Archives of Toxicology

, Volume 87, Issue 3, pp 505–515 | Cite as

Benzo[a]pyrene-induced transcriptomic responses in primary hepatocytes and in vivo liver: Toxicokinetics is essential for in vivo–in vitro comparisons

  • P. C. E. van Kesteren
  • P. E. Zwart
  • M. M. Schaap
  • T. E. Pronk
  • M. H. M. van Herwijnen
  • J. C. S. Kleinjans
  • B. G. H. Bokkers
  • R. W. L. Godschalk
  • M. J. Zeilmaker
  • H. van Steeg
  • M. Luijten
In vitro systems


The traditional 2-year cancer bioassay needs replacement by more cost-effective and predictive tests. The use of toxicogenomics in an in vitro system may provide a more high-throughput method to investigate early alterations induced by carcinogens. Recently, the differential gene expression response in wild-type and cancer-prone Xpa −/− p53 +/− primary mouse hepatocytes after exposure to benzo[a]pyrene (B[a]P) revealed downregulation of cancer-related pathways in Xpa −/− p53 +/− hepatocytes only. Here, we investigated pathway regulation upon in vivo B[a]P exposure of wild-type and Xpa −/− p53 +/− mice. In vivo transcriptomics analysis revealed a limited gene expression response in mouse livers, but with a significant induction of DNA replication and apoptotic/anti-apoptotic cellular responses in Xpa −/− p53 +/− livers only. In order to be able to make a meaningful in vivo–in vitro comparison we estimated internal in vivo B[a]P concentrations using DNA adduct levels and physiologically based kinetic modeling. Based on these results, the in vitro concentration that corresponded best with the internal in vivo dose was chosen. Comparison of in vivo and in vitro data demonstrated similarities in transcriptomics response: xenobiotic metabolism, lipid metabolism and oxidative stress. However, we were unable to detect cancer-related pathways in either wild-type or Xpa −/− p53 +/− exposed livers, which were previously found to be induced by B[a]P in Xpa −/− p53 +/− primary hepatocytes. In conclusion, we showed parallels in gene expression responses between livers and primary hepatocytes upon exposure to equivalent concentrations of B[a]P. Furthermore, we recommend considering toxicokinetics when modeling a complex in vivo endpoint with in vitro models.


Toxicogenomics Carcinogenesis Benzo[a]pyrene Xpa−/−p53+/− Physiologically based kinetic modeling 



Analysis of variance








False discovery rate


Gene Map Annotator and Pathway Profiler


Gene Ontology


Kyoto Encyclopedia of Genes and Genomes


Physiologically based kinetic


Principal component analysis




Xeroderma pigmentosum A


Xpa −/− p53 +/−



We thank R. Vlug, J. Bos, H. Strootman and T. van de Kuil for their support with the hepatocytes isolations. We also thank Prof. Dr. J. Hengstler for his advice on hepatocyte isolation and culturing. This work was supported by the Technology Foundation STW [grant MFA6809].

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

204_2012_949_MOESM1_ESM.pdf (47 kb)
Supplementary material 1 (PDF 47 kb)
204_2012_949_MOESM2_ESM.pdf (45 kb)
Supplementary material 2 (PDF 45 kb)
204_2012_949_MOESM3_ESM.pdf (21 kb)
Supplementary material 3 (PDF 21 kb)


  1. Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Arch Toxicol 85 (5):367–485Google Scholar
  2. Ames BN, Gold LS (1990) Too many rodent carcinogens: mitogenesis increases mutagenesis. Science 249(4972):970–971PubMedCrossRefGoogle Scholar
  3. Arentson E, Faloon P, Seo J, Moon E, Studts JM, Fremont DH, Choi K (2002) Oncogenic potential of the DNA replication licensing protein CDT1. Oncogene 21(8):1150–1158PubMedCrossRefGoogle Scholar
  4. Auerbach SS, Shah RR, Mav D, Smith CS, Walker NJ, Vallant MK, Boorman GA, Irwin RD (2010) Predicting the hepatocarcinogenic potential of alkenylbenzene flavoring agents using toxicogenomics and machine learning. Toxicol Appl Pharmacol 243(3):300–314PubMedCrossRefGoogle Scholar
  5. Bartosiewicz M, Penn S, Buckpitt A (2001) Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene. Environ Health Perspect 109(1):71–74PubMedCrossRefGoogle Scholar
  6. Benigni R (2012) Alternatives to the carcinogenicity bioassay for toxicity prediction: are we there yet? Expert Opin Drug Metab Toxicol 8(4):407–417PubMedCrossRefGoogle Scholar
  7. Blaauboer BJ (2010) Biokinetic modeling and in vitro-in vivo extrapolations. J Toxicol Environ Health B Crit Rev 13(2–4):242–252PubMedGoogle Scholar
  8. Blow JJ, Tada S (2000) Cell cycle. A new check on issuing the licence. Nature 404(6778):560–561PubMedCrossRefGoogle Scholar
  9. Boorsma A, Foat BC, Vis D, Klis F, Bussemaker HJ (2005) T-Profiler: scoring the activity of predefined groups of genes using gene expression data. Nucleic Acids Res 33(Web Server issue):W592–W595PubMedCrossRefGoogle Scholar
  10. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13(4):407–484PubMedGoogle Scholar
  11. Clewell H Jr, Gentry PR, Covington TR, Gearhart JM (2000) Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment. Environ Health Perspect 108(Suppl 2):283–305PubMedCrossRefGoogle Scholar
  12. Crowell SR, Amin SG, Anderson KA, Krishnegowda G, Sharma AK, Soelberg JJ, Williams DE, Corley RA (2011) Preliminary physiologically based pharmacokinetic models for benzo[a]pyrene and dibenzo[def, p]chrysene in rodents. Toxicol Appl Pharmacol 257(3):365–376PubMedCrossRefGoogle Scholar
  13. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, Watson SJ, Meng F (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33(20):e175PubMedCrossRefGoogle Scholar
  14. de Leeuw WC, Rauwerda H, Jonker MJ, Breit TM (2008) Salvaging Affymetrix probes after probe-level re-annotation. BMC Res Notes 1:66PubMedCrossRefGoogle Scholar
  15. de Vries A, van Oostrom CT, Hofhuis FM, Dortant PM, Berg RJ, de Gruijl FR, Wester PW, van Kreijl CF, Capel PJ, van Steeg H (1995) Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377(6545):169–173PubMedCrossRefGoogle Scholar
  16. de Vries A, van Oostrom CT, Dortant PM, Beems RB, van Kreijl CF, Capel PJ, van Steeg H (1997) Spontaneous liver tumors and benzo[a]pyrene-induced lymphomas in XPA -deficient mice. Mol Carcinog 19(1):46–53PubMedCrossRefGoogle Scholar
  17. Ellinger-Ziegelbauer H, Gmuender H, Bandenburg A, Ahr HJ (2008) Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutat Res 637(1–2):23–39PubMedGoogle Scholar
  18. Fassett JT, Tobolt D, Nelsen CJ, Albrecht JH, Hansen LK (2003) The role of collagen structure in mitogen stimulation of ERK, cyclin D1 expression, and G1-S progression in rat hepatocytes. J Biol Chem 278(34):31691–31700PubMedCrossRefGoogle Scholar
  19. Fielden MR, Nie A, McMillian M, Elangbam CS, Trela BA, Yang Y, Dunn RT, Dragan Y, Fransson-Stehen R, Bogdanffy M, Adams SP, Foster WR, Chen SJ, Rossi P, Kasper P, Jacobson-Kram D, Tatsuoka KS, Wier PJ, Gollub J, Halbert DN, Roter A, Young JK, Sina JF, Marlowe J, Martus HJ, Aubrecht J, Olaharski AJ, Roome N, Nioi P, Pardo I, Snyder R, Perry R, Lord P, Mattes W, Car BD (2008) Interlaboratory evaluation of genomic signatures for predicting carcinogenicity in the rat. Toxicol Sci 103(1):28–34PubMedCrossRefGoogle Scholar
  20. Flowers L, Ohnishi ST, Penning TM (1997) DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals. Biochemistry 36(28):8640–8648PubMedCrossRefGoogle Scholar
  21. Foth H, Kahl R, Kahl GF (1988) Pharmacokinetics of low doses of benzo[a]pyrene in the rat. Food Chem Toxicol 26(1):45–51PubMedCrossRefGoogle Scholar
  22. Gelboin HV (1980) Benzo[alpha]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes. Physiol Rev 60(4):1107–1166PubMedGoogle Scholar
  23. Godschalk RW, Maas LM, Van Zandwijk N, van ‘t Veer LJ, Breedijk A, Borm PJ, Verhaert J, Kleinjans JC, van Schooten FJ (1998) Differences in aromatic-DNA adduct levels between alveolar macrophages and subpopulations of white blood cells from smokers. Carcinogenesis 19(5):819–825PubMedCrossRefGoogle Scholar
  24. Hamouchene H, Arlt VM, Giddings I, Phillips DH (2011) Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene. BMC Genomics 12:333PubMedCrossRefGoogle Scholar
  25. Hansen LK, Wilhelm J, Fassett JT (2006) Regulation of hepatocyte cell cycle progression and differentiation by type I collagen structure. Curr Top Dev Biol 72:205–236PubMedCrossRefGoogle Scholar
  26. Hecht SS, Grabowski W, Groth K (1979) Analysis of faeces for benzo[a]pyrene after consumption of charcoal-broiled beef by rats and humans. Food Cosmet Toxicol 17(3):223–227PubMedCrossRefGoogle Scholar
  27. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264PubMedCrossRefGoogle Scholar
  28. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4(1):1–7PubMedCrossRefGoogle Scholar
  29. Jacobson-Kram D, Sistare FD, Jacobs AC (2004) Use of transgenic mice in carcinogenicity hazard assessment. Toxicol Pathol 32(Suppl 1):49–52PubMedCrossRefGoogle Scholar
  30. Klaassen R, Olling M, Lusthof KJ (1996) The influence of the use of animal cages with wire floor or macrolon cages with middle size saw on the kinetics of benzo(a)pyrene in the rat. RIVM Report 658603 006Google Scholar
  31. Malik AI, Williams A, Lemieux CL, White PA, Yauk CL (2012) Hepatic mRNA, microRNA, and miR-34a-target responses in mice after 28 days exposure to doses of benzo(a)pyrene that elicit DNA damage and mutation. Environ Mol Mutagen 53(1):10–21PubMedCrossRefGoogle Scholar
  32. Mielke H, Anger LT, Schug M, Hengstler JG, Stahlmann R, Gundert-Remy U (2011) A physiologically based toxicokinetic modelling approach to predict relevant concentrations for in vitro testing. Arch Toxicol 85(6):555–563PubMedCrossRefGoogle Scholar
  33. Nishitani H, Lygerou Z, Nishimoto T, Nurse P (2000) The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 404(6778):625–628PubMedCrossRefGoogle Scholar
  34. Park HJ, Oh JH, Park SM, Cho JW, Yum YN, Park SN, Yoon DY, Yoon S (2011) Identification of biomarkers of chemically induced hepatocarcinogenesis in rasH2 mice by toxicogenomic analysis. Arch Toxicol 85(12):1627–1640PubMedCrossRefGoogle Scholar
  35. Pery AR, Brochot C, Desmots S, Boize M, Sparfel L, Fardel O (2011) Predicting in vivo gene expression in macrophages after exposure to benzo(a)pyrene based on in vitro assays and toxicokinetic/toxicodynamic models. Toxicol Lett 201(1):8–14PubMedCrossRefGoogle Scholar
  36. Pritchard JB, French JE, Davis BJ, Haseman JK (2003) The role of transgenic mouse models in carcinogen identification. Environ Health Perspect 111(4):444–454PubMedCrossRefGoogle Scholar
  37. Ramesh A, Inyang F, Hood DB, Archibong AE, Knuckles ME, Nyanda AM (2001) Metabolism, bioavailability, and toxicokinetics of benzo(alpha)pyrene in F-344 rats following oral administration. Exp Toxicol Pathol 53(4):275–290PubMedCrossRefGoogle Scholar
  38. Reddy MV, Randerath K (1986) Nuclease P1-mediated enhancement of sensitivity of 32P-postlabeling test for structurally diverse DNA adducts. Carcinogenesis 7(9):1543–1551PubMedCrossRefGoogle Scholar
  39. Rohrbeck A, Salinas G, Maaser K, Linge J, Salovaara S, Corvi R, Borlak J (2010) Toxicogenomics applied to in vitro carcinogenicity testing with Balb/c 3T3 cells revealed a gene signature predictive of chemical carcinogens. Toxicol Sci 118(1):31–41PubMedCrossRefGoogle Scholar
  40. Seo J, Chung YS, Sharma GG, Moon E, Burack WR, Pandita TK, Choi K (2005) Cdt1 transgenic mice develop lymphoblastic lymphoma in the absence of p53. Oncogene 24(55):8176–8186PubMedGoogle Scholar
  41. Tada S, Li A, Maiorano D, Mechali M, Blow JJ (2001) Repression of origin assembly in metaphase depends on inhibition of RLF-B/Cdt1 by geminin. Nat Cell Biol 3(2):107–113PubMedCrossRefGoogle Scholar
  42. Tatsumi Y, Sugimoto N, Yugawa T, Narisawa-Saito M, Kiyono T, Fujita M (2006) Deregulation of Cdt1 induces chromosomal damage without rereplication and leads to chromosomal instability. J Cell Sci 119(Pt 15):3128–3140PubMedCrossRefGoogle Scholar
  43. Tsujimura K, Asamoto M, Suzuki S, Hokaiwado N, Ogawa K, Shirai T (2006) Prediction of carcinogenic potential by a toxicogenomic approach using rat hepatoma cells. Cancer Sci 97(10):1002–1010PubMedCrossRefGoogle Scholar
  44. Uehara T, Minowa Y, Morikawa Y, Kondo C, Maruyama T, Kato I, Nakatsu N, Igarashi Y, Ono A, Hayashi H, Mitsumori K, Yamada H, Ohno Y, Urushidani T (2011) Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database. Toxicol Appl Pharmacol 255(3):297–306PubMedCrossRefGoogle Scholar
  45. Uno S, Dalton TP, Derkenne S, Curran CP, Miller ML, Shertzer HG, Nebert DW (2004) Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Mol Pharmacol 65(5):1225–1237PubMedCrossRefGoogle Scholar
  46. van Delft JH, van Agen E, van Breda SG, Herwijnen MH, Staal YC, Kleinjans JC (2004) Discrimination of genotoxic from non-genotoxic carcinogens by gene expression profiling. Carcinogenesis 25(7):1265–1276PubMedCrossRefGoogle Scholar
  47. van Kesteren PC, Zwart PE, Pennings JL, Gottschalk WH, Kleinjans JC, van Delft JH, van Steeg H, Luijten M (2011) Deregulation of cancer-related pathways in primary hepatocytes derived from DNA repair-deficient Xpa −/− p53 +/− mice upon exposure to benzo[a]pyrene. Toxicol Sci 123(1):123–132PubMedCrossRefGoogle Scholar
  48. van Kreijl CF, McAnulty PA, Beems RB, Vynckier A, van Steeg H, Fransson-Steen R, Alden CL, Forster R, van der Laan JW, Vandenberghe J (2001) Xpa and Xpa/p53 +/− knockout mice: overview of available data. Toxicol Pathol 29(Suppl):117–127PubMedCrossRefGoogle Scholar
  49. van Steeg H, de Vries A, van Oostrom CT, van Benthem J, Beems RB, van Kreijl CF (2001) DNA repair-deficient Xpa and Xpa/p53 +/− knock-out mice: nature of the models. ToxicolPathol 29(Suppl):109–116Google Scholar
  50. Verwei M, van Burgsteden JA, Krul CA, van de Sandt JJ, Freidig AP (2006) Prediction of in vivo embryotoxic effect levels with a combination of in vitro studies and PBPK modelling. Toxicol Lett 165(1):79–87PubMedCrossRefGoogle Scholar
  51. Waters MD, Jackson M, Lea I (2010) Characterizing and predicting carcinogenicity and mode of action using conventional and toxicogenomics methods. Mutat Res 705(3):184–200PubMedCrossRefGoogle Scholar
  52. Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science 290(5500):2309–2312PubMedCrossRefGoogle Scholar
  53. Yauk CL, Jackson K, Malowany M, Williams A (2011) Lack of change in microRNA expression in adult mouse liver following treatment with benzo(a)pyrene despite robust mRNA transcriptional response. Mutat Res 722(2):131–139PubMedCrossRefGoogle Scholar
  54. Zeilmaker MJ, van Eijkeren JCH, Olling M (1999) A PBPK-model for B(a)P in the rat relating dose and liver DNA-adduct level. RIVM Report 658603 008Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. C. E. van Kesteren
    • 1
    • 2
  • P. E. Zwart
    • 1
  • M. M. Schaap
    • 1
    • 3
  • T. E. Pronk
    • 1
    • 2
  • M. H. M. van Herwijnen
    • 2
  • J. C. S. Kleinjans
    • 2
  • B. G. H. Bokkers
    • 4
  • R. W. L. Godschalk
    • 5
  • M. J. Zeilmaker
    • 4
  • H. van Steeg
    • 1
    • 3
  • M. Luijten
    • 1
  1. 1.Laboratory for Health Protection ResearchNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
  2. 2.Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
  3. 3.Department of ToxicogeneticsLeiden University Medical Center (LUMC)LeidenThe Netherlands
  4. 4.Centre for Substances and Integral Risk AssessmentNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
  5. 5.Department of Toxicology, School for Nutrition, Toxicology and Metabolism (NUTRIM)Maastricht UniversityMaastrichtThe Netherlands

Personalised recommendations