Archives of Toxicology

, Volume 87, Issue 2, pp 337–345 | Cite as

Pharmacokinetics explain in vivo/in vitro discrepancies of carcinogen-induced gene expression alterations in rat liver and cultivated hepatocytes

  • Markus Schug
  • Regina Stöber
  • Tanja Heise
  • Hans Mielke
  • Ursula Gundert-Remy
  • Patricio Godoy
  • Raymond Reif
  • Meinolf Blaszkewicz
  • Heidrun Ellinger-Ziegelbauer
  • Hans-Jürgen Ahr
  • Silvia Selinski
  • Georgia Günther
  • Rosemarie Marchan
  • Meinolf Blaszkewicz
  • Agapios Sachinidis
  • Andreas Nüssler
  • Axel Oberemm
  • Jan G. Hengstler
In vitro systems

Abstract

Cultivated hepatocytes represent a well-established in vitro system. However, the applicability of hepatocytes in toxicogenomics is still controversially discussed. Recently, an in vivo/in vitro discrepancy has been described, whereby the non-genotoxic rat liver carcinogen methapyrilene alters the expression of the metabolizing genes SULT1A1 and ABAT, as well as the DNA damage response gene GADD34 in vitro, but not in vivo. If the collagen sandwich cultures of hepatocytes really produce false-positive data, this would compromise its application in toxicogenomics. To revisit the putative in vivo/in vitro discrepancy, we first analyzed and modeled methapyrilene concentrations in the portal vein of rats. The relatively short half-life of 2.8 h implies a rapid decrease in orally administered methapyrilene in vivo below concentrations that can cause gene expression alterations. This corresponded to the time-dependent alteration levels of GADD34, ABAT and SULT1A1 RNA in the liver: RNA levels are altered 1, 6 and 12 h after methapyrilene administration, but return to control levels after 24 and 72 h. In contrast, methapyrilene concentrations in the culture medium supernatant of primary rat hepatocyte cultures decreased slowly. This explains why GADD34, ABAT and SULT1A1 were still deregulated after 24 h exposure in vitro, but not in vivo. It should also be considered that the earliest analyzed time point in the previous in vivo studies was 24 h after methapyrilene administration. In conclusion, previously observed in vitro/in vivo discrepancy can be explained by different pharmacokinetics present in vitro and in vivo. When the in vivo half-life is short, levels of some initially altered genes may have returned to control levels already 24 h after administration.

Keywords

Hepatocyte in vitro system Alternative methods In vitro/in vivo comparison Genotoxic and non-genotoxic carcinogens In vitro pharmacokinetics 

Abbreviations

SULT1A1

Sulfotransferase

ABAT

4-aminobutyrate aminotransferase

GADD34

Growth arrest and DNA damage inducible gene 34

ABCB1

Multi drug resistance protein 1NQO1: NADPH-quinone oxidoreductase

References

  1. Bauer A, Schumann A, Gilbert M, Wilhelm C, Hengstler JG, Schiller J, Fuchs B (2009) Evaluation of carbon tetrachloride-induced stress on rat hepatocytes by 31P NMR and MALDI-TOF mass spectrometry: lysophosphatidylcholine generation from unsaturated phosphatidylcholines. Chem Phys Lipids 159(1):21–29PubMedCrossRefGoogle Scholar
  2. Beekmann JM, Boess F, Hildebrand H, Kalkuhl A, Suter L (2006) Gene Expression analysis of the hepatotoxicant methapyrilene in primary rat hepatocytes: an interlaboratory study. Environ Health Perspect 114(1):92–99Google Scholar
  3. Boess F, Kamber M, Romer S, Gasser R, Muller D, Albertini S, Suter L (2003) Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: possible implications for toxicogenomics use of in vitro systems. Toxicol Sci 73(2):386–402PubMedCrossRefGoogle Scholar
  4. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13:407–484PubMedGoogle Scholar
  5. Calandre EP, Alferez N, Hassanein K, Azarnoff DL (1981) Methapyrilene kinetics and dynamics. Clin Pharmacol Ther 29:527–532PubMedCrossRefGoogle Scholar
  6. Doktorova TY, Ellinger-Ziegelbauer H, Vinken M, Vanhaecke T, Delft J, Kleinjans J, Ahr HJ, Rogiers V (2012) Comparison of hepatocarcinogen-induced gene expression profiles in conventional primary rat hepatocytes with in vivo rat liver. Arch Toxicol 86(9):1399–1411PubMedCrossRefGoogle Scholar
  7. Ellinger-Ziegelbauer H, Stuart B, Wahle B, Bomann W, Ahr HJ (2005) Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat Res 575(1–2):61–84PubMedGoogle Scholar
  8. Ellinger-Ziegelbauer H, Gmuender H, Bandenburg A, Ahr HJ (2008) Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat Res 637:23–39PubMedCrossRefGoogle Scholar
  9. Fielden MR, Brennan R, Gollub J (2007) A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by nongenotoxic chemicals. Toxicol Sci 99:90–100PubMedCrossRefGoogle Scholar
  10. Godoy P, Hengstler JG, Ilkavets I, Meyer C, Bachmann A, Müller A, Tuschl G, Mueller SO, Dooley S (2009) Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology 49(6):2031–2043PubMedCrossRefGoogle Scholar
  11. Godoy P, Schug M, Bauer A, Hengstler JG (2010a) Reversible manipulation of apoptosis sensitivity in cultured hepatocytes by matrix-mediated manipulation of signaling activities. Methods Mol Biol 640:139–155PubMedCrossRefGoogle Scholar
  12. Godoy P, Lakkapamu S, Schug M, Bauer A, Stewart JD, Bedawi E, Hammad S, Amin J, Marchan R, Schormann W, Maccoux L, von Recklinghausen I, Reif R, Hengstler JG (2010b) Dexamethasone-dependent versus -independent markers of epithelial to mesenchymal transition in primary hepatocytes. Biol Chem 391(1):73–83PubMedCrossRefGoogle Scholar
  13. Heise T, Schug M, Storm D, Ellinger-Ziegelbauer H, Ahr HJ, Hellwig B, Rahnenfuhrer J, Ghallab A, Guenther G, Sisnaiske J, Reif R, Godoy P, Mielke H, Gundert-Remy U, Lampen A, Oberemm A, Hengstler JG (2012) In vitro–in vivo correlation of gene expression alterations induced by liver carcinogens. Curr Med Chem 19(11):1721–1730PubMedCrossRefGoogle Scholar
  14. Hengstler JG, Utesch D, Steinberg P, Platt KL, Diener B, Ringel M, Swales N, Fischer T, Biefang K, Gerl M, Böttger T, Oesch F (2000) Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev 32:81–118PubMedCrossRefGoogle Scholar
  15. Hewitt NJ, Lechón MJG, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg C, Guillouzo A, Tuschl G, Li AP, LeCluyse E, Groothuis GMM, Hengstler JG (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39:159–234PubMedCrossRefGoogle Scholar
  16. Hrach J, Mueller SO, Hewitt P (2011) Development of an in vitro liver toxicity prediction model based on longer term primary rat hepatocyte culture. Toxicol Lett 206(2):189–196PubMedCrossRefGoogle Scholar
  17. Kelly DW, Holder CL, Korfmacher WA, Slikker W (1990) Plasma elimination and urinary excretion of methapyrilene in the rat. Drug Metab Dispos 18:1018–1024PubMedGoogle Scholar
  18. Kienhuis AS, van de Poll MCG, Wortelboer H, van Herwijnen M, Gottschalk R, Dejong CHC, Boorsma A, Paules RS, Kleinjans JCS, Stierum RH, van Delft JHM (2009) Parallelogram approach using rat-human in vitro and rat in vivo toxicogenomics predicts acetaminophen-induced hepatotoxicity in humans. Toxicol Sci 107(2):544–552PubMedCrossRefGoogle Scholar
  19. Knobeloch D, Ehnert S, Schyschka L, Büchler P, Schoenberg M, Kleef J, Thasler WE, Nussler NC, Godoy P, Hengstler J, Nussler AK (2012) Human hepatocytes: isolation, culture and quality procedures. Methods Mol Biol 806:99–120PubMedCrossRefGoogle Scholar
  20. Mathijs K, Brauers KJJ, Jennen DGJ, Boorsma A, van Herwijnen MHM, Gottschalk RWH, Kleinjans JCS, van Delft JHM (2009) Discrimination for genotoxic and nongenotoxic carcinogens by gene expression profiling in primary mouse hepatocytes improves with exposure time. Toxicol Sci 112(2):374–384PubMedCrossRefGoogle Scholar
  21. Mathijs K, Brauers KJ, Jennen DG, Lizarraga D, Kleinjans JC, van Delft JH (2010) Gene expression profiling in primary mouse hepatocytes discriminates true from false-positive genotoxic compounds. Mutagenesis 25(6):561–568PubMedCrossRefGoogle Scholar
  22. Mielke H, Anger LT, Schug M, Hengstler JG, Stahlmann R, Gundert-Remy U (2010) A physiologically based toxicokinetic modelling approach to predict relevant concentrations for in vitro testing. Arch Toxicol 85:555–563PubMedCrossRefGoogle Scholar
  23. Pelkonen O, Kapitulnik J, Gundert-Remy U, Boobis AR, Stockis A (2008) Local kinetics and dynamics of xenobiotics. Crit Rev Toxicol 38(8):697–720PubMedCrossRefGoogle Scholar
  24. Schmitt W (2008) General approach for the calculation of tissue to plasma partition coefficient. Toxicol In Vitro 22:457–467PubMedCrossRefGoogle Scholar
  25. Schug M, Heise T, Bauer A, Storm D, Blaszkewicz M, Bedawy E, Brulport M, Geppert B, Hermes M, Föllmann W, Rapp K, Maccoux L, Schormann W, Appel KE, Oberemm A, Gundert-Remy U, Hengstler JG (2008) Primary rat hepatocytes as in vitro system for gene expression studies: comparison of sandwich, Matrigel and 2D cultures. Arch Toxicol 82(12):923–931PubMedCrossRefGoogle Scholar
  26. Uehara T, Minowa Y, Morikawa Y, Kondo C, Maruyama T, Kato I, Nakatsu N, Igarashi Y, Ono A, Hayashi H, Mitsumori K, Yamada H, Ohno Y, Urushidani T (2011) Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database. Toxicol Appl Pharmacol 255:297–306PubMedCrossRefGoogle Scholar
  27. Ullrich A, Stolz DB, Ellis EC, Strom SC, Michalopoulos GK, Hengstler JG, Runge D (2009) Long term cultures of primary human hepatocytes as an alternative to drug testing in animals. ALTEX 26(4):295–302PubMedGoogle Scholar
  28. Van Kesteren PC, Zwart PE, Pennings JL, Gottschalk WH, Kleinjans JC, van Delft JH, van Steeg H, Luijten M (2011) Deregulation of cancer-related pathways in primary hepatocytes derived from DNA repair-deficient Xpa-/-p53 ± mice upon exposure to benzo[a]pyrene. Toxicol Sci 123(1):123–132PubMedCrossRefGoogle Scholar
  29. Vinken M, Decrock E, Doktorova T, Ramboer E, De Vuyst E, Vanhaecke T, Leybaert L, Rogiers V (2011) Characterization of spontanous cell death in monolayer cultures of primary hepatocytes. Arch Toxicol 85(12):1589–1596PubMedCrossRefGoogle Scholar
  30. Zellmer S, Schmidt-Heck W, Godoy P, Wenig H, Meyer C, Lehmann T, Sparna T, Schormann W, Hammad S, Kreutz C, Timmer J, von Weizsäcker F, Thürmann PA, Merfort I, Guthke R, Dooley S, Hengstler JG, Gebhardt R (2010) Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 52:2127–2136PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Markus Schug
    • 1
  • Regina Stöber
    • 1
  • Tanja Heise
    • 2
  • Hans Mielke
    • 2
  • Ursula Gundert-Remy
    • 2
  • Patricio Godoy
    • 1
  • Raymond Reif
    • 1
  • Meinolf Blaszkewicz
    • 1
  • Heidrun Ellinger-Ziegelbauer
    • 3
  • Hans-Jürgen Ahr
    • 3
  • Silvia Selinski
    • 1
  • Georgia Günther
    • 1
  • Rosemarie Marchan
    • 1
  • Meinolf Blaszkewicz
    • 1
  • Agapios Sachinidis
    • 4
  • Andreas Nüssler
    • 5
  • Axel Oberemm
    • 3
  • Jan G. Hengstler
    • 1
  1. 1.Leibniz Research Centre for Working Environment and Human Factors (IfADo) at Dortmund TUDortmundGermany
  2. 2.Federal Institute for Risk AssessmentBerlinGermany
  3. 3.Department of Molecular and Genetic ToxicologyBayer AGWuppertalGermany
  4. 4.Center of Physiology and Pathophysiology, Institute of NeurophysiologyUniversity of CologneCologneGermany
  5. 5.BG Unfallklinik TübingenEberhard-Karls Universität TübingenTuebingenGermany

Personalised recommendations