Advertisement

Archives of Toxicology

, Volume 88, Issue 2, pp 213–226 | Cite as

Arsenic trioxide induces unfolded protein response in vascular endothelial cells

  • Ching-Yi Weng
  • Shu-Yuan Chiou
  • Lisu Wang
  • Mei-Chun Kou
  • Ying-Jan WangEmail author
  • Ming-Jiuan WuEmail author
Inorganic Compounds

Abstract

Chronic arsenic exposure has been linked to endothelial dysfunction and apoptosis. We investigate the involvement of unfolded protein response (UPR) signaling in the arsenic-mediated cytotoxicity of the SVEC4-10 mouse endothelial cells. The SVEC4-10 cells underwent apoptosis in response to As2O3 dose- and time-dependently, accompanied by increased accumulation of calcium, and activation of caspase-3. These phenomena were completely inhibited by α-lipoic acid (LA), which did not scavenge ROS over-production, but were only partially or not ameliorated by tiron, a potent superoxide scavenger. Moreover, arsenic activated UPR, leading to phosphorylation of eukaryotic translation initiation factor 2 subunit α (eIF2α), induction of ATF4, and processing of ATF6. Treatment with arsenic also triggered the expression of endoplasmic reticulum (ER) stress markers, GRP78 (glucose-regulated protein), and CHOP (C/EBP homologous protein). The activation of eIF2α, ATF4 and ATF6 and expression of GRP78 and CHOP are repressed by both LA and tiron, indicating arsenic-induced UPR is mediated through ROS-dependent and ROS-independent pathways. Arsenic also induced ER stress-inducible genes, BAX, PUMA (p53 upregulated modulator of apoptosis), TRB3 (tribbles-related protein 3), and SNAT2 (sodium-dependent neutral amino acid transporter 2). Consistent with intracellular calcium and cell viability data, ROS may not be important in arsenic-induced death, because tiron did not affect the expression of these pro-apoptotic genes. In addition, pretreatment with salubrinal, a selective inhibitor of eIF2α dephosphorylation, enhanced arsenic-induced GRP78 and CHOP expression and partially prevented arsenic cytotoxicity in SVEC4-10 cells. Taken together, these results suggest that arsenic-induced endothelial cytotoxicity is associated with ER stress, which is mediated by ROS-dependent and ROS-independent signaling.

Keywords

Arsenic UPR ER stress ATF4 ATF6 Endothelial cells 

Notes

Acknowledgments

This study was supported by Grant NSC-99-2320-B-041-005-MY3 (to M.-J. Wu) from National Science Council, Taiwan, ROC.

Supplementary material

204_2013_1101_MOESM1_ESM.doc (79 kb)
Supplementary material 1 (DOC 79 kb)

References

  1. Allagnat F, Christulia F, Ortis F et al (2010) Sustained production of spliced X-box binding protein 1 (XBP1) induces pancreatic beta cell dysfunction and apoptosis. Diabetologia 53(6):1120–1130. doi: 10.1007/s00125-010-1699-7 PubMedCrossRefGoogle Scholar
  2. Baird TD, Wek RC (2012) Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism. Adv Nutr 3(3):307–321. doi: 10.3945/an.112.002113 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Binet F, Chiasson S, Girard D (2010a) Arsenic trioxide induces endoplasmic reticulum stress-related events in neutrophils. Int Immunopharmacol 10(4):508–512. doi: 10.1016/j.intimp.2010.01.013 PubMedCrossRefGoogle Scholar
  4. Binet F, Chiasson S, Girard D (2010b) Evidence that endoplasmic reticulum (ER) stress and caspase-4 activation occur in human neutrophils. Biochem Biophys Res Commun 391(1):18–23. doi: 10.1016/j.bbrc.2009.10.141 PubMedCrossRefGoogle Scholar
  5. Binet F, Chiasson S, Girard D (2011) Interaction between arsenic trioxide (ATO) and human neutrophils. Hum Exp Toxicol 30(5):416–424. doi: 10.1177/0960327110372645 PubMedCrossRefGoogle Scholar
  6. Bolt AM, Zhao F, Pacheco S, Klimecki WT (2012) Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells. Toxicol Appl Pharmacol 264(2):255–261. doi: 10.1016/j.taap.2012.08.006 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bouvier N, Flinois JP, Gilleron J et al (2009) Cyclosporine triggers endoplasmic reticulum stress in endothelial cells: a role for endothelial phenotypic changes and death. Am J Physiol Renal Physiol 296(1):F160–F169. doi: 10.1152/ajprenal.90567.2008 PubMedCrossRefGoogle Scholar
  8. Bowers AJ, Scully S, Boylan JF (2003) SKIP3, a novel Drosophila tribbles ortholog, is overexpressed in human tumors and is regulated by hypoxia. Oncogene 22(18):2823–2835. doi: 10.1038/sj.onc.1206367 PubMedCrossRefGoogle Scholar
  9. Boyce M, Bryant KF, Jousse C et al (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307(5711):935–939. doi: 10.1126/science.1101902 PubMedCrossRefGoogle Scholar
  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  11. Brnjic S, Olofsson MH, Havelka AM, Linder S (2010) Chemical biology suggests a role for calcium signaling in mediating sustained JNK activation during apoptosis. Mol BioSyst 6(5):767–774. doi: 10.1039/b920805d PubMedCrossRefGoogle Scholar
  12. Celik I, Gallicchio L, Boyd K et al (2008) Arsenic in drinking water and lung cancer: a systematic review. Environ Res 108(1):48–55. doi: 10.1016/j.envres.2008.04.001 PubMedCrossRefGoogle Scholar
  13. Chou YH, Chao PL, Tsai MJ et al (2008) Arsenite-induced cytotoxicity in dorsal root ganglion explants. Free Radic Biol Med 44(8):1553–1561. doi: 10.1016/j.freeradbiomed.2007.12.014 PubMedCrossRefGoogle Scholar
  14. Del Razo LM, Quintanilla-Vega B, Brambila-Colombres E, Calderon-Aranda ES, Manno M, Albores A (2001) Stress proteins induced by arsenic. Toxicol Appl Pharmacol 177(2):132–148. doi: 10.1006/taap.2001.9291 PubMedCrossRefGoogle Scholar
  15. Dey S, Baird TD, Zhou D, Palam LR, Spandau DF, Wek RC (2010) Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response. J Biol Chem 285(43):33165–33174. doi: 10.1074/jbc.M110.167213 PubMedCrossRefGoogle Scholar
  16. Du K, Herzig S, Kulkarni RN, Montminy M (2003) TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300(5625):1574–1577. doi: 10.1126/science.1079817 PubMedCrossRefGoogle Scholar
  17. Flora SJ, Pachauri V (2010) Chelation in metal intoxication. Int J Environ Res Public Health 7(7):2745–88. doi: 10.3390/ijerph7072745 Google Scholar
  18. Harding HP, Zhang Y, Zeng H et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633PubMedCrossRefGoogle Scholar
  19. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10(11):3787–3799PubMedCentralPubMedCrossRefGoogle Scholar
  20. Haze K, Okada T, Yoshida H et al (2001) Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem J 355(Pt 1):19–28PubMedCrossRefGoogle Scholar
  21. Heifetz A, Keenan RW, Elbein AD (1979) Mechanism of action of tunicamycin on the UDP-GlcNAc:dolichyl-phosphate Glc-NAc-1-phosphate transferase. Biochemistry (Mosc) 18(11):2186–2192CrossRefGoogle Scholar
  22. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. doi: 10.1038/nrm3270 PubMedGoogle Scholar
  23. Hsueh YM, Cheng GS, Wu MM, Yu HS, Kuo TL, Chen CJ (1995) Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutritional status. Br J Cancer 71(1):109–114PubMedCentralPubMedCrossRefGoogle Scholar
  24. Jennings P, Limonciel A, Felice L, Leonard MO (2013) An overview of transcriptional regulation in response to toxicological insult. Arch Toxicol 87(1):49–72. doi: 10.1007/s00204-012-0919-y PubMedCrossRefGoogle Scholar
  25. Jiang SJ, Lin TM, Wu HL, Han HS, Shi GY (2002) Decrease of fibrinolytic activity in human endothelial cells by arsenite. Thromb Res 105(1):55–62PubMedCrossRefGoogle Scholar
  26. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13(10):1211–1233PubMedCrossRefGoogle Scholar
  27. Lai E, Teodoro T, Volchuk A (2007) Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology 22(3):193–201. doi: 10.1152/physiol.00050.2006 PubMedCrossRefGoogle Scholar
  28. Lantz RC, Hays AM (2006) Role of oxidative stress in arsenic-induced toxicity. Drug Metab Rev 38(4):791–804. doi: 10.1080/03602530600980108 PubMedCrossRefGoogle Scholar
  29. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459PubMedCentralPubMedCrossRefGoogle Scholar
  30. Li J, Lee B, Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281(11):7260–7270. doi: 10.1074/jbc.M509868200 PubMedCrossRefGoogle Scholar
  31. Li C, Xu J, Li F et al (2011) Unfolded protein response signaling and MAP kinase pathways underlie pathogenesis of arsenic-induced cutaneous inflammation. Cancer Prev Res (Phila) 4(12):2101–2109. doi: 10.1158/1940-6207.CAPR-11-0343 CrossRefGoogle Scholar
  32. Lin AM, Chao PL, Fang SF, Chi CW, Yang CH (2007) Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain. Toxicol Appl Pharmacol 224(2):138–146. doi: 10.1016/j.taap.2007.06.016 PubMedCrossRefGoogle Scholar
  33. Lu FJ, Shih SR, Liu TM, Shown SH (1990) The effect of fluorescent humic substances existing in the well water of Blackfoot disease endemic areas in Taiwan on prothrombin time and activated partial thromboplastin time in vitro. Thromb Res 57(5):747–753PubMedCrossRefGoogle Scholar
  34. Lu TH, Su CC, Chen YW et al (2011) Arsenic induces pancreatic beta-cell apoptosis via the oxidative stress-regulated mitochondria-dependent and endoplasmic reticulum stress-triggered signaling pathways. Toxicol Lett 201(1):15–26. doi: 10.1016/j.toxlet.2010.11.019 PubMedCrossRefGoogle Scholar
  35. Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318(5):1351–1365PubMedCrossRefGoogle Scholar
  36. Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (system N/A) transporters of the SLC38 gene family. Pflugers Arch 447(5):784–795. doi: 10.1007/s00424-003-1117-9 PubMedCrossRefGoogle Scholar
  37. Marciniak SJ, Yun CY, Oyadomari S et al (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18(24):3066–3077. doi: 10.1101/gad.1250704 PubMedCrossRefGoogle Scholar
  38. Morales AA, Gutman D, Lee KP, Boise LH (2008) BH3-only proteins Noxa, Bmf, and Bim are necessary for arsenic trioxide-induced cell death in myeloma. Blood 111(10):5152–5162. doi: 10.1182/blood-2007-10-116889 PubMedCrossRefGoogle Scholar
  39. Morales AA, Gutman D, Cejas PJ, Lee KP, Boise LH (2009) Reactive oxygen species are not required for an arsenic trioxide-induced antioxidant response or apoptosis. J Biol Chem 284(19):12886–12895. doi: 10.1074/jbc.M806546200 PubMedCrossRefGoogle Scholar
  40. Morse E, Schroth J, You YH et al (2010) TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1. Am J Physiol Renal Physiol 299(5):F965–F972. doi: 10.1152/ajprenal.00236.2010 PubMedCrossRefGoogle Scholar
  41. Namba T, Ishihara T, Tanaka K, Hoshino T, Mizushima T (2007) Transcriptional activation of ATF6 by endoplasmic reticulum stressors. Biochem Biophys Res Commun 355(2):543–548. doi: 10.1016/j.bbrc.2007.02.004 PubMedCrossRefGoogle Scholar
  42. Naranmandura H, Xu S, Koike S et al (2012) The endoplasmic reticulum is a target organelle for trivalent dimethylarsinic acid (DMAIII)-induced cytotoxicity. Toxicol Appl Pharmacol 260(3):241–249. doi: 10.1016/j.taap.2012.02.017 PubMedCrossRefGoogle Scholar
  43. Nordstrom DK (2002) Public health. Worldwide occurrences of arsenic in ground water. Science 296(5576):2143–2145. doi: 10.1126/science.1072375 PubMedCrossRefGoogle Scholar
  44. O’Connell KA, Edidin M (1990) A mouse lymphoid endothelial cell line immortalized by simian virus 40 binds lymphocytes and retains functional characteristics of normal endothelial cells. J Immunol 144(2):521–525PubMedGoogle Scholar
  45. Oh RS, Pan WC, Yalcin A et al (2012) Functional RNA interference (RNAi) screen identifies system A neutral amino acid transporter 2 (SNAT2) as a mediator of arsenic-induced endoplasmic reticulum stress. J Biol Chem 287(8):6025–6034. doi: 10.1074/jbc.M111.311217 PubMedCrossRefGoogle Scholar
  46. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 24(6):1243–1255. doi: 10.1038/sj.emboj.7600596 PubMedCrossRefGoogle Scholar
  47. Ord D, Ord T (2005) Characterization of human NIPK (TRB3, SKIP3) gene activation in stressful conditions. Biochem Biophys Res Commun 330(1):210–218. doi: 10.1016/j.bbrc.2005.02.149 PubMedCrossRefGoogle Scholar
  48. Ord D, Meerits K, Ord T (2007) TRB3 protects cells against the growth inhibitory and cytotoxic effect of ATF4. Exp Cell Res 313(16):3556–3567. doi: 10.1016/j.yexcr.2007.07.017 PubMedCrossRefGoogle Scholar
  49. Ord T, Ord D, Koivomagi M, Juhkam K, Ord T (2009) Human TRB3 is upregulated in stressed cells by the induction of translationally efficient mRNA containing a truncated 5′-UTR. Gene 444(1–2):24–32. doi: 10.1016/j.gene.2009.06.001 PubMedCrossRefGoogle Scholar
  50. Radosavljevic V, Jakovljevic B (2008) Arsenic and bladder cancer: observations and suggestions. J Environ Health 71(3):40–42PubMedGoogle Scholar
  51. Rasheva V, Domingos P (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14(8):996–1007. doi: 10.1007/s10495-009-0341-y PubMedCrossRefGoogle Scholar
  52. Roboz GJ, Dias S, Lam G et al (2000) Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood 96(4):1525–1530PubMedGoogle Scholar
  53. Rodriguez D, Rojas-Rivera D, Hetz C (2011) Integrating stress signals at the endoplasmic reticulum: the BCL-2 protein family rheostat. Biochim Biophys Acta 1813(4):564–574. doi: 10.1016/j.bbamcr.2010.11.012 PubMedCrossRefGoogle Scholar
  54. Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14(1):20–28PubMedCrossRefGoogle Scholar
  55. Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569(1–2):29–63. doi: 10.1016/j.mrfmmm.2004.06.056 PubMedCrossRefGoogle Scholar
  56. Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255(1-2):67–78Google Scholar
  57. Shin SY, Kim CG, Lim Y, Lee YH (2011) The ETS family transcription factor ELK-1 regulates induction of the cell cycle-regulatory gene p21(Waf1/Cip1) and the BAX gene in sodium arsenite-exposed human keratinocyte HaCaT cells. J Biol Chem 286(30):26860–26872. doi: 10.1074/jbc.M110.216721 PubMedCrossRefGoogle Scholar
  58. Simeonova PP, Luster MI (2004) Arsenic and atherosclerosis. Toxicol Appl Pharmacol 198(3):444–449PubMedCrossRefGoogle Scholar
  59. Spuches AM, Kruszyna HG, Rich AM, Wilcox DE (2005) Thermodynamics of the As(III)-thiol interaction: arsenite and monomethylarsenite complexes with glutathione, dihydrolipoic acid, and other thiol ligands. Inorg Chem 44(8):2964–72. doi: 10.1021/ic048694q Google Scholar
  60. Stanhill A, Haynes CM, Zhang Y et al (2006) An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity. Mol Cell 23(6):875–885. doi: 10.1016/j.molcel.2006.07.023 PubMedCrossRefGoogle Scholar
  61. Tang CH, Chiu YC, Huang CF, Chen YW, Chen PC (2009) Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress. Toxicol Appl Pharmacol 241(2):173–181. doi: 10.1016/j.taap.2009.08.011 PubMedCrossRefGoogle Scholar
  62. Terai K, Hiramoto Y, Masaki M et al (2005) AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol 25(21):9554–9575. doi: 10.1128/MCB.25.21.9554-9575.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Thuerauf DJ, Morrison L, Glembotski CC (2004) Opposing roles for ATF6alpha and ATF6beta in endoplasmic reticulum stress response gene induction. J Biol Chem 279(20):21078–21084. doi: 10.1074/jbc.M400713200 PubMedCrossRefGoogle Scholar
  64. Todd DJ, Lee AH, Glimcher LH (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 8(9):663–674. doi: 10.1038/nri2359 PubMedCrossRefGoogle Scholar
  65. Tseng CH (2002) An overview on peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Angiology 53(5):529–537PubMedCrossRefGoogle Scholar
  66. Tseng CH (2005) Blackfoot disease and arsenic: a never-ending story. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 23(1):55–74. doi: 10.1081/GNC-200051860 PubMedCrossRefGoogle Scholar
  67. Tseng CH (2008) Cardiovascular disease in arsenic-exposed subjects living in the arseniasis-hyperendemic areas in Taiwan. Atherosclerosis 199(1):12–18. doi: 10.1016/j.atherosclerosis.2008.02.013 PubMedCrossRefGoogle Scholar
  68. Tseng CH, Chong CK, Tseng CP, Centeno JA (2007) Blackfoot disease in Taiwan: its link with inorganic arsenic exposure from drinking water. Ambio 36(1):82–84PubMedCrossRefGoogle Scholar
  69. Vahidnia A, van der Voet GB, de Wolff FA (2007) Arsenic neurotoxicity—a review. Hum Exp Toxicol 26(10):823–832. doi: 10.1177/0960327107084539 PubMedCrossRefGoogle Scholar
  70. Wang L, Kou MC, Weng CY, Hu LW, Wang YJ, Wu MJ (2012) Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF-kappaB, and MAPK pathways. Arch Toxicol 86(6):879–896. doi: 10.1007/s00204-012-0845-z PubMedCrossRefGoogle Scholar
  71. Wei M, Arnold L, Cano M, Cohen SM (2005) Effects of co-administration of antioxidants and arsenicals on the rat urinary bladder epithelium. Toxicol Sci 83(2):237–245. doi: 10.1093/toxsci/kfi033 PubMedCrossRefGoogle Scholar
  72. Yamamoto K, Sato T, Matsui T et al (2007) Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 13(3):365–376. doi: 10.1016/j.devcel.2007.07.018 PubMedCrossRefGoogle Scholar
  73. Yang CY (2006) Does arsenic exposure increase the risk of development of peripheral vascular diseases in humans? J Toxicol Environ Health A 69(19):1797–1804. doi: 10.1080/15287390600630237 PubMedCrossRefGoogle Scholar
  74. Yen CC, Ho TJ, Wu CC et al (2011) Inorganic arsenic causes cell apoptosis in mouse cerebrum through an oxidative stress-regulated signaling pathway. Arch Toxicol 85(6):565–575. doi: 10.1007/s00204-011-0709-y PubMedCrossRefGoogle Scholar
  75. Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS, Liu SH (2012) Arsenic induces apoptosis in myoblasts through a reactive oxygen species-induced endoplasmic reticulum stress and mitochondrial dysfunction pathway. Arch Toxicol 86(6):923–933. doi: 10.1007/s00204-012-0864-9 PubMedCrossRefGoogle Scholar
  76. Yu HS, Chang KL, Kao YH et al (1998) In vitro cytotoxicity of IgG antibodies on vascular endothelial cells from patients with endemic peripheral vascular disease in Taiwan. Atherosclerosis 137(1):141–147PubMedCrossRefGoogle Scholar
  77. Zhang K (2010) Integration of ER stress, oxidative stress and the inflammatory response in health and disease. Int J Clin Exp Med 3(1):33–40PubMedCentralPubMedGoogle Scholar
  78. Zhang H, Duncan G, Wang L et al (2007) Arsenic trioxide initiates ER stress responses, perturbs calcium signalling and promotes apoptosis in human lens epithelial cells. Exp Eye Res 85(6):825–835. doi: 10.1016/j.exer.2007.08.018 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of BiotechnologyChia Nan University of Pharmacy and ScienceTainanTaiwan
  2. 2.Crop Improvement SectionHualien District Agricultural Research and Extension StationHualienTaiwan
  3. 3.Department of Food Science and TechnologyChia Nan University of Pharmacy and ScienceTainanTaiwan
  4. 4.Department of Environmental and Occupational HealthNational Cheng Kung University Medical CollegeTainanTaiwan
  5. 5.Sustainable Environment Research CentreNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations