Archives of Toxicology

, Volume 87, Issue 5, pp 871–881 | Cite as

5-Aza-2′-deoxycytidine inhibited PDGF-induced rat airway smooth muscle cell phenotypic switching

  • Yunye Ning
  • Haidong Huang
  • Yuchao Dong
  • Qinying Sun
  • Wei Zhang
  • Wujian Xu
  • Qiang Li
Molecular Toxicology


Airway smooth muscle (ASM) cell phenotypic switching played an important role in airway remodeling in asthma. In vitro platelet-derived growth factor (PDGF) induced ASM cell phenotypic switching from a mature to pro-remodeling phenotype, but the mechanism remained incompletely understood. This study was to explore the effect of DNA methyltransferase inhibitor 5-Aza-2′-deoxycytidine (Aza-CdR) on PDGF-induced rat ASM cell phenotypic switching and biological behaviors. Rat airway smooth muscle (RASM) cells were obtained by primary explant techniques. Western blot, 3-dimensional gel contraction, transwell and wound healing assay, and MTT were applied to detect cell phenotypic switching, contractility, migration and proliferation, respectively. Cytoskeleton rearrangement was observed by immunofluorescence. Results showed Aza-CdR inhibited PDGF-induced down-regulation of contractile markers in RASM cells and increased cell contractility. Aza-CdR inhibited PDGF-induced RASM cell migration by abrogating cell morphology change and cytoskeletal reorganization and attenuated the effect of PDGF on proliferating cell nuclear antigen expression and cell cycle progression, ultimately cell proliferation. PDGF-induced DNA methyltransferase 1 (DNMT1) expression was mediated by activation of PI3K/Akt and ERK signaling in RASM cells. Selective depletion of DNMT1 protein by Aza-CdR inhibited PDGF-induced RASM cell phenotypic switching, revealing DNMT1-mediated DNA methylation was implicated in asthmatic ASM remodeling. We proposed for the first time that DNMT1 played a key role in PDGF-induced RASM cell phenotypic switching and Aza-CdR is promising in intervening ASM remodeling in asthma. Although study of abnormal DNA methylation in PDGF-stimulated ASM cells is in its infancy, this work contributes to providing new insights into the mechanism of ASM remodeling and may be helpful for developing effective treatments for airway remodeling in asthma.


5-Aza-2′-deoxycytidine Airway smooth muscle cells Phenotypic switching DNA methylation DNA methyltransferase 1 



Rat airway smooth muscle cell


Platelet-derived growth factor




DNA methyltransferase 1


Proliferating cell nuclear antigen


Optical density


Myosin regulatory light chain


Myosin light-chain kinase






Tris-buffered saline with 0.1 % Tween-20


Phosphatidylinositol 3-kinase



This work was supported by the National Natural Science Foundation of China [Grant No. 81100012, 81170060].

Conflict of interest



  1. Breton CV, Byun H-M, Wang X, Salam MT, Siegmund K, Gilliland FD (2011) DNA methylation in the arginase-nitric oxide synthase pathway is associated with exhaled nitric oxide in children with asthma. Am J Respir Crit Care Med 184(2):191–197. doi: 10.1164/rccm.201012-2029OC PubMedCrossRefGoogle Scholar
  2. Carlin SM, Roth M, Black JL (2003) Urokinase potentiates PDGF-induced chemotaxis of human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 284(6):L1020–L1026. doi: 10.1152/ajplung.00092.2002 PubMedGoogle Scholar
  3. Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59(1):1–61PubMedGoogle Scholar
  4. Chiou YL, Shieh JJ, Lin CY (2006) Blocking of Akt/NF-kappaB signaling by pentoxifylline inhibits platelet-derived growth factor-stimulated proliferation in Brown Norway rat airway smooth muscle cells. Pediatr Res 60(6):657–662PubMedCrossRefGoogle Scholar
  5. Crowell JA, Steele VE, Fay JR (2007) Targeting the AKT protein kinase for cancer chemoprevention. Mol Cancer Ther 6(8):2139–2148. doi: 10.1158/1535-7163.mct-07-0120 PubMedCrossRefGoogle Scholar
  6. Foulks JM, Parnell KM, Nix RN, Chau S, Swierczek K, Saunders M, Wright K, Hendrickson TF, Ho K–K, McCullar MV, Kanner SB (2012) Epigenetic drug discovery: targeting DNA Methyltransferases. J Biomol Screen 17(1):2–17. doi: 10.1177/1087057111421212 PubMedCrossRefGoogle Scholar
  7. Ghoshal K, Majumder S, Datta J, Motiwala T, Bai S, Sharma SM, Frankel W, Jacob ST (2004) Role of human ribosomal RNA (rRNA) promoter methylation and of methyl-CpG-binding protein MBD2 in the suppression of rRNA gene expression. J Biol Chem 279(8):6783–6793. doi: 10.1074/jbc.M309393200 PubMedCrossRefGoogle Scholar
  8. Grinnell F (2000) Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol 10(9):362–365PubMedCrossRefGoogle Scholar
  9. Halayko AJ, Tran T, Ji SY, Yamasaki A, Gosens R (2006) Airway smooth muscle phenotype and function: interactions with current asthma therapies. Curr Drug Targets 7(5):525–540PubMedCrossRefGoogle Scholar
  10. Halayko AJ, Tran T, Gosens R (2008) Phenotype and functional plasticity of airway smooth muscle: role of caveolae and caveolins. Proc ATS 5(1):80–88. doi: 10.1513/pats.200705-057VS Google Scholar
  11. Halwani R, Al-Muhsen S, Hamid Q (2010) Airway remodeling in asthma. Curr Opin Pharmacol 10(3):236–245PubMedCrossRefGoogle Scholar
  12. Hassan M, Jo T, Risse PA, Tolloczko B, Lemiere C, Olivenstein R, Hamid Q, Martin JG (2010) Airway smooth muscle remodeling is a dynamic process in severe long-standing asthma. J Allergy Clin Immunol 125(5):1037–1045.e1033PubMedCrossRefGoogle Scholar
  13. Hirota JA, Ask K, Farkas L, Smith JA, Ellis R, Rodriguez-Lecompte JC, Kolb M, Inman MD (2011) In vivo role of platelet-derived growth factor-BB in airway smooth muscle proliferation in mouse lung. Am J Respir Cell Mol Biol 45(3):566–572. doi: 10.1165/rcmb.2010-0277OC PubMedCrossRefGoogle Scholar
  14. Hirst SJ, Walker TR, Chilvers ER (2000) Phenotypic diversity and molecular mechanisms of airway smooth muscle proliferation in asthma. Eur Respir J 16(1):159–177PubMedCrossRefGoogle Scholar
  15. Hollingsworth JW, Maruoka S, Boon K, Garantziotis S, Li Z, Tomfohr J, Bailey N, Potts EN, Whitehead G, Brass DM, Schwartz DA (2008) In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 118(10):3462–3469PubMedGoogle Scholar
  16. James AL, Wenzel S (2007) Clinical relevance of airway remodelling in airway diseases. Eur Respir J 30(1):134–155. doi: 10.1183/09031936.00146905 PubMedCrossRefGoogle Scholar
  17. Kamm KE, Stull JT (1985) Myosin phosphorylation, force, and maximal shortening velocity in neurally stimulated tracheal smooth muscle. Am J Physiol Cell Physiol 249(3):C238–C247Google Scholar
  18. Labonte I, Hassan M, Risse P-A, Tsuchiya K, Laviolette M, Lauzon A-M, Martin JG (2009) The effects of repeated allergen challenge on airway smooth muscle structural and molecular remodeling in a rat model of allergic asthma. Am J Physiol Lung Cell Mol Physiol 297(4):L698–L705. doi: 10.1152/ajplung.00142.2009 PubMedCrossRefGoogle Scholar
  19. Leone G, Voso MT, Teofili L, Lubbert M (2003) Inhibitors of DNA methylation in the treatment of hematological malignancies and MDS. Clin Immunol 109(1):89–102PubMedCrossRefGoogle Scholar
  20. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333PubMedCrossRefGoogle Scholar
  21. Ma X, Wang Y, Stephens NL (1998) Serum deprivation induces a unique hypercontractile phenotype of cultured smooth muscle cells. Am J Physiol Cell Physiol 274(5):C1206–C1214Google Scholar
  22. Moir LM, Leung S-Y, Eynott PR, McVicker CG, Ward JPT, Chung KF, Hirst SJ (2003) Repeated allergen inhalation induces phenotypic modulation of smooth muscle in bronchioles of sensitized rats. Am J Physiol Lung Cell Mol Physiol 284(1):L148–L159. doi: 10.1152/ajplung.00105.2002 PubMedGoogle Scholar
  23. Ning Y, Sun Q, Dong Y, Xu W, Zhang W, Huang H, Li Q (2011) Slit2-N inhibits PDGF-induced migration in rat airway smooth muscle cells: WASP and Arp2/3 involved. Toxicology 283(1):32–40PubMedCrossRefGoogle Scholar
  24. Prescott SL, Clifton V (2009) Asthma and pregnancy: emerging evidence of epigenetic interactions in utero. Curr Opin Allergy Clin Immunol 9(5):417–426PubMedCrossRefGoogle Scholar
  25. Roscioni SS, Dekkers BGJ, Prins AG, Oldenbeuving G, Pool KME, Elzinga CRS, Meurs H, Schmidt M (2010) Epac And PKA Inhibit PDGF-induced airway smooth muscle phenotype modulation. Am J Respir Crit Care Med 181 (1_MeetingAbstracts): A2142Google Scholar
  26. Schaafsma D, Gosens R, Bos IS, Meurs H, Zaagsma J, Nelemans SA (2005) Role of contractile prostaglandins and Rho-kinase in growth factor-induced airway smooth muscle contraction. Respir Res 6:85PubMedCrossRefGoogle Scholar
  27. Somlyo AP, Somlyo AV (1994) Signal transduction and regulation in smooth muscle. Nature 372(6503):231–236PubMedCrossRefGoogle Scholar
  28. Steensma DP, Baer MR, Slack JL, Buckstein R, Godley LA, Garcia-Manero G, Albitar M, Larsen JS, Arora S, Cullen MT, Kantarjian H (2009) Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial. J Clin Oncol 27(23):3842–3848. doi: 10.1200/jco.2008.19.6550 PubMedCrossRefGoogle Scholar
  29. Tang WW-Y, Shang Y, Mitzner W (2011) Investigation of epigenetic changes in house dust mite (HDM)-induced asthma. Am J Respir Crit Care Med 183 (1_MeetingAbstracts):A6376Google Scholar
  30. Torii S, Nakayama K, Yamamoto T, Nishida E (2004) Regulatory mechanisms and function of ERK MAP kinases. J Biochem 136(5):557–561. doi: 10.1093/jb/mvh159 PubMedCrossRefGoogle Scholar
  31. Wingard CJ, Nowocin JM, Murphy RA (2001) Cross-bridge regulation by Ca2 + -dependent phosphorylation in amphibian smooth muscle. Am J Physiol Regul Integr Comp Physiol 281(6):R1769–R1777PubMedGoogle Scholar
  32. Yang IV, Schwartz DA (2011) Epigenetic control of gene expression in the lung. Am J Respir Crit Care Med 183(10):1295–1301. doi: 10.1164/rccm.201010-1579PP PubMedCrossRefGoogle Scholar
  33. Yang AS, Doshi KD, Choi S-W, Mason JB, Mannari RK, Gharybian V, Luna R, Rashid A, Shen L, Estecio MRH, Kantarjian HM, Garcia-Manero G, Issa J-PJ (2006) DNA methylation changes after 5-Aza-2′-deoxycytidine therapy in patients with leukemia. Cancer Res 66(10):5495–5503. doi: 10.1158/0008-5472.can-05-2385 PubMedCrossRefGoogle Scholar
  34. Zhu W-G, Hileman T, Ke Y, Wang P, Lu S, Duan W, Dai Z, Tong T, Villalona-Calero MA, Plass C, Otterson GA (2004) 5-Aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem 279(15):15161–15166. doi: 10.1074/jbc.M311703200 PubMedCrossRefGoogle Scholar
  35. Zuyderduyn S, Sukkar MB, Fust A, Dhaliwal S, Burgess JK (2008) Treating asthma means treating airway smooth muscle cells. Eur Respir J 32(2):265–274. doi: 10.1183/09031936.00051407 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yunye Ning
    • 1
  • Haidong Huang
    • 1
  • Yuchao Dong
    • 1
  • Qinying Sun
    • 1
  • Wei Zhang
    • 1
  • Wujian Xu
    • 1
  • Qiang Li
    • 1
  1. 1.Department of Respiratory Medicine, Changhai HospitalSecond Military Medical UniversityYangpu District, ShanghaiPeople’s Republic of China

Personalised recommendations