Archives of Toxicology

, Volume 87, Issue 6, pp 1103–1113

Monitoring of deiodinase deficiency based on transcriptomic responses in SH-SY5Y cells

  • Mee Song
  • Mi-Kyung Song
  • Han-Seam Choi
  • Jae-Chun Ryu
Molecular Toxicology

Abstract

Iodothyronine deiodinase types I, II, and III (D1, D2, and D3, respectively), which constitute a family of selenoenzymes, activate and inactivate thyroid hormones through the removal of specific iodine moieties from thyroxine and its derivatives. These enzymes are important in the biological effects mediated by thyroid hormones. The expression of activating and inactivating deiodinases plays a critical role in a number of cell systems, including the neuronal system, during development as well as in adult vertebrates. To investigate deiodinase-disrupting chemicals based on transcriptomic responses, we examined differences in gene expression profiles between T3-treated and deiodinase-knockdown SH-SY5Y cells using microarray analysis and quantitative real-time RT-PCR. A total of 1,558 genes, consisting of 755 upregulated and 803 downregulated genes, were differentially expressed between the T3-treated and deiodinase-knockdown cells. The expression levels of 10 of these genes (ID2, ID3, CCL2, TBX3, TGOLN2, C1orf71, ZNF676, GULP1, KLF9, and ITGB5) were altered by deiodinase-disrupting chemicals (2,3,7,8-tetrachlorodibenzo-p-dioxin, polychlorinated biphenyls, propylthiouracil, iodoacetic acid, methylmercury, β-estradiol, methimazole, 3-methylcholanthrene, aminotriazole, amiodarone, cadmium chloride, dimethoate, fenvalerate, octylmethoxycinnamate, iopanoic acid, methoxychlor, and 4-methylbenzylidene-camphor). These genes are potential biomarkers for detecting deiodinase deficiency and predicting their effects on thyroid hormone production.

Keywords

Deiodinase Disruption Biomarker Chemical Microarray 

Supplementary material

204_2013_1018_MOESM1_ESM.ppt (142 kb)
Supplementary material 1 (PPT 141 kb)
204_2013_1018_MOESM2_ESM.ppt (286 kb)
Supplementary material 2 (PPT 286 kb)
204_2013_1018_MOESM3_ESM.doc (32 kb)
Supplementary material 3 (DOC 32 kb)
204_2013_1018_MOESM4_ESM.xls (34 kb)
Supplementary material 4 (XLS 33 kb)
204_2013_1018_MOESM5_ESM.xls (354 kb)
Supplementary material 5 (XLS 354 kb)

References

  1. Ahmed RG (2011) Perinatal TCDD exposure alters developmental neuroendocrine system. Food Chem Toxicol 49:1276–1284CrossRefPubMedGoogle Scholar
  2. Beyer AS, von Einem B, Schwanzar D, Keller IE, Hellrung A, Thal DR, Ingelsson M, Makarova A, Deng M, Chhabra ES, Pröpper C, Böckers TM, Hyman BT, von Arnim CA et al (2012) Engulfment adapter PTB domain containing 1 interacts with and affects processing of the amyloid-beta precursor protein. Neurobiol Aging 33:732–743CrossRefPubMedGoogle Scholar
  3. Biederer CH, Ries SJ, Moser M, Florio M, Israel MA, McCormick F, Buettner R (2000) The basic helix-loop-helix transcription factors myogenin and Id2 mediate specific induction of caveolin-3 gene expression during embryonic development. J Biol Chem 275:26245–26251CrossRefPubMedGoogle Scholar
  4. Boas M, Feldt-Rasmussen U, Skakkebaek NE, Main KM (2006) Environmental chemicals and thyroid function. Eur J Endocrinol 154:599–611CrossRefPubMedGoogle Scholar
  5. Cardoso LC, Martins DC, Campos DV, Santos LM, Corrêa da Costa VM, Rosenthal D, Vaisman M, Violante AH, Carvalho DP (2002) Effect of iodine or iopanoic acid on thyroid Ca2+/NADPH-dependent H2O2-generating activity and thyroperoxidase in toxic diffuse goiters. Eur J Endocrinol 147:293–298CrossRefPubMedGoogle Scholar
  6. Chaurasia SS, Gupta P, Kar A, Maiti PK (1996) Free radical mediated membrane perturbation and inhibition of type-I iodothyronine 5′-monodeiodinase activity by lead and cadmium in rat liver homogenate. Biochem Mol Biol Int 39:765–770PubMedGoogle Scholar
  7. Colantuoni A, Marchiafava PL, Lapi D, Forini FS, Iervasi G (2005) Effects of tetraiodothyronine and triiodothyronine on hamster cheek pouch microcirculation. Am J Physiol Heart Circ Physiol 288:1931–1936CrossRefGoogle Scholar
  8. Denslow ND, Garcia-Reyero N, Barber DS (2007) Fish ‘n’ chips: the use of microarrays for aquatic toxicology. Mol BioSyst 3:172–177CrossRefPubMedGoogle Scholar
  9. Denver RJ, Williamson KE (2009) Identification of a thyroid hormone response element in the mouse Kruppel-like factor 9 gene to explain its postnatal expression in the brain. Endocrinology 150:3935–3943CrossRefPubMedGoogle Scholar
  10. Dogan RN, Elhofy A, Karpus WJ (2008) Production of CCL2 by central nervous system cells regulates development of murine experimental autoimmune encephalomyelitis through the recruitment of TNF- and iNOS-expressing macrophages and myeloid dendritic cells. J Immunol 180:7376–7384PubMedGoogle Scholar
  11. Forbes VE, Palmqvist A, Bach L (2006) The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25:272–280CrossRefPubMedGoogle Scholar
  12. Galton VA, Wood ET, St Germain EA, Withrow CA, Aldrich G, St Germain GM, Clark AS, St Germain DL (2007) Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology 148:3080–3088CrossRefPubMedGoogle Scholar
  13. Garcia-Reyero N, Poynton HC, Kennedy AJ, Guan X, Escalon BL, Chang B, Varshavsky J, Loguinov AV, Vulpe CD, Perkins EJ (2009) Biomarker discovery and transcriptomic responses in Daphnia magna exposed to munitions constituents. Environ Sci Technol 43:4188–4193CrossRefPubMedGoogle Scholar
  14. Gavaret JM, Cahnmann HJ, Nunez J (1981) Thyroid hormone synthesis in thyroglobulin. The mechanism of the coupling reaction. J Biol Chem 256:9167–9173PubMedGoogle Scholar
  15. Ghosh N, Bhattacharya S (1992) Thyrotoxicity of the chlorides of cadmium and mercury in rabbit. Biomed Environ Sci 5:236–240PubMedGoogle Scholar
  16. Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D (2006) Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116:476–484CrossRefPubMedGoogle Scholar
  17. Holzer R, Bockenkamp B, Booker P, Newland P, Ciotti G, Pozzi M (2004) The impact of cardiopulmonary bypass on selenium status, thyroid function, and oxidative defense in children. Pediatr Cardiol 25:522–528CrossRefPubMedGoogle Scholar
  18. Howdeshell KL (2002) A model of the development of the brain as a construct of the thyroid system. Environ Health Perspect 110:337–348CrossRefPubMedGoogle Scholar
  19. Jen Y, Manova K, Benezra R (1996) Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev Dyn 207:235–252CrossRefPubMedGoogle Scholar
  20. Kallio P, Kolehmainen M, Laaksonen DE, Kekäläinen J, Salopuro T, Sivenius K, Pulkkinen L, Mykkänen HM, Niskanen L, Uusitupa M, Poutanen KS (2007) Dietary carbohydrate modification induces alterations in gene expression in abdominal subcutaneous adipose tissue in persons with the metabolic syndrome: the FUNGENUT Study. Am J Clin Nutr 85:1417–1427PubMedGoogle Scholar
  21. Kawata K, Yokoo H, Shimazaki R, Okabe S (2007) Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol 41:3769–3774CrossRefPubMedGoogle Scholar
  22. Kim JK, Jung KH, Noh JH, Eun JW, Bae HJ, Xie HJ, Jang JJ, Ryu JC, Park WS, Lee JY, Nam SW (2011) Identification of characteristic molecular signature for volatile organic compounds in peripheral blood of rat. Toxicol Appl Pharmacol 250:162–169CrossRefPubMedGoogle Scholar
  23. Liu C, Zhang X, Deng J, Hecker M, Al-Khedhairy A, Giesy JP, Zhou B (2011) Effects of prochloraz or propylthiouracil on the cross-talk between the HPG, HPA, and HPT axes in zebrafish. Environ Sci Technol 45:769–775CrossRefPubMedGoogle Scholar
  24. Lowenstein PR, Morrison EE, Bain D, Shering AF, Banting G, Douglas P, Castro MG (1994) Polarized distribution of the trans-Golgi network marker TGN38 during the in vitro development of neocortical neurons: effects of nocodazole and brefeldin A. Eur J Neurosci 6:1453–1465CrossRefPubMedGoogle Scholar
  25. Maiti PK, Kar A (1997) Dimethoate inhibits extrathyroidal 5′-monodeiodination of thyroxine to 3,3′,5-triiodothyronine in mice: the possible involvement of the lipid peroxidative process. Toxicol Lett 91:1–6CrossRefPubMedGoogle Scholar
  26. Maiti PK, Kar A, Gupta P, Chaurasia SS (1995) Loss of membrane integrity and inhibition of type-I iodothyronine 5′-monodeiodinase activity by fenvalerate in female mouse. Biochem Biophys Res Commun 214:905–909CrossRefPubMedGoogle Scholar
  27. Miller MD, Crofton KM, Rice DC, Zoeller RT (2009) Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. Environ Health Perspect 117:1033–1041PubMedGoogle Scholar
  28. Mol KA, Van Der Geyten S, Darras VM, Visser TJ, Kühn ER (1997) Characterization of iodothyronine outer ring and inner ring deiodinase activities in the blue tilapia, Oreochromis aureus. Endocrinology 138:1787–1793CrossRefPubMedGoogle Scholar
  29. Mori K, Yoshida K, Hoshikawa S, Ito S, Yoshida M, Satoh M, Watanabe C (2006) Effects of perinatal exposure to low doses of cadmium or methylmercury on thyroid hormone metabolism in metallothionein-deficient mouse neonates. Toxicology 228:77–84CrossRefPubMedGoogle Scholar
  30. Morse DC, Groen D, Veerman M, van Amerongen CJ, Koëter HB, Smits van Prooije AE, Visser TJ, Koeman JH, Brouwer A (1993) Interference of polychlorinated biphenyls in hepatic and brain thyroid hormone metabolism in fetal and neonatal rats. Toxicol Appl Pharmacol 122:27–33CrossRefPubMedGoogle Scholar
  31. Ohye H, Sugawara M (2010) Dual oxidase, hydrogen peroxide and thyroid diseases. Exp Biol Med 235:424–433CrossRefGoogle Scholar
  32. Renard CA, Labalette C, Armengol C, Cougot D, Wei Y, Cairo S, Pineau P, Neuveut C, de Reyniès A, Dejean A, Perret C, Buendia MA (2007) Tbx3 is a downstream target of the Wnt/beta-catenin pathway and a critical mediator of beta-catenin survival functions in liver cancer. Cancer Res 67:901–910CrossRefPubMedGoogle Scholar
  33. Rosene ML, Wittmann G, Arrojo e Drigo R, Singru PS, Lechan RM, Bianco AC (2010) Inhibition of the type 2 iodothyronine deiodinase underlies the elevated plasma TSH associated with amiodarone treatment. Endocrinology 151:5961–5970CrossRefPubMedGoogle Scholar
  34. Schmutzler C, Hamann I, Hofmann PJ, Kovacs G, Stemmler L, Mentrup B, Schomburg L, Ambrugger P, Grüters A, Seidlova-Wuttke D, Jarry H, Wuttke W, Köhrle J (2004) Endocrine active compounds affect thyrotropin and thyroid hormone levels in serum as well as endpoints of thyroid hormone action in liver, heart and kidney. Toxicology 205:95–102CrossRefPubMedGoogle Scholar
  35. Schmutzler C, Bacinski A, Gotthardt I, Huhne K, Ambrugger P, Klammer H, Schlecht C, Hoang-Vu C, Grüters A, Wuttke W, Jarry H, Köhrle J (2007a) The ultraviolet filter benzophenone 2 interferes with the thyroid hormone axis in rats and is a potent in vitro inhibitor of human recombinant thyroid peroxidase. Endocrinology 148:2835–2844CrossRefPubMedGoogle Scholar
  36. Schmutzler C, Gotthardt I, Hofmann PJ, Radovic B, Kovacs G, Stemmler L, Nobis I, Bacinski A, Mentrup B, Ambrugger P, Grüters A, Malendowicz LK, Christoffel J, Jarry H, Seidlovà-Wuttke D, Wuttke W, Köhrle J (2007b) Endocrine disruptors and the thyroid gland—a combined in vitro and in vivo analysis of potential new biomarkers. Environ Health Perspect 115:77–83CrossRefPubMedGoogle Scholar
  37. Schneider MJ, Fiering SN, Thai B, Wu SY, St Germain E, Parlow AF, St Germain DL, Galton VA (2006) Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 147:580–589CrossRefPubMedGoogle Scholar
  38. Simmen FA, Su Y, Xiao R, Zeng Z, Simmen RC (2008) The Krüppel-like factor 9 (KLF9) network in HEC-1-A endometrial carcinoma cells suggests the carcinogenic potential of dys-regulated KLF9 expression. Reprod Biol Endocrinol 6:41CrossRefPubMedGoogle Scholar
  39. Soldin OP, O’Mara DM, Aschner M (2008) Thyroid hormones and methylmercury toxicity. Biol Trace Elem Res 126:1–12CrossRefPubMedGoogle Scholar
  40. Song M, Kim YJ, Lee J, Ryu JC (2010) Genome-wide expression profiling of carbaryl and vinclozolin in human thyroid follicular carcinoma (FTC-238) cells. Biochip J 4:89–98CrossRefGoogle Scholar
  41. Song M, Kim YJ, Song MK, Choi HS, Park YK, Ryu JC (2011) Identification of classifiers for increase or decrease of thyroid peroxidase activity in the FTC-238/hTPO recombinant cell line. Environ Sci Technol 45:7906–7914CrossRefPubMedGoogle Scholar
  42. Szabo DT, Richardson VM, Ross DG, Diliberto JJ, Kodavanti PR, Birnbaum LS (2009) Effects of perinatal PBDE exposure on hepatic phase I, phase II, phase III, and deiodinase 1 gene expression involved in thyroid hormone metabolism in male rat pups. Toxicol Sci 107:27–39CrossRefPubMedGoogle Scholar
  43. Taurog A, Dorris ML, Guziec LJ, Guziec FS (1994) The selenium analog of methimazole. Measurement of its inhibitory effect on type I 5′-deiodinase and of its antithyroid activity. Biochem Pharmacol 48:1447–1453CrossRefPubMedGoogle Scholar
  44. Tedelind S, Larsson F, Johanson C, van Beeren HC, Wiersinga WM, Nyström E, Nilsson M (2006) Amiodarone inhibits thyroidal iodide transport in vitro by a cyclic adenosine 5′-monophosphate- and iodine-independent mechanism. Endocrinology 147:2936–2943CrossRefPubMedGoogle Scholar
  45. Thomas RS, Rank DR, Penn SG, Zastrow GM, Hayes KR, Pande K, Glover E, Silander T, Craven MW, Reddy JK, Jovanovich SB, Bradfield CA (2001) Identification of toxicologically predictive gene sets using cDNA microarrays. Mol Pharmacol 60:1189–1194PubMedGoogle Scholar
  46. Woo S, Won H, Ryu JC, Yum S (2010) Differential gene expression profiling in iprobenfos-exposed marine medaka by heterologous microarray hybridization. Toxicol Environ Health Sci 2:18–24CrossRefGoogle Scholar
  47. Yim WC, Min K, Jung D, Lee BM, Kwon Y (2011) Cross experimental analysis of microarray gene expression data from volatile organic compounds treated targets. Mol Cell Toxicol 7:233–241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mee Song
    • 1
  • Mi-Kyung Song
    • 1
  • Han-Seam Choi
    • 1
  • Jae-Chun Ryu
    • 1
  1. 1.Cellular and Molecular Toxicology Laboratory, Center for Integrated Risk ResearchKorea Institute of Science and Technology (KIST)Cheongryang, SeoulRepublic of Korea

Personalised recommendations