Archives of Toxicology

, Volume 87, Issue 7, pp 1265–1272 | Cite as

Metabolic dephenylation of the rubber antioxidant N-phenyl-2-naphthylamine to carcinogenic 2-naphthylamine in rats

  • Tobias Weiss
  • Hermann M. Bolt
  • Gerhard Schlüter
  • Stephan Koslitz
  • Dirk Taeger
  • Peter Welge
  • Thomas Brüning
Toxicokinetics and Metabolism

Abstract

N-Phenyl-2-naphthylamine (P2NA) was widely used as oxidation inhibitor, particularly in rubber manufacturing. Technical-grade P2NA was contaminated with carcinogenic 2-naphthylamine (2NA), and bladder cancer risk in exposed workers was attributed to this impurity. Investigations in humans and mammalian species revealed that small amounts of 2NA are excreted into urine after exposure to P2NA. However, since 2NA per se is not carcinogenic and main downstream metabolites of 2NA have not been found in urine so far, it remained uncertain if 2NA derived from P2NA dephenylation is further activated to carcinogenic downstream metabolites. An experimental animal study was therefore designed to indicate if, and if yes to which extent, 2NA from P2NA dephenylation is accessible to the metabolic pathway that is held responsible for the carcinogenicity of 2NA. Groups of 5 male and female CD rats were dosed with P2NA (2–550 mg/kg b.w.) and 2NA (0.075–75 mg/kg b.w.); 2NA-haemoglobin adducts and urinary 2NA excretion were determined applying GC–MS/MS. 2NA haemoglobin adducts originated dose-dependently after 2NA and P2NA dosing. To induce identical adduct concentrations, an approximately 100–200-fold higher dose of P2NA was necessary compared to 2NA. Since haemoglobin adducts are formed by the same pathway (N-hydroxylation) as the ultimate carcinogens from 2NA, the comparison of adduct concentrations after 2NA and P2NA dosage permits a quantitative estimate of the carcinogenicity of P2NA. The results show that 2NA derived from dephenylation of P2NA enters the carcinogenic downstream pathway of 2NA in rats. Hence, the bladder cancer risk after human exposures to P2NA must be re-evaluated.

Keywords

2-Naphthylamine N-phenyl-2-naphthylamine Haemoglobin adducts Urine Metabolism Bladder cancer 

Supplementary material

204_2013_1025_MOESM1_ESM.doc (68 kb)
Supplementary material 1 (DOC 68 kb)

References

  1. American Conference of Governmental Industrial Hygienists (2001) N-Phenyl-beta-naphthylamine: TLV® Chemical substances 7th edition documentation. American conference of governmental industrial hygienists, Cincinnati, OH. ACGIH Publication 7DOC-453Google Scholar
  2. Anderson MM, Mitchum RK, Beland FA (1982) Hepatic microsomal metabolism and macromolecular binding of the antioxidant N-phenyl-2-naphthylamine. Xenobiotica 12:31–43PubMedCrossRefGoogle Scholar
  3. Batten BL, Hathway DE (1977) Dephenylation of N-phenyl-2-naphthylamine in dogs and its possible oncogenic implications. Br J Cancer 35:342–346PubMedCrossRefGoogle Scholar
  4. Case RA, Hosker ME (1954) Tumour of the urinary bladder as an occupational disease in the rubber industry in England and Wales. Br J Prev Soc Med 8:9–50Google Scholar
  5. Deichmann WB, Radomski JL (1969) Carcinogenicity and metabolism of aromatic amines in the dog. J Natl Cancer Inst 43(1):263–269PubMedGoogle Scholar
  6. Deutsche Forschungsgemeinschaft (1977) Phenyl-2-naphthylamin. In: Henschler D (ed) Toxikologisch-arbeitsmedizinische Begründungen von MAK-Werten. VCH Verlag, Weinheim, pp 1–6Google Scholar
  7. Deutsche Forschungsgemeinschaft (2011) N-Phenyl-2-naphthylamin. In: Hartwig A (ed) Toxikologisch-arbeitsmedizinische Begründungen von MAK-Werten. Nachtrag 2011, Wiley-VCH, Weinheim, pp 1–24Google Scholar
  8. IARC (1987) N-Phenyl-2-naphthylamine. IARC Monogr Eval Carcinogen Risk Hum Suppl 7:318Google Scholar
  9. Korallus U (1998) Tumoren der Harnwege bei Beschäftigten in der deutschen Gummi-Industrie—Ein arbeitsmedizinisches Altlastenproblem. Zbl Arbeitsmed 48:266–274Google Scholar
  10. Kummer R, Tordoir WF (1975) Phenyl-beta-naphthylamine (PBNA), another carcinogenic agent? T Soc Geneesk 53:415–419Google Scholar
  11. Laham S, Potvin M (1983) Biological conversion of N-phenyl-2-naphthylamine to 2-naphthylamine in the Sprague-Dawley rat. Drug Chem Toxicol 6:295–309PubMedCrossRefGoogle Scholar
  12. Lewalter J, Gries W (2001) Haemoglobin adducts of aromatic amines. In: Angerer J, Schaller K-H (eds) Analysis of hazardous substances in biological materials, vol 7. Wiley-VCH, Weinheim, pp 191–219Google Scholar
  13. Lüersen L, Wellner T, Angerer J, Drexler H, Korinth G (2005) Investigation of the penetration of aromatic amines through the human skin in vitro. Poster presentation. International conference on occupational and environmental exposures of skin to chemicals, StockholmGoogle Scholar
  14. Lüersen L, Wellner T, Koch HM, Angerer J, Drexler H, Korinth G (2006) Penetration of beta-naphthylamine and o-toluidine through human skin in vitro. Arch Toxicol 80(10):644–646PubMedCrossRefGoogle Scholar
  15. Moore RM, Woolf BS, Stein HP, Thomas AW, Finklea JF (1977) Metabolic precursors of a known human carcinogen. Science 195:344PubMedCrossRefGoogle Scholar
  16. Munn A (1974) Bladder cancer and carcinogenic impurities in rubber additives. Rubber Ind 8:19–21Google Scholar
  17. Neumann HG, Birner G, Kowallik P, Schütze D, Zwirner-Baier I (1993) Hemoglobin adducts of N-substituted aryl compounds in exposure control and risk assessment. Environ Health Perspect 99:65–70PubMedCrossRefGoogle Scholar
  18. NTP (1988) National toxicology program—toxicology and carcinogenesis studies of N-phenyl-2-naphthylamine (CAS No. 135-88-6) in F344/N Rats and B6C3F1 Mice (Feed studies). Natl Toxicol Program Tech Rep Ser 333:1–168Google Scholar
  19. Reifferscheid G, Buchinger S, Cao Z, Claus E (2011) Identification of mutagens in freshwater sediments by the Ames-fluctuation assay using nitroreductase and acetyltransferase overproducing test strains. Environ Mol Mutagen 52(5):397–408PubMedCrossRefGoogle Scholar
  20. Schmidt E, Lohs KH, Otto J (1983) Industrietoxikologische Bewertung von Vulkanisationsdämpfen unter besonderer Berücksichtigung stickstoffhaltiger Alterungsschutzmittel. Z Ges Hyg 28:442–446Google Scholar
  21. Scott TS (1962) Carcinogenic and chronic toxic hazards of aromatic amines. Elsevier, New YorkGoogle Scholar
  22. Suzuki J, Meguro S, Morita O, Hirayama S, Suzuki S (1989) Comparison of in vivo binding of aromatic nitro and amino compounds to rat hemoglobin. Biochem Pharmacol 38(20):3511–3519PubMedCrossRefGoogle Scholar
  23. Tolbert PE (1997) Oils and cancer. Cancer Causes Control 8:386–405PubMedCrossRefGoogle Scholar
  24. Wang J, DeMaio W, Chandrasekaran A, Shen L, Bach AC II, Scatina J, Talaat R (2006) Mechanism study of N-dephenylation mediated through a N-para-hydroxy metabolite. Curr Drug Discov Technol 3(2):101–114PubMedCrossRefGoogle Scholar
  25. Weiss T, Angerer J (2002) Simultaneous determination of various aromatic amines and metabolites of aromatic nitro compounds in urine for low level exposure using gas chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 778(1–2):179–192CrossRefGoogle Scholar
  26. Weiss T, Brüning T, Bolt HM (2007) Dephenylation of the rubber chemical N-phenyl-2-naphthylamine to carcinogenic 2-naphthylamine: a classical problem revisited. Crit Rev Toxicol 37(7):553–566PubMedCrossRefGoogle Scholar
  27. Wellner T, Lüersen L, Schaller KH, Angerer J, Drexler H, Korinth G (2008) Percutaneous absorption of aromatic amines—a contribution for human health risk assessment. Food Chem Toxicol 46(6):1960–1968PubMedCrossRefGoogle Scholar
  28. Zwirner-Baier I, Deckart K, Jäckh R, Neumann HG (2003) Biomonitoring of aromatic amines VI: determination of haemoglobin adducts after feeding aniline hydrochloride in the diet of rats for 4 weeks. Arch Toxicol 77(12):672–677PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tobias Weiss
    • 1
  • Hermann M. Bolt
    • 2
  • Gerhard Schlüter
    • 1
  • Stephan Koslitz
    • 1
  • Dirk Taeger
    • 1
  • Peter Welge
    • 1
  • Thomas Brüning
    • 1
  1. 1.Institute for Prevention and Occupational Medicine of the German Social Accident InsuranceInstitute of the Ruhr-Universität Bochum (IPA)BochumGermany
  2. 2.Leibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany

Personalised recommendations