012 PubMedGoogle Scholar
  144. Huang YH, Shih CM, Huang CJ, Lin CM, Chou CM, Tsai ML, Liu TP, Chiu JF, Chen CT (2006) Effects of cadmium on structure and enzymatic activity of Cu, Zn-SOD and oxidative status in neural cells. J Cell Biochem 98(3):577–589. doi: 10.1002/jcb.20772 PubMedGoogle Scholar
  145. Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magalhaes MA, Glogauer M, Grinstein S, Brumell JH (2009) Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci USA 106(15):6226–6231. doi: 10.1073/pnas.0811045106 PubMedGoogle Scholar
  146. Huang J, Lam GY, Brumell JH (2011) Autophagy signaling through reactive oxygen species. Antioxid Redox Signal 14(11):2215–2231. doi: 10.1089/ars.2010.3554 PubMedGoogle Scholar
  147. Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275(5296):90–94PubMedGoogle Scholar
  148. Ikediobi CO, Badisa VL, Ayuk-Takem LT, Latinwo LM, West J (2004) Response of antioxidant enzymes and redox metabolites to cadmium-induced oxidative stress in CRL-1439 normal rat liver cells. Int J Mol Med 14(1):87–92PubMedGoogle Scholar
  149. Iriyama T, Takeda K, Nakamura H, Morimoto Y, Kuroiwa T, Mizukami J, Umeda T, Noguchi T, Naguro I, Nishitoh H, Saegusa K, Tobiume K, Homma T, Shimada Y, Tsuda H, Aiko S, Imoto I, Inazawa J, Chida K, Kamei Y, Kozuma S, Taketani Y, Matsuzawa A, Ichijo H (2009) ASK1 and ASK2 differentially regulate the counteracting roles of apoptosis and inflammation in tumorigenesis. EMBO J 28(7):843–853. doi: 10.1038/emboj.2009.32 PubMedGoogle Scholar
  150. Ishido M, Homma-Takeda S, Tohyama C, Suzuki T (1998) Apoptosis in rat renal proximal tubular cells induced by cadmium. J Toxicol Environ Health A 55(1):1–12PubMedGoogle Scholar
  151. Ishido M, Ohtsubo R, Adachi T, Kunimoto M (2002) Attenuation of both apoptotic and necrotic actions of cadmium by Bcl-2. Environ Health Perspect 110(1):37–42PubMedGoogle Scholar
  152. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078. doi: 10.1038/nature08467 PubMedGoogle Scholar
  153. Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG, van der Vliet A (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45(1):1–17. doi: 10.1016/j.freeradbiomed.2008.03.011 PubMedGoogle Scholar
  154. Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208. doi: 10.1016/j.taap.2009.04.020 PubMedGoogle Scholar
  155. Jauhiainen A, Thomsen C, Strombom L, Grundevik P, Andersson C, Danielsson A, Andersson MK, Nerman O, Rorkvist L, Stahlberg A, Aman P (2012) Distinct cytoplasmic and nuclear functions of the stress induced protein DDIT3/CHOP/GADD153. PLoS ONE 7(4):e33208. doi: 10.1371/journal.pone.0033208 PubMedGoogle Scholar
  156. Jeon HK, Jin HS, Lee DH, Choi WS, Moon CK, Oh YJ, Lee TH (2004) Proteome analysis associated with cadmium adaptation in U937 cells: identification of calbindin-D28k as a secondary cadmium-responsive protein that confers resistance to cadmium-induced apoptosis. J Biol Chem 279(30):31575–31583. doi: 10.1074/jbc.M400823200 PubMedGoogle Scholar
  157. Jeong W, Chang TS, Boja ES, Fales HM, Rhee SG (2004) Roles of TRP14, a thioredoxin-related protein in tumor necrosis factor-alpha signaling pathways. J Biol Chem 279(5):3151–3159. doi: 10.1074/jbc.M307959200 PubMedGoogle Scholar
  158. Ji YL, Wang H, Zhao XF, Wang Q, Zhang C, Zhang Y, Zhao M, Chen YH, Meng XH, Xu DX (2011) Crosstalk between endoplasmic reticulum stress and mitochondrial pathway mediates cadmium-induced germ cell apoptosis in testes. Toxicol Sci 124(2):446–459. doi: 10.1093/toxsci/kfr232 PubMedGoogle Scholar
  159. Ji YL, Wang Z, Wang H, Zhang C, Zhang Y, Zhao M, Chen YH, Meng XH, Xu DX (2012) Ascorbic acid protects against cadmium-induced endoplasmic reticulum stress and germ cell apoptosis in testes. Reprod Toxicol 34(3):357–363. doi: 10.1016/j.reprotox.2012.04.011 PubMedGoogle Scholar
  160. Jiang L, Liu Y, Ma MM, Tang YB, Zhou JG, Guan YY (2013) Mitochondria dependent pathway is involved in the protective effect of bestrophin-3 on hydrogen peroxide-induced apoptosis in basilar artery smooth muscle cells. Apoptosis 18(5):556–565. doi: 10.1007/s10495-013-0828-4 PubMedGoogle Scholar
  161. Jing Y, Liu LZ, Jiang Y, Zhu Y, Guo NL, Barnett J, Rojanasakul Y, Agani F, Jiang BH (2012) Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant transformation of human bronchial epithelial cells. Toxicol Sci 125(1):10–19. doi: 10.1093/toxsci/kfr256 PubMedGoogle Scholar
  162. Jung Y, Kim H, Min SH, Rhee SG, Jeong W (2008) Dynein light chain LC8 negatively regulates NF-kappaB through the redox-dependent interaction with IkappaBalpha. J Biol Chem 283(35):23863–23871. doi: 10.1074/jbc.M803072200 PubMedGoogle Scholar
  163. Jungmann J, Reins HA, Schobert C, Jentsch S (1993) Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361(6410):369–371. doi: 10.1038/361369a0 PubMedGoogle Scholar
  164. Kajla S, Mondol AS, Nagasawa A, Zhang Y, Kato M, Matsuno K, Yabe-Nishimura C, Kamata T (2012) A crucial role for Nox 1 in redox-dependent regulation of Wnt-beta-catenin signaling. FASEB J 26(5):2049–2059. doi: 10.1096/fj.11-196360 PubMedGoogle Scholar
  165. Kalai M, Lamkanfi M, Denecker G, Boogmans M, Lippens S, Meeus A, Declercq W, Vandenabeele P (2003) Regulation of the expression and processing of caspase-12. J Cell Biol 162(3):457–467. doi: 10.1083/jcb.200303157 PubMedGoogle Scholar
  166. Karin M, Shaulian E (2001) AP-1: linking hydrogen peroxide and oxidative stress to the control of cell proliferation and death. IUBMB Life 52(1–2):17–24. doi: 10.1080/15216540252774711 PubMedGoogle Scholar
  167. Kato H, Katoh R, Kitamura M (2013) Dual regulation of cadmium-induced apoptosis by mTORC1 through selective induction of IRE1 branches in unfolded protein response. PLoS ONE 8(5):e64344. doi: 10.1371/journal.pone.0064344 PubMedGoogle Scholar
  168. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257PubMedGoogle Scholar
  169. Khan NM, Sandur SK, Checker R, Sharma D, Poduval TB, Sainis KB (2011) Pro-oxidants ameliorate radiation-induced apoptosis through activation of the calcium-ERK1/2-Nrf2 pathway. Free Radic Biol Med 51(1):115–128. doi: 10.1016/j.freeradbiomed.2011.03.037 PubMedGoogle Scholar
  170. Kim J, Kim SH, Johnson VJ, Sharma RP (2005a) Extracellular signal-regulated kinase-signaling-dependent G2/M arrest and cell death in murine macrophages by cadmium. Environ Toxicol Chem 24(12):3069–3077PubMedGoogle Scholar
  171. Kim SD, Moon CK, Eun SY, Ryu PD, Jo SA (2005b) Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis. Biochem Biophys Res Commun 328(1):326–334. doi: 10.1016/j.bbrc.2004.11.173 PubMedGoogle Scholar
  172. Kim AN, Jeon WK, Lee JJ, Kim BC (2010) Up-regulation of heme oxygenase-1 expression through CaMKII-ERK1/2-Nrf2 signaling mediates the anti-inflammatory effect of bisdemethoxycurcumin in LPS-stimulated macrophages. Free Radic Biol Med 49(3):323–331. doi: 10.1016/j.freeradbiomed.2010.04.015 PubMedGoogle Scholar
  173. Kim JH, Xu EY, Sacks DB, Lee J, Shu L, Xia B, Kong AN (2012) Identification and functional studies of a new Nrf2 partner IQGAP1: a critical role in the stability and transactivation of Nrf2. Antioxid Redox Signal. doi: 10.1089/ars.2012.4586 Google Scholar
  174. Kim S, Cheon HS, Kim SY, Juhnn YS, Kim YY (2013) Cadmium induces neuronal cell death through reactive oxygen species activated by GADD153. BMC cell biology 14:4. doi: 10.1186/1471-2121-14-4 PubMedGoogle Scholar
  175. Kitamura M (2011) Control of NF-kappaB and inflammation by the unfolded protein response. Int Rev Immunol 30(1):4–15. doi: 10.3109/08830185.2010.522281 PubMedGoogle Scholar
  176. Kitamura M, Hiramatsu N (2010) The oxidative stress: endoplasmic reticulum stress axis in cadmium toxicity. Biometals 23(5):941–950. doi: 10.1007/s10534-010-9296-2 PubMedGoogle Scholar
  177. Kiviluoto S, Vervliet T, Ivanova H, Decuypere JP, De Smedt H, Missiaen L, Bultynck G, Parys JB (2013) Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress. Biochim Biophys Acta 1833(7):1612–1624. doi: 10.1016/j.bbamcr.2013.01.026 Google Scholar
  178. Klaassen CD, Liu J (1998) Induction of metallothionein as an adaptive mechanism affecting the magnitude and progression of toxicological injury. Environ Health Perspect 106(Suppl 1):297–300PubMedGoogle Scholar
  179. Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238(3):215–220. doi: 10.1016/j.taap.2009.03.026 PubMedGoogle Scholar
  180. Komoike Y, Inamura H, Matsuoka M (2012) Effects of salubrinal on cadmium-induced apoptosis in HK-2 human renal proximal tubular cells. Arch Toxicol 86(1):37–44. doi: 10.1007/s00204-011-0742-x PubMedGoogle Scholar
  181. Krishna S, Low IC, Pervaiz S (2011) Regulation of mitochondrial metabolism: yet another facet in the biology of the oncoprotein Bcl-2. Biochem J 435(3):545–551. doi: 10.1042/BJ20101996 PubMedGoogle Scholar
  182. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163. doi: 10.1152/physrev.00013.2006 PubMedGoogle Scholar
  183. Kunzelmann K, Kongsuphol P, Chootip K, Toledo C, Martins JR, Almaca J, Tian Y, Witzgall R, Ousingsawat J, Schreiber R (2011) Role of the Ca2+-activated Cl- channels bestrophin and anoctamin in epithelial cells. Biol Chem 392(1–2):125–134. doi: 10.1515/BC.2011.010 PubMedGoogle Scholar
  184. Kuranaga E, Miura M (2007) Nonapoptotic functions of caspases: caspases as regulatory molecules for immunity and cell-fate determination. Trends Cell Biol 17(3):135–144. doi: 10.1016/j.tcb.2007.01.001 PubMedGoogle Scholar
  185. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869PubMedGoogle Scholar
  186. Lam D, Kosta A, Luciani MF, Golstein P (2008) The inositol 1,4,5-trisphosphate receptor is required to signal autophagic cell death. Mol Biol Cell 19(2):691–700. doi: 10.1091/mbc.E07-08-0823 PubMedGoogle Scholar
  187. Lamkanfi M, Kalai M, Vandenabeele P (2004) Caspase-12: an overview. Cell Death Differ 11(4):365–368. doi: 10.1038/sj.cdd.4401364 PubMedGoogle Scholar
  188. Lapenna S, Giordano A (2009) Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8(7):547–566. doi: 10.1038/nrd2907 PubMedGoogle Scholar
  189. Lawal AO, Ellis EM (2011) Nrf2-mediated adaptive response to cadmium-induced toxicity involves protein kinase C delta in human 1321N1 astrocytoma cells. Environ Toxicol Pharmacol 32(1):54–62. doi: 10.1016/j.etap.2011.03.010 PubMedGoogle Scholar
  190. Lawal AO, Ellis EM (2012) Phospholipase C mediates cadmium-dependent apoptosis in HEK 293 cells. Basic Clin Pharmacol Toxicol 110(6):510–517. doi: 10.1111/j.1742-7843.2011.00843.x PubMedGoogle Scholar
  191. Lee J, Lim KT (2011) Inhibitory effect of plant-originated glycoprotein (27 kDa) on expression of matrix metalloproteinase-9 in cadmium chloride-induced BNL CL.2 cells. J Trace Elem Med Biol 25(4):239–246. doi: 10.1016/j.jtemb.2011.08.142
  192. Lee WK, Thévenod F (2006) A role for mitochondrial aquaporins in cellular life-and-death decisions? Am J Physiol Cell Physiol 291(2):C195–C202PubMedGoogle Scholar
  193. Lee WK, Thévenod F (2008) Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies. Biochem Pharmacol 76(11):1323–1332. doi: 10.1016/j.bcp.2008.07.004 PubMedGoogle Scholar
  194. Lee WK, Bork U, Gholamrezaei F, Thévenod F (2005a) Cd2+-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca2+ uniporter. Am J Physiol Renal Physiol 288(1):F27–F39PubMedGoogle Scholar
  195. Lee WK, Spielmann M, Bork U, Thévenod F (2005b) Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force. Am J Physiol Cell Physiol 289(3):C656–C664PubMedGoogle Scholar
  196. Lee WK, Abouhamed M, Thévenod F (2006) Caspase-dependent and -independent pathways for cadmium-induced apoptosis in cultured kidney proximal tubule cells. Am J Physiol Renal Physiol 291(4):F823–F832. doi: 10.1152/ajprenal.00276.2005 PubMedGoogle Scholar
  197. Lee WK, Torchalski B, Thévenod F (2007) Cadmium-induced ceramide formation triggers calpain-dependent apoptosis in cultured kidney proximal tubule cells. Am J Physiol Cell Physiol 293(3):C839–C847PubMedGoogle Scholar
  198. Lee WK, Torchalski B, Kohistani N, Thévenod F (2011) ABCB1 protects kidney proximal tubule cells against cadmium-induced apoptosis: roles of cadmium and ceramide transport. Toxicol Sci 121(2):343–356. doi: 10.1093/toxsci/kfr071 PubMedGoogle Scholar
  199. Lee WK, Chakraborty PK, Roussa E, Wolff NA, Thévenod F (2012) ERK1/2-dependent bestrophin-3 expression prevents ER-stress-induced cell death in renal epithelial cells by reducing CHOP. Biochim Biophys Acta 1823(10):1864–1876. doi: 10.1016/j.bbamcr.2012.06.003 Google Scholar
  200. Lei K, Davis RJ (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100(5):2432–2437. doi: 10.1073/pnas.0438011100 PubMedGoogle Scholar
  201. Lei K, Nimnual A, Zong WX, Kennedy NJ, Flavell RA, Thompson CB, Bar-Sagi D, Davis RJ (2002) The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol 22(13):4929–4942PubMedGoogle Scholar
  202. Leiser SF, Miller RA (2010) Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol Cell Biol 30(3):871–884. doi: 10.1128/MCB.01145-09 PubMedGoogle Scholar
  203. Lemarie A, Lagadic-Gossmann D, Morzadec C, Allain N, Fardel O, Vernhet L (2004) Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. Free Radic Biol Med 36(12):1517–1531PubMedGoogle Scholar
  204. Leslie NR (2006) The redox regulation of PI 3-kinase-dependent signaling. Antioxid Redox Signal 8(9–10):1765–1774. doi: 10.1089/ars.2006.8.1765 PubMedGoogle Scholar
  205. Leverrier P, Montigny C, Garrigos M, Champeil P (2007) Metal binding to ligands: cadmium complexes with glutathione revisited. Anal Biochem 371(2):215–228. doi: 10.1016/j.ab.2007.07.015 PubMedGoogle Scholar
  206. Li Y, Lim SC (2007) Cadmium-induced apoptosis of hepatocytes is not associated with death receptor-related caspase-dependent pathways in the rat. Environ Toxicol Pharmacol 24(3):231–238. doi: 10.1016/j.etap.2007.05.010 PubMedGoogle Scholar
  207. Li M, Kondo T, Zhao QL, Li FJ, Tanabe K, Arai Y, Zhou ZC, Kasuya M (2000) Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria-dependent pathways. J Biol Chem 275(50):39702–39709PubMedGoogle Scholar
  208. Li M, Xia T, Jiang CS, Li LJ, Fu JL, Zhou ZC (2003) Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibly involved in cadmium-triggered apoptosis. Toxicology 194(1–2):19–33PubMedGoogle Scholar
  209. Li Z, Arnaud L, Rockwell P, Figueiredo-Pereira ME (2004) A single amino acid substitution in a proteasome subunit triggers aggregation of ubiquitinated proteins in stressed neuronal cells. J Neurochem 90(1):19–28. doi: 10.1111/j.1471-4159.2004.02456.x PubMedGoogle Scholar
  210. Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, Tabas I (2009) Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol 186(6):783–792. doi: 10.1083/jcb.200904060 PubMedGoogle Scholar
  211. Li L, Ishdorj G, Gibson SB (2012) Reactive oxygen species regulation of autophagy in cancer: implications for cancer treatment. Free Radic Biol Med 53(7):1399–1410. doi: 10.1016/j.freeradbiomed.2012.07.011 PubMedGoogle Scholar
  212. Liao Y, Fung TS, Huang M, Fang SG, Zhong Y, Liu DX (2013) Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway. J Virol 87(14):8124–8134. doi: 10.1128/JVI.00626-13 PubMedGoogle Scholar
  213. Lim SC, Hahm KS, Lee SH, Oh SH (2010) Autophagy involvement in cadmium resistance through induction of multidrug resistance-associated protein and counterbalance of endoplasmic reticulum stress WI38 lung epithelial fibroblast cells. Toxicology 276(1):18–26. doi: 10.1016/j.tox.2010.06.010 PubMedGoogle Scholar
  214. Lipford JR, Deshaies RJ (2003) Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nat Cell Biol 5(10):845–850. doi: 10.1038/ncb1003-845 PubMedGoogle Scholar
  215. Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15(1):36–42. doi: 10.1038/ PubMedGoogle Scholar
  216. Liu Y, Templeton DM (2008) Initiation of caspase-independent death in mouse mesangial cells by Cd2+: involvement of p38 kinase and CaMK-II. J Cell Physiol 217(2):307–318. doi: 10.1002/jcp.21499 PubMedGoogle Scholar
  217. Liu F, Inageda K, Nishitai G, Matsuoka M (2006) Cadmium induces the expression of Grp78, an endoplasmic reticulum molecular chaperone, in LLC-PK1 renal epithelial cells. Environ Health Perspect 114(6):859–864PubMedGoogle Scholar
  218. Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238(3):209–214. doi: 10.1016/j.taap.2009.01.029 PubMedGoogle Scholar
  219. Livnat-Levanon N, Glickman MH (2011) Ubiquitin-proteasome system and mitochondria—reciprocity. Biochim Biophys Acta 1809(2):80–87. doi: 10.1016/j.bbagrm.2010.07.005 Google Scholar
  220. Lizotte J, Abed E, Signor C, Malu DT, Cuevas J, Kevorkova O, Sanchez-Dardon J, Satoskar A, Scorza T, Jumarie C, Moreau R (2012) Expression of macrophage migration inhibitory factor by osteoblastic cells: protection against cadmium toxicity. Toxicol Lett 215(3):167–173. doi: 10.1016/j.toxlet.2012.10.006 PubMedGoogle Scholar
  221. Lopez E, Figueroa S, Oset-Gasque MJ, Gonzalez MP (2003) Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol 138(5):901–911. doi: 10.1038/sj.bjp.0705111 PubMedGoogle Scholar
  222. Lopez E, Arce C, Oset-Gasque MJ, Canadas S, Gonzalez MP (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 40(6):940–951. doi: 10.1016/j.freeradbiomed.2005.10.062 PubMedGoogle Scholar
  223. Lorz C, Justo P, Sanz A, Subira D, Egido J, Ortiz A (2004) Paracetamol-induced renal tubular injury: a role for ER stress. J Am Soc Nephrol 15(2):380–389PubMedGoogle Scholar
  224. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830(5):3143–3153. doi: 10.1016/j.bbagen.2012.09.008 PubMedGoogle Scholar
  225. Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5(6):472–484. doi: 10.1038/nri1632 PubMedGoogle Scholar
  226. Macian F, Lopez-Rodriguez C, Rao A (2001) Partners in transcription: NFAT and AP-1. Oncogene 20(19):2476–2489. doi: 10.1038/sj.onc.1204386 PubMedGoogle Scholar
  227. MacKinnon Y, Kapron CM (2010) Reduction in cadmium-induced toxicity and c-Jun N-terminal kinase activation by glutathione in cultured mouse embryonic cells. Birth Defects Res A Clin Mol Teratol 88(9):707–714. doi: 10.1002/bdra.20703 PubMedGoogle Scholar
  228. Madden DT, Egger L, Bredesen DE (2007) A calpain-like protease inhibits autophagic cell death. Autophagy 3(5):519–522PubMedGoogle Scholar
  229. Malhotra JD, Kaufman RJ (2007) Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 9(12):2277–2293. doi: 10.1089/ars.2007.1782 PubMedGoogle Scholar
  230. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. doi: 10.1016/j.cell.2007.06.009 PubMedGoogle Scholar
  231. Mao WP, Ye JL, Guan ZB, Zhao JM, Zhang C, Zhang NN, Jiang P, Tian T (2007) Cadmium induces apoptosis in human embryonic kidney (HEK) 293 cells by caspase-dependent and -independent pathways acting on mitochondria. Toxicol In Vitro 21(3):343–354. doi: 10.1016/j.tiv.2006.09.004 PubMedGoogle Scholar
  232. Margariti A, Li H, Chen T, Martin D, Vizcay-Barrena G, Alam S, Karamariti E, Xiao Q, Zampetaki A, Zhang Z, Wang W, Jiang Z, Gao C, Ma B, Chen YG, Cockerill G, Hu Y, Xu Q, Zeng L (2013) XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem 288(2):859–872. doi: 10.1074/jbc.M112.412783 PubMedGoogle Scholar
  233. Martinez Flores K, Uribe Marin BC, Souza Arroyo V, Bucio Ortiz L, Lopez Reyes A, Gomez-Quiroz LE, Rojas del Castillo E, Gutierrez Ruiz MC (2013) Hepatocytes display a compensatory survival response against cadmium toxicity by a mechanism mediated by EGFR and Src. Toxicol In Vitro 27(3):1031–1042. doi: 10.1016/j.tiv.2013.01.017 PubMedGoogle Scholar
  234. Matchkov VV, Larsen P, Bouzinova EV, Rojek A, Boedtkjer DM, Golubinskaya V, Pedersen FS, Aalkjaer C, Nilsson H (2008) Bestrophin-3 (vitelliform macular dystrophy 2-like 3 protein) is essential for the cGMP-dependent calcium-activated chloride conductance in vascular smooth muscle cells. Circ Res 103(8):864–872. doi: 10.1161/CIRCRESAHA.108.178517 PubMedGoogle Scholar
  235. Matsuoka M, Igisu H (2001) Cadmium induces phosphorylation of p53 at serine 15 in MCF-7 cells. Biochem Biophys Res Commun 282(5):1120–1125. doi: 10.1006/bbrc.2001.4700 PubMedGoogle Scholar
  236. Matsuzawa A, Ichijo H (2005) Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid Redox Signal 7(3–4):472–481. doi: 10.1089/ars.2005.7.472 PubMedGoogle Scholar
  237. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, Stivala F, Libra M, Basecke J, Evangelisti C, Martelli AM, Franklin RA (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284. doi: 10.1016/j.bbamcr.2006.10.001 PubMedGoogle Scholar
  238. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21(4):1249–1259. doi: 10.1128/MCB.21.4.1249-1259.2001 PubMedGoogle Scholar
  239. Medicherla B, Goldberg AL (2008) Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins. J Cell Biol 182(4):663–673. doi: 10.1083/jcb.200803022 PubMedGoogle Scholar
  240. Meffert MK, Baltimore D (2005) Physiological functions for brain NF-kappaB. Trends Neurosci 28(1):37–43. doi: 10.1016/j.tins.2004.11.002 PubMedGoogle Scholar
  241. Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L (2011) Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 3(6). doi: 10.1101/cshperspect.a004317
  242. Meldolesi J, Pozzan T (1998) The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23(1):10–14PubMedGoogle Scholar
  243. Meplan C, Mann K, Hainaut P (1999) Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J Biol Chem 274(44):31663–31670PubMedGoogle Scholar
  244. Mihailidou C, Papazian I, Papavassiliou AG, Kiaris H (2010) CHOP-dependent regulation of p21/waf1 during ER stress. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 25(6):761–766. doi: 10.1159/000315096 Google Scholar
  245. Misra UK, Gawdi G, Akabani G, Pizzo SV (2002) Cadmium-induced DNA synthesis and cell proliferation in macrophages: the role of intracellular calcium and signal transduction mechanisms. Cell Signal 14(4):327–340PubMedGoogle Scholar
  246. Misra UK, Gawdi G, Pizzo SV (2003) Induction of mitogenic signalling in the 1LN prostate cell line on exposure to submicromolar concentrations of cadmium+. Cell Signal 15(11):1059–1070PubMedGoogle Scholar
  247. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. doi: 10.1016/j.cell.2011.10.026 PubMedGoogle Scholar
  248. Moenner M, Pluquet O, Bouchecareilh M, Chevet E (2007) Integrated endoplasmic reticulum stress responses in cancer. Cancer Res 67(22):10631–10634. doi: 10.1158/0008-5472.CAN-07-1705 PubMedGoogle Scholar
  249. Monteiro C, Santos C, Pinho S, Oliveira H, Pedrosa T, Dias MC (2012) Cadmium-induced cyto- and genotoxicity are organ-dependent in lettuce. Chem Res Toxicol 25(7):1423–1434. doi: 10.1021/tx300039t PubMedGoogle Scholar
  250. Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21(1):103–115. doi: 10.1038/cr.2010.178 PubMedGoogle Scholar
  251. Mullen TD, Obeid LM (2012) Ceramide and apoptosis: exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anticancer Agents Med Chem 12(4):340–363PubMedGoogle Scholar
  252. Muratani M, Tansey WP (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 4(3):192–201. doi: 10.1038/nrm1049 PubMedGoogle Scholar
  253. Naguro I, Umeda T, Kobayashi Y, Maruyama J, Hattori K, Shimizu Y, Kataoka K, Kim-Mitsuyama S, Uchida S, Vandewalle A, Noguchi T, Nishitoh H, Matsuzawa A, Takeda K, Ichijo H (2012) ASK3 responds to osmotic stress and regulates blood pressure by suppressing WNK1-SPAK/OSR1 signaling in the kidney. Nat Commun 3:1285. doi: 10.1038/ncomms2283 PubMedGoogle Scholar
  254. Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150(4):887–894PubMedGoogle Scholar
  255. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103. doi: 10.1038/47513 PubMedGoogle Scholar
  256. Nawrot TS, Staessen JA, Roels HA, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J (2010) Cadmium exposure in the population: from health risks to strategies of prevention. Biometals 23(5):769–782. doi: 10.1007/s10534-010-9343-z PubMedGoogle Scholar
  257. Nayak MK, Kumar K, Dash D (2011) Regulation of proteasome activity in activated human platelets. Cell Calcium 49(4):226–232. doi: 10.1016/j.ceca.2011.02.005 PubMedGoogle Scholar
  258. Nguyen KC, Willmore WG, Tayabali AF (2013) Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology 306:114–123. doi: 10.1016/j.tox.2013.02.010 PubMedGoogle Scholar
  259. Ni M, Zhang Y, Lee AS (2011) Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem J 434(2):181–188. doi: 10.1042/BJ20101569 PubMedGoogle Scholar
  260. Nicotera P, Melino G (2004) Regulation of the apoptosis-necrosis switch. Oncogene 23(16):2757–2765. doi: 10.1038/sj.onc.1207559 PubMedGoogle Scholar
  261. Nicotera P, Leist M, Ferrando-May E (1998) Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett 102–103:139–142PubMedGoogle Scholar
  262. Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13(12):767–779. doi: 10.1038/nrm3470 PubMedGoogle Scholar
  263. Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, Miyazono K, Ichijo H (1998) ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 2(3):389–395PubMedGoogle Scholar
  264. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16(11):1345–1355. doi: 10.1101/gad.992302 PubMedGoogle Scholar
  265. Nitta M, Kobayashi O, Honda S, Hirota T, Kuninaka S, Marumoto T, Ushio Y, Saya H (2004) Spindle checkpoint function is required for mitotic catastrophe induced by DNA-damaging agents. Oncogene 23(39):6548–6558. doi: 10.1038/sj.onc.1207873 PubMedGoogle Scholar
  266. Niture SK, Jaiswal AK (2012) Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem. 2287(13):9873-9886. doi: 10.1074/jbc.M111.312694 Google Scholar
  267. Niture SK, Jaiswal AK (2013) Nrf2-induced antiapoptotic Bcl-xL protein enhances cell survival and drug resistance. Free Radic Biol Med 57:119-131. doi: 10.1016/j.freeradbiomed.2012.12.014 Google Scholar
  268. Novgorodov SA, Chudakova DA, Wheeler BW, Bielawski J, Kindy MS, Obeid LM, Gudz TI (2011) Developmentally regulated ceramide synthase 6 increases mitochondrial Ca2+ loading capacity and promotes apoptosis. J Biol Chem 286(6):4644–4658. doi: 10.1074/jbc.M110.164392 PubMedGoogle Scholar
  269. O’Brien P, Salacinski HJ (1998) Evidence that the reactions of cadmium in the presence of metallothionein can produce hydroxyl radicals. Arch Toxicol 72(11):690–700PubMedGoogle Scholar
  270. O’Driscoll KE, Hatton WJ, Burkin HR, Leblanc N, Britton FC (2008) Expression, localization, and functional properties of Bestrophin 3 channel isolated from mouse heart. Am J Physiol Cell Physiol 295(6):C1610–C1624. doi: 10.1152/ajpcell.00461.2008 PubMedGoogle Scholar
  271. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26(24):9220–9231. doi: 10.1128/MCB.01453-06 PubMedGoogle Scholar
  272. Oh SH, Lee BH, Lim SC (2004) Cadmium induces apoptotic cell death in WI 38 cells via caspase-dependent Bid cleavage and calpain-mediated mitochondrial Bax cleavage by Bcl-2-independent pathway. Biochem Pharmacol 68(9):1845–1855PubMedGoogle Scholar
  273. Okada T, Yoshida H, Akazawa R, Negishi M, Mori K (2002) Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 366(Pt 2):585–594. doi: 10.1042/BJ20020391 PubMedGoogle Scholar
  274. Onuma Y, Haramoto Y, Nejigane S, Takahashi S, Asashima M (2009) Bestrophin genes are expressed in Xenopus development. Biochem Biophys Res Commun 384(3):290–295. doi: 10.1016/j.bbrc.2009.04.117 PubMedGoogle Scholar
  275. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565. doi: 10.1038/nrm1150 PubMedGoogle Scholar
  276. Palam LR, Baird TD, Wek RC (2011) Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J Biol Chem 286(13):10939–10949. doi: 10.1074/jbc.M110.216093 PubMedGoogle Scholar
  277. Papadakis ES, Finegan KG, Wang X, Robinson AC, Guo C, Kayahara M, Tournier C (2006) The regulation of Bax by c-Jun N-terminal protein kinase (JNK) is a prerequisite to the mitochondrial-induced apoptotic pathway. FEBS Lett 580(5):1320–1326PubMedGoogle Scholar
  278. Paredes RM, Bollo M, Holstein D, Lechleiter JD (2013) Luminal Ca2+ depletion during the unfolded protein response in Xenopus oocytes: cause and consequence. Cell Calcium 53(4):286–296. doi: 10.1016/j.ceca.2013.01.002 PubMedGoogle Scholar
  279. Park J, Kim I, Oh YJ, Lee K, Han PL, Choi EJ (1997) Activation of c-Jun N-terminal kinase antagonizes an anti-apoptotic action of Bcl-2. J Biol Chem 272(27):16725–16728PubMedGoogle Scholar
  280. Park CS, Kim OS, Yun SM, Jo SA, Jo I, Koh YH (2008) Presenilin 1/gamma-secretase is associated with cadmium-induced E-cadherin cleavage and COX-2 gene expression in T47D breast cancer cells. Toxicol Sci 106(2):413–422. doi: 10.1093/toxsci/kfn197 PubMedGoogle Scholar
  281. Parys JB, Decuypere JP, Bultynck G (2012) Role of the inositol 1,4,5-trisphosphate receptor/Ca2+-release channel in autophagy. Cell Commun Signal 10(1):17. doi: 10.1186/1478-811X-10-17 PubMedGoogle Scholar
  282. Pehar M, Jonas MC, Hare TM, Puglielli L (2012) SLC33A1/AT-1 protein regulates the induction of autophagy downstream of IRE1/XBP1 pathway. J Biol Chem 287(35):29921–29930. doi: 10.1074/jbc.M112.363911 PubMedGoogle Scholar
  283. Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2007) 20S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress. Phytochemistry 68(8):1139–1146. doi: 10.1016/j.phytochem.2007.02.022 PubMedGoogle Scholar
  284. Peng TI, Jou MJ (2010) Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci 1201:183–188. doi: 10.1111/j.1749-6632.2010.05634.x PubMedGoogle Scholar
  285. Peng Z, Peng L, Fan Y, Zandi E, Shertzer HG, Xia Y (2007) A critical role for IkappaB kinase beta in metallothionein-1 expression and protection against arsenic toxicity. J Biol Chem 282(29):21487–21496. doi: 10.1074/jbc.M702510200 PubMedGoogle Scholar
  286. Permenter MG, Lewis JA, Jackson DA (2011) Exposure to nickel, chromium, or cadmium causes distinct changes in the gene expression patterns of a rat liver derived cell line. PLoS ONE 6(11):e27730. doi: 10.1371/journal.pone.0027730 PubMedGoogle Scholar
  287. Picaud T, Desbois A (2006) Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin. Biochemistry 45(51):15829–15837. doi: 10.1021/bi061304m PubMedGoogle Scholar
  288. Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 20(11):2690–2701PubMedGoogle Scholar
  289. Poppe M, Reimertz C, Munstermann G, Kogel D, Prehn JH (2002) Ceramide-induced apoptosis of D283 medulloblastoma cells requires mitochondrial respiratory chain activity but occurs independently of caspases and is not sensitive to Bcl-xL overexpression. J Neurochem 82(3):482–494PubMedGoogle Scholar
  290. Pourahmad J, O’Brien PJ, Jokar F, Daraei B (2003) Carcinogenic metal induced sites of reactive oxygen species formation in hepatocytes. Toxicol In Vitro 17(5–6):803–810PubMedGoogle Scholar
  291. Qu W, Diwan BA, Reece JM, Bortner CD, Pi J, Liu J, Waalkes MP (2005) Cadmium-induced malignant transformation in rat liver cells: role of aberrant oncogene expression and minimal role of oxidative stress. Int J Cancer 114(3):346–355. doi: 10.1002/ijc.20736 PubMedGoogle Scholar
  292. Qu W, Fuquay R, Sakurai T, Waalkes MP (2006) Acquisition of apoptotic resistance in cadmium-induced malignant transformation: specific perturbation of JNK signal transduction pathway and associated metallothionein overexpression. Mol Carcinog 45(8):561–571. doi: 10.1002/mc.20185 PubMedGoogle Scholar
  293. Qu W, Ke H, Pi J, Broderick D, French JE, Webber MM, Waalkes MP (2007) Acquisition of apoptotic resistance in cadmium-transformed human prostate epithelial cells: Bcl-2 overexpression blocks the activation of JNK signal transduction pathway. Environ Health Perspect 115(7):1094–1100. doi: 10.1289/ehp.10075 PubMedGoogle Scholar
  294. Qu W, Pi J, Waalkes MP (2013) Metallothionein blocks oxidative DNA damage in vitro. Arch Toxicol 87(2):311–321. doi: 10.1007/s00204-012-0927-y PubMedGoogle Scholar
  295. Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM, Bredesen DE (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276(36):33869–33874. doi: 10.1074/jbc.M102225200 PubMedGoogle Scholar
  296. Rao RV, Peel A, Logvinova A, del Rio G, Hermel E, Yokota T, Goldsmith PC, Ellerby LM, Ellerby HM, Bredesen DE (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514(2–3):122–128PubMedGoogle Scholar
  297. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11(4):372–380. doi: 10.1038/sj.cdd.4401378 PubMedGoogle Scholar
  298. Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9(9):679–690. doi: 10.1038/nrm2468 PubMedGoogle Scholar
  299. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990. doi: 10.1016/j.cellsig.2012.01.008 PubMedGoogle Scholar
  300. Rickert RC, Jellusova J, Miletic AV (2011) Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol Rev 244(1):115–133. doi: 10.1111/j.1600-065X.2011.01067.x PubMedGoogle Scholar
  301. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5(11):897–907. doi: 10.1038/nrm1496 PubMedGoogle Scholar
  302. Rizvi F, Heimann T, Herrnreiter A, O’Brien WJ (2011) Mitochondrial dysfunction links ceramide activated HRK expression and cell death. PLoS ONE 6(3):e18137. doi: 10.1371/journal.pone.0018137 PubMedGoogle Scholar
  303. Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhaes PJ, Di Virgilio F, Pozzan T (2003) Calcium and apoptosis: facts and hypotheses. Oncogene 22(53):8619–8627. doi: 10.1038/sj.onc.1207105 PubMedGoogle Scholar
  304. Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8(5):361–375. doi: 10.1038/nrc2374 PubMedGoogle Scholar
  305. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529. doi: 10.1038/nrm2199 PubMedGoogle Scholar
  306. Runchel C, Matsuzawa A, Ichijo H (2011) Mitogen-activated protein kinases in mammalian oxidative stress responses. Antioxid Redox Signal 15(1):205–218. doi: 10.1089/ars.2010.3733 PubMedGoogle Scholar
  307. Ruvolo PP (2003) Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res 47(5):383–392PubMedGoogle Scholar
  308. Sabolic I, Breljak D, Skarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23(5):897–926. doi: 10.1007/s10534-010-9351-z PubMedGoogle Scholar
  309. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17(9):2596–2606. doi: 10.1093/emboj/17.9.2596 PubMedGoogle Scholar
  310. Sakaki K, Wu J, Kaufman RJ (2008) Protein kinase Ctheta is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem 283(22):15370–15380. doi: 10.1074/jbc.M710209200 PubMedGoogle Scholar
  311. Sakamoto K, Iwasaki K, Sugiyama H, Tsuji Y (2009) Role of the tumor suppressor PTEN in antioxidant responsive element-mediated transcription and associated histone modifications. Mol Biol Cell 20(6):1606–1617. doi: 10.1091/mbc.E08-07-0762 PubMedGoogle Scholar
  312. Sakurai A, Nishimoto M, Himeno S, Imura N, Tsujimoto M, Kunimoto M, Hara S (2005) Transcriptional regulation of thioredoxin reductase 1 expression by cadmium in vascular endothelial cells: role of NF-E2-related factor-2. J Cell Physiol 203(3):529–537. doi: 10.1002/jcp.20246 PubMedGoogle Scholar
  313. Sancho P, Fernandez C, Yuste VJ, Amran D, Ramos AM, de Blas E, Susin SA, Aller P (2006) Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under different forms of oxidative stress. Apoptosis 11(5):673–686PubMedGoogle Scholar
  314. Sano R, Hou YC, Hedvat M, Correa RG, Shu CW, Krajewska M, Diaz PW, Tamble CM, Quarato G, Gottlieb RA, Yamaguchi M, Nizet V, Dahl R, Thomas DD, Tait SW, Green DR, Fisher PB, Matsuzawa S, Reed JC (2012) Endoplasmic reticulum protein BI-1 regulates Ca(2)(+)-mediated bioenergetics to promote autophagy. Genes Dev 26(10):1041–1054. doi: 10.1101/gad.184325.111 PubMedGoogle Scholar
  315. Santos CX, Tanaka LY, Wosniak J, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11(10):2409–2427. doi: 10.1089/ARS.2009.2625 PubMedGoogle Scholar
  316. Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem 277(23):20438–20445. doi: 10.1074/jbc.M110631200 PubMedGoogle Scholar
  317. Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36(1):30–38. doi: 10.1016/j.tibs.2010.07.007 PubMedGoogle Scholar
  318. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300(5616):135–139. doi: 10.1126/science.1081208 PubMedGoogle Scholar
  319. Sedelnikova OA, Redon CE, Dickey JS, Nakamura AJ, Georgakilas AG, Bonner WM (2010) Role of oxidatively induced DNA lesions in human pathogenesis. Mutat Res 704(1–3):152–159. doi: 10.1016/j.mrrev.2009.12.005 PubMedGoogle Scholar
  320. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48(2):158–167. doi: 10.1016/j.molcel.2012.09.025 PubMedGoogle Scholar
  321. Senkal CE, Ponnusamy S, Manevich Y, Meyers-Needham M, Saddoughi SA, Mukhopadyay A, Dent P, Bielawski J, Ogretmen B (2011) Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network. J Biol Chem 286(49):42446–42458. doi: 10.1074/jbc.M111.287383 PubMedGoogle Scholar
  322. Shang F, Taylor A (2011) Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 51(1):5–16. doi: 10.1016/j.freeradbiomed.2011.03.031 PubMedGoogle Scholar
  323. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136. doi: 10.1038/ncb0502-e131 PubMedGoogle Scholar
  324. Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14(4):197–210. doi: 10.1038/nrm3546 Google Scholar
  325. Shimizu S, Konishi A, Nishida Y, Mizuta T, Nishina H, Yamamoto A, Tsujimoto Y (2010) Involvement of JNK in the regulation of autophagic cell death. Oncogene 29(14):2070–2082. doi: 10.1038/onc.2009.487 PubMedGoogle Scholar
  326. Shimoda R, Achanzar WE, Qu W, Nagamine T, Takagi H, Mori M, Waalkes MP (2003) Metallothionein is a potential negative regulator of apoptosis. Toxicol Sci 73(2):294–300. doi: 10.1093/toxsci/kfg095 PubMedGoogle Scholar
  327. Shiraishi N, Waalkes MP (1994) Enhancement of metallothionein gene expression in male Wistar (WF/NCr) rats by treatment with calmodulin inhibitors: potential role of calcium regulatory pathways in metallothionein induction. Toxicol Appl Pharmacol 125(1):97–103. doi: 10.1006/taap.1994.1053 PubMedGoogle Scholar
  328. Siemen D, Ziemer M (2013) What is the nature of the mitochondrial permeability transition pore and what is it not? IUBMB Life 65(3):255–262. doi: 10.1002/iub.1130 PubMedGoogle Scholar
  329. Singh KP, Kumari R, Pevey C, Jackson D, DuMond JW (2009) Long duration exposure to cadmium leads to increased cell survival, decreased DNA repair capacity, and genomic instability in mouse testicular Leydig cells. Cancer Lett 279(1):84–92. doi: 10.1016/j.canlet.2009.01.023 PubMedGoogle Scholar
  330. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. doi: 10.1007/s00204-013-1034-4 Google Scholar
  331. Slusarski DC, Pelegri F (2007) Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol 307(1):1–13. doi: 10.1016/j.ydbio.2007.04.043 PubMedGoogle Scholar
  332. Somji S, Garrett SH, Sens MA, Sens DA (2006) The unique N-terminal sequence of metallothionein-3 is required to regulate the choice between apoptotic or necrotic cell death of human proximal tubule cells exposed to Cd+ 2. Toxicol Sci 90(2):369–376. doi: 10.1093/toxsci/kfj089 PubMedGoogle Scholar
  333. Son YO, Lee JC, Hitron JA, Pan J, Zhang Z, Shi X (2010) Cadmium induces intracellular Ca2+- and H2O2-dependent apoptosis through JNK- and p53-mediated pathways in skin epidermal cell line. Toxicol Sci 113(1):127–137. doi: 10.1093/toxsci/kfp259 PubMedGoogle Scholar
  334. Son YO, Wang L, Poyil P, Budhraja A, Hitron JA, Zhang Z, Lee JC, Shi X (2012) Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3beta/beta-catenin signaling. Toxicol Appl Pharmacol 264(2):153–160. doi: 10.1016/j.taap.2012.07.028 PubMedGoogle Scholar
  335. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1):59–71PubMedGoogle Scholar
  336. Souza V, Escobar Mdel C, Bucio L, Hernandez E, Gomez-Quiroz LE, Gutierrez Ruiz MC (2009) NADPH oxidase and ERK1/2 are involved in cadmium induced-STAT3 activation in HepG2 cells. Toxicol Lett 187(3):180–186. doi: 10.1016/j.toxlet.2009.02.021 PubMedGoogle Scholar
  337. Stewart D, Killeen E, Naquin R, Alam S, Alam J (2003) Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem 278(4):2396–2402. doi: 10.1074/jbc.M209195200 PubMedGoogle Scholar
  338. Storr SJ, Carragher NO, Frame MC, Parr T, Martin SG (2011) The calpain system and cancer. Nat Rev Cancer 11(5):364–374. doi: 10.1038/nrc3050 PubMedGoogle Scholar
  339. Sugawara H, Kurosaki M, Takata M, Kurosaki T (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16(11):3078–3088. doi: 10.1093/emboj/16.11.3078 PubMedGoogle Scholar
  340. Suzuki H, Tashiro S, Sun J, Doi H, Satomi S, Igarashi K (2003) Cadmium induces nuclear export of Bach1, a transcriptional repressor of heme oxygenase-1 gene. J Biol Chem 278(49):49246–49253. doi: 10.1074/jbc.M306764200 Google Scholar
  341. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885. doi: 10.1038/sj.embor.7400779 PubMedGoogle Scholar
  342. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190. doi: 10.1038/ncb0311-184 PubMedGoogle Scholar
  343. Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16(2):123–140. doi: 10.1111/j.1365-2443.2010.01473.x PubMedGoogle Scholar
  344. Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11(9):621–632. doi: 10.1038/nrm2952 PubMedGoogle Scholar
  345. Takeda K, Matsuzawa A, Nishitoh H, Tobiume K, Kishida S, Ninomiya-Tsuji J, Matsumoto K, Ichijo H (2004) Involvement of ASK1 in Ca2+-induced p38 MAP kinase activation. EMBO Rep 5(2):161–166. doi: 10.1038/sj.embor.7400072 PubMedGoogle Scholar
  346. Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H (2011) Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal 15(3):719–761. doi: 10.1089/ars.2010.3392 PubMedGoogle Scholar
  347. Tano JY, Lee RH, Vazquez G (2012) Involvement of calmodulin and calmodulin kinase II in tumor necrosis factor alpha-induced survival of bone marrow derived macrophages. Biochem Biophys Res Commun 427(1):178–184. doi: 10.1016/j.bbrc.2012.09.038 PubMedGoogle Scholar
  348. Tchounwou PB, Ishaque AB, Schneider J (2001) Cytotoxicity and transcriptional activation of stress genes in human liver carcinoma cells (HepG2) exposed to cadmium chloride. Mol Cell Biochem 222(1–2):21–28PubMedGoogle Scholar
  349. Tell G, Quadrifoglio F, Tiribelli C, Kelley MR (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal 11(3):601–620. doi: 10.1089/ars.2008.2194 PubMedGoogle Scholar
  350. Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188(2):267–275. doi: 10.1016/j.cbi.2010.03.040 PubMedGoogle Scholar
  351. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J, MacFarlane M, Cain K, Meier P (2011) The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43(3):432–448. doi: 10.1016/j.molcel.2011.06.006 PubMedGoogle Scholar
  352. Thévenod F (2003) Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol 93(4):87–93Google Scholar
  353. Thévenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238(3):221–239. doi: 10.1016/j.taap.2009.01.013 PubMedGoogle Scholar
  354. Thévenod F, Chakraborty PK (2010) The role of Wnt/beta-catenin signaling in renal carcinogenesis: lessons from cadmium toxicity studies. Curr Mol Med 10(4):387–404PubMedGoogle Scholar
  355. Thévenod F, Friedmann JM (1999) Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K(+)-ATPase through proteasomal and endo-/lysosomal proteolytic pathways. FASEB J 13(13):1751–1761PubMedGoogle Scholar
  356. Thévenod F, Lee WK (2013) Toxicology of cadmium and its damage to Mammalian organs. Met Ions Life Sci 11:415–490. doi: 10.1007/978-94-007-5179-8_14 PubMedGoogle Scholar
  357. Thévenod F, Friedmann JM, Katsen AD, Hauser IA (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275(3):1887–1896PubMedGoogle Scholar
  358. Thévenod F, Wolff NA, Bork U, Lee WK, Abouhamed M (2007) Cadmium induces nuclear translocation of beta-catenin and increases expression of c-myc and Abcb1a in kidney proximal tubule cells. Biometals 20(5):807–820PubMedGoogle Scholar
  359. Thijssen S, Cuypers A, Maringwa J, Smeets K, Horemans N, Lambrichts I, Van Kerkhove E (2007) Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys. Toxicology 236(1–2):29–41PubMedGoogle Scholar
  360. Tirone F, Radu L, Craescu CT, Cox JA (2010) Identification of the binding site for the regulatory calcium-binding domain in the catalytic domain of NOX5. Biochemistry 49(4):761–771. doi: 10.1021/bi901846y PubMedGoogle Scholar
  361. Tokumoto M, Fujiwara Y, Shimada A, Hasegawa T, Seko Y, Nagase H, Satoh M (2011) Cadmium toxicity is caused by accumulation of p53 through the down-regulation of Ube2d family genes in vitro and in vivo. J Toxicol Sci 36(2):191–200PubMedGoogle Scholar
  362. Tomar D, Singh R, Singh AK, Pandya CD, Singh R (2012) TRIM13 regulates ER stress induced autophagy and clonogenic ability of the cells. Biochim Biophys Acta 1823(2):316–326. doi: 10.1016/j.bbamcr.2011.11.015 Google Scholar
  363. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374. doi: 10.1089/ars.2007.1957 PubMedGoogle Scholar
  364. Tsang KY, Chan D, Bateman JF, Cheah KS (2010) In vivo cellular adaptation to ER stress: survival strategies with double-edged consequences. J Cell Sci 123(Pt 13):2145–2154. doi: 10.1242/jcs.068833 PubMedGoogle Scholar
  365. Tsirigotis M, Zhang M, Chiu RK, Wouters BG, Gray DA (2001) Sensitivity of mammalian cells expressing mutant ubiquitin to protein-damaging agents. J Biol Chem 276(49):46073–46078. doi: 10.1074/jbc.M109023200 PubMedGoogle Scholar
  366. Tvermoes BE, Bird GS, Freedman JH (2011) Cadmium induces transcription independently of intracellular calcium mobilization. PLoS ONE 6(6):e20542. doi: 10.1371/journal.pone.0020542 PubMedGoogle Scholar
  367. Ullman E, Fan Y, Stawowczyk M, Chen HM, Yue Z, Zong WX (2008) Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ 15(2):422–425. doi: 10.1038/sj.cdd.4402234 PubMedGoogle Scholar
  368. Venugopal R, Jaiswal AK (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17(24):3145–3156. doi: 10.1038/sj.onc.1202237 PubMedGoogle Scholar
  369. Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, Piette J, Linehan C, Gupta S, Samali A, Agostinis P (2012) PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ 19(11):1880–1891. doi: 10.1038/cdd.2012.74 PubMedGoogle Scholar
  370. Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, Castedo M, Maiuri MC, Molgo J, Szabadkai G, Lavandero S, Kroemer G (2009) The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 16(7):1006–1017. doi: 10.1038/cdd.2009.34 PubMedGoogle Scholar
  371. Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12(6):385–392. doi: 10.1038/nrm3115 PubMedGoogle Scholar
  372. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. doi: 10.1038/35042675 PubMedGoogle Scholar
  373. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192(2–3):95–117PubMedGoogle Scholar
  374. Wang XZ, Ron D (1996) Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 272(5266):1347–1349PubMedGoogle Scholar
  375. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284(5412):339–343PubMedGoogle Scholar
  376. Wang Y, Fang J, Leonard SS, Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36(11):1434–1443PubMedGoogle Scholar
  377. Wang S, Tang M, Pei B, Xiao X, Wang J, Hang H, Wu L (2008a) Cadmium-induced germline apoptosis in Caenorhabditis elegans: the roles of HUS1, p53, and MAPK signaling pathways. Toxicol Sci 102(2):345–351. doi: 10.1093/toxsci/kfm220 PubMedGoogle Scholar
  378. Wang SH, Shih YL, Ko WC, Wei YH, Shih CM (2008b) Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci 65(22):3640–3652. doi: 10.1007/s00018-008-8383-9 PubMedGoogle Scholar
  379. Wang SH, Shih YL, Lee CC, Chen WL, Lin CJ, Lin YS, Wu KH, Shih CM (2009) The role of endoplasmic reticulum in cadmium-induced mesangial cell apoptosis. Chem Biol Interact 181(1):45–51. doi: 10.1016/j.cbi.2009.05.004 PubMedGoogle Scholar
  380. Wang Z, Wang H, Xu ZM, Ji YL, Chen YH, Zhang ZH, Zhang C, Meng XH, Zhao M, Xu DX (2012) Cadmium-induced teratogenicity: association with ROS-mediated endoplasmic reticulum stress in placenta. Toxicol Appl Pharmacol 259(2):236–247. doi: 10.1016/j.taap.2012.01.001 PubMedGoogle Scholar
  381. Ward CL, Omura S, Kopito RR (1995) Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83(1):121–127PubMedGoogle Scholar
  382. Wiegert JS, Bading H (2011) Activity-dependent calcium signaling and ERK-MAP kinases in neurons: a link to structural plasticity of the nucleus and gene transcription regulation. Cell Calcium 49(5):296–305. doi: 10.1016/j.ceca.2010.11.009 PubMedGoogle Scholar
  383. Williams RJ (2002) The fundamental nature of life as a chemical system: the part played by inorganic elements. J Inorg Biochem 88(3–4):241–250PubMedGoogle Scholar
  384. Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45(5):549–561. doi: 10.1016/j.freeradbiomed.2008.05.004 PubMedGoogle Scholar
  385. Won JS, Singh I (2006) Sphingolipid signaling and redox regulation. Free Radic Biol Med 40(11):1875–1888. doi: 10.1016/j.freeradbiomed.2006.01.035 PubMedGoogle Scholar
  386. Wu KC, Liu JJ, Klaassen CD (2012) Nrf2 activation prevents cadmium-induced acute liver injury. Toxicol Appl Pharmacol 263(1):14–20. doi: 10.1016/j.taap.2012.05.017 PubMedGoogle Scholar
  387. Xiao W, Liu Y, Templeton DM (2009) Pleiotropic effects of cadmium in mesangial cells. Toxicol Appl Pharmacol 238(3):315–326. doi: 10.1016/j.taap.2009.02.005 PubMedGoogle Scholar
  388. Xiao Q, Hartzell HC, Yu K (2010) Bestrophins and retinopathies. Pflugers Arch 460(2):559–569. doi: 10.1007/s00424-010-0821-5 PubMedGoogle Scholar
  389. Xie J, Shaikh ZA (2006a) Cadmium-induced apoptosis in rat kidney epithelial cells involves decrease in nuclear factor-kappa B activity. Toxicol Sci 91(1):299–308. doi: 10.1093/toxsci/kfj131 PubMedGoogle Scholar
  390. Xie J, Shaikh ZA (2006b) Cadmium induces cell cycle arrest in rat kidney epithelial cells in G2/M phase. Toxicology 224(1–2):56–65. doi: 10.1016/j.tox.2006.04.026 PubMedGoogle Scholar
  391. Xu W, Liu L, Charles IG, Moncada S (2004) Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol 6(11):1129–1134. doi: 10.1038/ncb1188 PubMedGoogle Scholar
  392. Yacoub A, Hamed HA, Allegood J, Mitchell C, Spiegel S, Lesniak MS, Ogretmen B, Dash R, Sarkar D, Broaddus WC, Grant S, Curiel DT, Fisher PB, Dent P (2010) PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells. Cancer Res 70(3):1120–1129. doi: 10.1158/0008-5472.CAN-09-4043 PubMedGoogle Scholar
  393. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22(2):124–131. doi: 10.1016/ PubMedGoogle Scholar
  394. Yang PM, Chiu SJ, Lin KA, Lin LY (2004) Effect of cadmium on cell cycle progression in Chinese hamster ovary cells. Chem Biol Interact 149(2–3):125–136PubMedGoogle Scholar
  395. Yang PM, Chen HC, Tsai JS, Lin LY (2007a) Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-kappaB activity. Chem Res Toxicol 20(3):406–415. doi: 10.1021/tx060144c PubMedGoogle Scholar
  396. Yang S, Misner BJ, Chiu RJ, Meyskens FL Jr (2007b) Redox effector factor-1, combined with reactive oxygen species, plays an important role in the transformation of JB6 cells. Carcinogenesis 28(11):2382–2390. doi: 10.1093/carcin/bgm128 PubMedGoogle Scholar
  397. Yang Z, Yang S, Qian SY, Hong JS, Kadiiska MB, Tennant RW, Waalkes MP, Liu J (2007c) Cadmium-induced toxicity in rat primary mid-brain neuroglia cultures: role of oxidative stress from microglia. Toxicol Sci 98(2):488–494. doi: 10.1093/toxsci/kfm106 PubMedGoogle Scholar
  398. Yang S, Misner B, Chiu R, Meyskens FL Jr (2008) Common and distinct mechanisms of different redox-active carcinogens involved in the transformation of mouse JB6P+ cells. Mol Carcinog 47(7):485–491. doi: 10.1002/mc.20410 PubMedGoogle Scholar
  399. Yano S, Tokumitsu H, Soderling TR (1998) Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396(6711):584–587. doi: 10.1038/25147 PubMedGoogle Scholar
  400. Yazaki M, Kashiwagi K, Aritake K, Urade Y, Fujimori K (2012) Rapid degradation of cyclooxygenase-1 and hematopoietic prostaglandin D synthase through ubiquitin-proteasome system in response to intracellular calcium level. Mol Biol Cell 23(1):12–21. doi: 10.1091/mbc.E11-07-0623 PubMedGoogle Scholar
  401. Yen AH, Yang JL (2010) Cdc20 proteolysis requires p38 MAPK signaling and Cdh1-independent APC/C ubiquitination during spindle assembly checkpoint activation by cadmium. J Cell Physiol 223(2):327–334. doi: 10.1002/jcp.22038 PubMedGoogle Scholar
  402. Yokouchi M, Hiramatsu N, Hayakawa K, Kasai A, Takano Y, Yao J, Kitamura M (2007) Atypical, bidirectional regulation of cadmium-induced apoptosis via distinct signaling of unfolded protein response. Cell Death Differ 14(8):1467–1474. doi: 10.1038/sj.cdd.4402154 PubMedGoogle Scholar
  403. Yokouchi M, Hiramatsu N, Hayakawa K, Okamura M, Du S, Kasai A, Takano Y, Shitamura A, Shimada T, Yao J, Kitamura M (2008) Involvement of selective reactive oxygen species upstream of proapoptotic branches of unfolded protein response. J Biol Chem 283(7):4252–4260. doi: 10.1074/jbc.M705951200 PubMedGoogle Scholar
  404. Yoon S, Woo SU, Kang JH, Kim K, Kwon MH, Park S, Shin HJ, Gwak HS, Chwae YJ (2010) STAT3 transcriptional factor activated by reactive oxygen species induces IL6 in starvation-induced autophagy of cancer cells. Autophagy 6(8):1125–1138PubMedGoogle Scholar
  405. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9(1):47–59. doi: 10.1038/nrm2308 PubMedGoogle Scholar
  406. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8(10):1124–1132. doi: 10.1038/ncb1482 PubMedGoogle Scholar
  407. Yu X, Hong S, Faustman EM (2008) Cadmium-induced activation of stress signaling pathways, disruption of ubiquitin-dependent protein degradation and apoptosis in primary rat Sertoli cell-gonocyte cocultures. Toxicol Sci 104(2):385–396. doi: 10.1093/toxsci/kfn087 PubMedGoogle Scholar
  408. Yu X, Sidhu JS, Hong S, Robinson JF, Ponce RA, Faustman EM (2011) Cadmium induced p53-dependent activation of stress signaling, accumulation of ubiquitinated proteins, and apoptosis in mouse embryonic fibroblast cells. Toxicol Sci 120(2):403–412. doi: 10.1093/toxsci/kfr010 PubMedGoogle Scholar
  409. Zhang K, Kaufman RJ (2006) Protein folding in the endoplasmic reticulum and the unfolded protein response. Handb Exp Pharmacol 172:69–91PubMedGoogle Scholar
  410. Zhang GH, Yamaguchi M, Kimura S, Higham S, Kraus-Friedmann N (1990) Effects of heavy metal on rat liver microsomal Ca2(+)-ATPase and Ca2+ sequestering. Relation to SH groups. J Biol Chem 265(4):2184–2189PubMedGoogle Scholar
  411. Zhao Y, Hu J, Miao G, Qu L, Wang Z, Li G, Lv P, Ma D, Chen Y (2013) Transmembrane protein 208: a novel ER-localized protein that regulates autophagy and ER stress. PLoS ONE 8(5):e64228. doi: 10.1371/journal.pone.0064228 PubMedGoogle Scholar
  412. Zhivotovsky B, Orrenius S (2011) Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50(3):211–221. doi: 10.1016/j.ceca.2011.03.003 PubMedGoogle Scholar
  413. Zigdon H, Kogot-Levin A, Park JW, Goldschmidt R, Kelly S, Merrill AH Jr, Scherz A, Pewzner-Jung Y, Saada A, Futerman AH (2013) Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J Biol Chem 288(7):4947–4956. doi: 10.1074/jbc.M112.402719 PubMedGoogle Scholar
  414. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. doi: 10.1038/nrm3025 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Health, Institute of Physiology and Pathophysiology, Centre for Biomedical Training and Research (ZBAF)Private University of Witten/HerdeckeWittenGermany

Personalised recommendations