Archives of Toxicology

, Volume 87, Issue 12, pp 2233–2241 | Cite as

The emerging mycotoxin, enniatin B1, down-modulates the gastrointestinal toxicity of T-2 toxin in vitro on intestinal epithelial cells and ex vivo on intestinal explants

  • Martine Kolf-Clauw
  • Marcia Sassahara
  • Joelma Lucioli
  • Juliana Rubira-Gerez
  • Imourana Alassane-Kpembi
  • Faouzi Lyazhri
  • Christiane Borin
  • Isabelle P. Oswald
Organ Toxicity and Mechanisms

Abstract

Enniatins, the most prevalent emerging mycotoxins, represent an emerging food safety issue, because of their common co-occurrence with other fusariotoxins such as trichothecenes co-produced by Fusarium spp on field grains and because of their extensive prevalence in grains. In this study, the intestinal toxicity of enniatin B1 (ENN) alone and mixed with the most toxic trichothecene T-2 toxin (T2) was characterized by using two biological models from pig, the most sensitive species: the intestinal cell line IPEC1 (in vitro exposure) and jejunal explants (ex vivo exposure). Dose-dependent decreases in cell proliferation in IPEC1 and in the histopathological scores of explants were observed for ENN at μM-levels and for T2 at nM-levels, with IC50 values for ENN of 15.8 and 29.7 μM, and for T2 of 9.3 and 15.1 nM in vitro and ex vivo, respectively. Interaction analysis by probabilistic and by determinist approaches showed a less than additive effect both in vitro and ex vivo, at IC50 values, with increasing antagonism with decreasing concentrations of toxins. The results obtained by the determinist median-effect dose analysis and by the nonlinear regression analysis were concordant. All the median-effect doses estimated for IPEC cells were included in the IC50 confidence intervals of the nonlinear regression fitting. Given the occurrence of enniatins, potential synergy following the co-occurrence of enniatins and the major fusariotoxins, especially trichothecene B deoxynivalenol should be investigated.

Keywords

Emerging mycotoxins Enniatins Gastrointestinal toxicity Jejunal explants Interactions Combination index 

References

  1. Behm C, Degen GH, Föllmann W (2009) The Fusarium toxin enniatin B exerts no genotoxic activity, but pronounced cytotoxicity in vitro. Mol Nutr Food Res 53:423–430PubMedCrossRefGoogle Scholar
  2. Behm C, Föllmann W, Degen GH (2012) Cytotoxic Potency of Mycotoxins in Cultures of V79 Lung Fibroblast Cells. J Toxicol Environ Health Part A 75:1226–1231PubMedCrossRefGoogle Scholar
  3. Berenbaum MC (1985) The expected effect of a combination of agents: the general solution. J Theor Biol 114:413–431PubMedCrossRefGoogle Scholar
  4. Borgert CJ, Price B, Wells CS (2001) Evaluating chemical interaction studies for mixture risk assessment. Hum Ecol Risk Assess 7:259–306CrossRefGoogle Scholar
  5. Bosch U, Mirocha CJ, Abbas HK, di Menna M (1989) Toxicity and toxin production by Fusarium isolates from New Zealand. Mycopathologia 108:73–79PubMedGoogle Scholar
  6. Bouhet S, Le Dorze E, Pérès SY, Fairbrother JM, Oswald IP (2006) Mycotoxin fumonisin B1 selectively down-regulates the basal IL-8 expression in pig intestine: in vivo and in vitro studies. Food Chem Toxicol 44:1768–1773PubMedCrossRefGoogle Scholar
  7. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681PubMedCrossRefGoogle Scholar
  8. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRefGoogle Scholar
  9. Doi K, Shinozuka J, Sehata S (2006) T-2 toxin and apoptosis. J Toxicol Pathol 19:15-27Google Scholar
  10. EFSA (2011) Scientific Opinion on the risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J 9:1–187Google Scholar
  11. Föllmann W, Behm C, Degen GH (2009) The emerging Fusarium toxin enniatin B: in vitro studies on its genotoxic potential and cytotoxicity in V79 cells in relation to other mycotoxins. Mycotoxin Res 25:11–19PubMedCrossRefGoogle Scholar
  12. Gammelsrud A, Solhaug A, Dendelé B, Sandberg WJ, Ivanova L, Kocbach Bølling A, Lagadic-Gossmann D, Refsnes M, Becher R, Eriksen G, Holme JA (2012) Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages. Toxicol Appl Pharmacol 261:74–87PubMedCrossRefGoogle Scholar
  13. Gaümann E, Naef-Roth S, Ettlinger L (1950) Zur Gewinnung von enniatinen aus dem myzel verschiedener fusarien. Phytopathol Z 16:289–299Google Scholar
  14. Hymery N, Sibiril Y, Parent-Massin D (2006) In vitro effects of trichothecenes on human dendritic cells. Toxicol In Vitro 20:899–909PubMedCrossRefGoogle Scholar
  15. Ivanova L, Skjerve E, Eriksen GS, Uhlig S (2006) Cytotoxicity of enniatins A, A1, B, B1, B2 and B3 from Fusarium avenaceum. Toxicon 47:868–876PubMedCrossRefGoogle Scholar
  16. Ivanova L, Uhlig S, Eriksen GS, Johannessen LE (2010) Enniatin B1 is a substrate of intestinal P-glycoprotein, multidrug resistance-associated protein 2 and breast cancer resistance protein. World Mycotoxin J 3:271–281CrossRefGoogle Scholar
  17. Ivanova L, Egge-Jacobsen WM, Solhaug A, Thoen E, Fæste CK (2012) Lysosomes as a possible target of enniatin B-induced toxicity in Caco-2 cells. Chem Res Toxicol 25:1662–1674PubMedCrossRefGoogle Scholar
  18. Jestoi M (2008) Emerging fusarium-mycotoxins fusaprofilin, beauvericin, enniatins, and moniliformin: a review. Crit Rev Food Sci Nutr 48:21–49PubMedCrossRefGoogle Scholar
  19. Kolf-Clauw M, Castellote J, Joly B, Bourges-Abella N, Raymond-Letron I, Pinton P et al (2009) Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: histopathological analysis. Toxicol In Vitro 23:1580–1584PubMedCrossRefGoogle Scholar
  20. Li G, Shinozuka J, Uetsuka K, Nakayama H, Doi K (1997) T-2 toxin-induced apoptosis in intestinal crypt epithelial cells of mice. Exp Toxicol Pathol. 49:447-50Google Scholar
  21. Meca G, Mañes J, Font G, Ruiz MJ (2012) Study of the potential toxicity of enniatins A, A1, B, B1 by evaluation of duodenal and colonic bioavailability applying an in vitro method by Caco-2 cells. Toxicon 59:1–11PubMedCrossRefGoogle Scholar
  22. Pinton P, Nougayrède JP, Del Rio JC, Moreno C, Marin DE, Ferrier L, Bracarense AP, Kolf-Clauw M, Oswald IP (2009) The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicol Appl Pharmacol 237:41–48PubMedCrossRefGoogle Scholar
  23. Pinton P, Guzylack-Piriou L, Kolf-Clauw M, Oswald IP (2012a) Effects of some fungal toxins, the trichothecenes, on the intestine. Curr Immunol Rev 8:193–208CrossRefGoogle Scholar
  24. Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, Grosjean F, Bracarense AP, Kolf-Clauw M, Oswald IP (2012b) Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junctions proteins and MAPKinases. J Toxicol Sci 130:180–190CrossRefGoogle Scholar
  25. Rodrigues I, Naehrer K (2012) A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins 4:663–675PubMedCrossRefGoogle Scholar
  26. Ruiz MJ, Franzova P, Juan-Garcia A, Font G (2011a) Toxicological interactions between the mycotoxins beauvericin, deoxynivalenol and t-2 toxin in cho-k1 cells in vitro. Toxicon 58:315–326PubMedCrossRefGoogle Scholar
  27. Ruiz MJ, Macakova P, Juan-Garcia A, Font G (2011b) Cytotoxic effects of mycotoxin combinations in mammalian kidney cells. Food Chem Toxicol 49:2718–2724PubMedCrossRefGoogle Scholar
  28. Santini A, Meca G, Uhlig S, Ritieni A (2012) Fusaproliferin, beauvericin and enniatins: occurrence in food – a review. World Mycotoxin J 5:71–81CrossRefGoogle Scholar
  29. Serrano AB, Font G, Mañes J, Ferrer E (2013) Emerging Fusarium mycotoxins in organic and conventional pasta collected in Spain. Food Chem Toxicol 51:259–266PubMedCrossRefGoogle Scholar
  30. Streit E, Schwab C, Sulyok M, Naehrer K, Krska R, Schatzmayr G (2013) Multi-Mycotoxin Screening Reveals the Occurrence of 139 Different Secondary Metabolites in Feed and Feed Ingredients. Toxins 5:504–523PubMedCrossRefGoogle Scholar
  31. Tallarida RJ (2006) An overview of drug combination analysis with isobolograms. J Pharmacol Experiment Therapeutics 319:1–7CrossRefGoogle Scholar
  32. Tedjiotsop Feudjio F, Dornetshuber R, Lemmens M, Hoffmann O, Lemmens-Gruber R, Berger W (2010) Beauvericin and enniatin: emerging toxins and/or remedies? World Mycotoxin J 3:415–430CrossRefGoogle Scholar
  33. Uhlig S, Torp M, Heier BT (2006) Beauvericin and enniatins A, A1, B and B1 in Norwegian grain: a survey. Food Chem 94:193–201CrossRefGoogle Scholar
  34. Van der Fels-Klerx HJ, Stratakou I (2010) T-2 toxin and HT-2 toxin in grain and grain-based commodities in Europe: occurrence, factors affecting occurrence, co-occurrence and toxicological effects. World Mycotoxin J 3:349–367CrossRefGoogle Scholar
  35. Van Der Fels-Klerx HJ, Klemsdal S, Hietaniemi V, Lindblad M, Ioannou-Kakouri E, Van Asselt ED (2012) Mycotoxin contamination of cereal grain commodities in relation to climate in North West Europe. Food Addit Contam A 29:1581–1592CrossRefGoogle Scholar
  36. Wätjen W, Debbab A, Hohlfeld A, Chovolou Y, Kampkötter A, Edrada RA, Ebel R, Hakiki A, Mosaddak M, Totzke F, Kubbutat MH (2009) Enniatins A1, B and B1 from an endophytic strain of Fusarium tricinctum induce apoptotic cell death in H4IIE hepatoma cells accompanied by inhibition of ERK phosphorylation. Mol Nutr Food Res 53(431):440Google Scholar
  37. Yang GH, Jarvis BB, Chung YJ, Pestka JJ (2000) Apoptosis induction by satratoxins and other trichothecene mycotoxins: relationship to ERK, p38 MAPK, and SAPK/JNK activation. Toxicol Appl Pharmacol 164:149–160PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martine Kolf-Clauw
    • 1
    • 2
  • Marcia Sassahara
    • 2
    • 3
  • Joelma Lucioli
    • 2
    • 3
  • Juliana Rubira-Gerez
    • 1
    • 2
    • 3
  • Imourana Alassane-Kpembi
    • 2
    • 3
  • Faouzi Lyazhri
    • 4
  • Christiane Borin
    • 2
    • 5
  • Isabelle P. Oswald
    • 2
    • 3
  1. 1.ENVT, INP, UMR1331, Toxalim Research Centre in Food ToxicologyUniversité de ToulouseToulouseFrance
  2. 2.INRA, UMR1331, Toxalim, Research Centre in Food ToxicologyToulouseFrance
  3. 3.INP, UMR1331, Toxalim Research Centre in Food ToxicologyUniversité de ToulouseToulouseFrance
  4. 4.ENVT, INPUniversité de ToulouseToulouseFrance
  5. 5.ENFA, INPUniversité de ToulouseCastanet TolosanFrance

Personalised recommendations